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Minimizers of energy functionals

C. Léonard

Abstract. We consider a general class of problems of minimization of convex integral functionals (maximization of

entropy) subject to linear constraints. Under general assumptions, the minimizing solutions are characterized. Our results

improve previous literature on the subject in the following directions:

- a necessary and sufficient condition for the shape of the minimizing density is proved

- without constraint qualification

- under infinitely many linear constraints subject to natural integrability conditions (no topological restrictions).

As an illustration, we give the general shape of the minimizing density for the marginal problem on a product space. Finally,

a counterexample of I. Csiszár is clarified. Our proofs mainly rely on convex duality.

1. Introduction
We consider the energy functionals defined on the space: M(Ω), of the signed measures on the

measure space (Ω,A) which are of the following form

I(Q) =
∫

Ω

γ∗
(

dQ

dR

)
dR ∈ [0,+∞], Q ∈ M(Ω)

if Q is absolutely continuous with respect to the given nonnegative reference measure R, and
I(Q) = +∞ otherwise. The function γ∗ : IR → [0,∞] is the convex conjugate of a function γ, hence
it is convex and lower semicontinuous. The energy functional I is sometimes called γ∗-divergence
or γ∗-entropy. With the special choice: γ(x) = ex−x−1, we get γ∗(x) = (x+1) log(x+1)−x and,
P, R being probability measures, I(P − R) is the relative entropy of P with respect to R which is
also called Kullback information or Boltzmann-Shannon entropy of P with respect to R.

Let A : M(Ω) → X be a linear operator on M(Ω) with its values in a vector space X ; A(Q) = x

is the expression of a linear constraint. We are concerned with the minimum energy problem

(1.1) inf {I(Q) ; Q ∈ M(Ω), A(Q) = xo} .

Notice that a solution to (1.1) is absolutely continuous with respect to R. Such a minimization
problem is sometimes called a maximum entropy problem: −I may be seen as an entropy.

Keywords: maximum entropy method, convex integral functionals, convex conjugacy, Orlicz spaces,
marginal problems.

Mathematics Subject Classification: 49K22, 52A41, 46B10.
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The classical moment constraint:
∫

Ω

fk dQ = xk, fk : Ω → IR, 1 ≤ k ≤ n corresponds to X = IRn

and A(Q) =
(∫

Ω
fk dQ

)
1≤k≤n

. It naturally extends to infinitely many moments with

A(Q) =
(∫

Ω

fk dQ

)

k≥1

∈ X = IR{1,2,...}.

Therefore, the problem (1.1) leads to solutions of some moment problems under the additional
constraint: I(Q) < ∞, which implies in particular that Q is absolutely continuous with respect to
R. It is extensively studied in the literature, among others, let us refer to: [BL1-5], [Cs1-3], [DCG],
[GG], [LV], [TV] and more recently [CGG].

Some marginal problems may also be of type (1.1). Consider a product measure space Ω = Ω1×Ω2

and find the measures Q on Ω whose marginals Q1 on Ω1 and Q2 on Ω2 are given. The constraint
is Q1 = ν1 ∈ M(Ω1), Q2 = ν2 ∈ M(Ω2) which corresponds to A(Q) = (Q1, Q2) ∈ X =

M(Ω1) ×M(Ω2). It can also be regarded as a moment constraint: A(Q) =
(∫

Ω

fθ dQ

)

θ∈Θ

∈ IRΘ

where Θ is not countable in the general case. Marginal problems of type (1.1) are considered in
[BLN], [CG] and [RüT]. See also [Beu] for a close related problem.

This problem can be extended with an infinite number of marginals. Let us consider the
space Ω = E[0,1] of the E-valued paths ω = (ωt)0≤t≤1. If Q is a probability measure on Ω,

let Qt ∈ M(E) stand for its marginal at time t : the law of ωt under Q. The constraint
Qt = νt, ∀t ∈ [0, 1], where (νt)0≤t≤1 is a given flow of probability measures on E, corresponds
to A(Q) = (Qt)0≤t≤1 ∈ X = M(E)[0,1]. Such problems of reconstruction of laws with given
marginal flows appear naturally in the statistical mechanics of large dynamical particle systems
(see [DaG], [Föl], [CaL]). The intermediate problem where the only initial and final marginal laws
are constrained: Q0 = ν0, Q1 = ν1 is related to the construction of Schrödinger bridges (see [Zam],
[Föl], [DP], [FöG], [Lé2]) and for a recent account on this subject see [CWZ] and the references
therein. In the above reconstruction problems motivated by physical questions, the relevant energy
functional is the relative entropy.

The formal dual problem associated with (1.1) is

(1.2) sup
{
〈xo, y〉 −

∫

Ω

γ(A∗y) dR ; y ∈ Y
}

where Y is a vector space in duality with X , A∗ is the formal adjoint of A and A∗y is a measurable
function for any y ∈ Y. In [BL1], J. M. Borwein and A. S. Lewis have proved that if γ is everywhere
finite and differentiable, if X is finite dimensional and if the following constraint qualification:

there is a Q̂ ∈ M(Ω) such that A(Q̂) = xo and inf dom γ∗ < inf
dQ̂

dR
≤ sup

dQ̂

dR
< sup dom γ∗

holds, then the value of the primal problem (1.1) equals the value of the dual problem (1.2), there
is attainment in (1.2) and the unique optimal solution of (1.1) is given by

(1.3) Q∗ = γ′(A∗y∗) ·R
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where y∗ is any solution of (1.2). The representation of the solutions to (1.1) is related to the dual
attainment.

If one is only interested in the dual equality: inf(1.1) = sup(1.2), and drops the problem of
the dual attainment (together with the question of the representation of the primal solutions), no
constraint qualification is required. In [Bor], it is proved that the dual equality holds when A is a
continuous operator from L1(Ω, R) to a normed space X . This equality had already been obtained
by R. T. Rockafellar ([Roc], Theorem 23) in the case where f 7→ ∫

Ω
γ(f) dR is everywhere finite

and continuous on some reflexive Orlicz space built on (Ω,A, R). Using standard Fenchel duality
techniques developped in [Roc], a related dual equality is obtained in ([Lé2], Theorems 3.3 and 3.4)
assuming that X is in duality with some space Y such that

(1.4) ∀y ∈ Y, ∃λ > 0 such that
∫

Ω

γ(λA∗y) dR +
∫

Ω

γ(−λA∗y) dR < ∞.

By means of relaxation and penalizing methods, under quite general linear constraints, J. M.
Borwein ([Bor]) approximates the solution of (1.1) by sequences whose terms can be represented
by a formula of the type (1.3).

The aim of this article is to give an exact (without approximating sequences) representation of
the solution of (1.1), not assuming any constraint qualification. Our main result is Theorem 4.5:
a necessary and sufficient condition (of the type (1.3)) is given for a measure to be the solution of
the minimization problem (1.1). More precisely, one can formally extend the dual problem (1.2)
by:

(1.5) sup
z

{
z(xo)−

∫

Ω

γ
(
A∗z(ω)

)
R(dω)

}

where z(xo) may achieve the values ±∞, x 7→ z(x) acts linearly on {x ; −∞ < z(x) < +∞},
A∗ extends A∗, A∗z(ω) may achieve the values ±∞ and z 7→ A∗z(ω) acts linearly on {z ; −∞ <

A∗z(ω) < +∞}. If this dual value is finite, then it (formally) exists a zxo such that

(1.6) 〈xo, y〉 =
∫

Ω

A∗y(ω)γ′
(
A∗zxo(ω)

)
R(dω), ∀y ∈ Y

(with γ′(±∞) = limx→±∞ γ′(x)) which is an extension of (1.3). We characterize those zxo such that,
xo being defined by (1.6), the value of (1.5) is finite. They will be called admissible force fields.

One obtains this result strengthening (1.4) into:

(1.7) ∀y ∈ Y,

∫

Ω

γ(A∗y) dR < ∞.

In particular, this implies that γ is everywhere finite and excludes the interesting phenomenon of
singular solutions (see [BL4], [GG],[Lé2]).

Comparison with already existing results. A characterization of the minimizer Q∗ in terms
of the cancelling of a gradient is given in [Rüs] and extended in ([LV], Theorem 8.10) and ([TV],
Theorem 2). It doesn’t lead to the exact shape of the density of the minimizer: dQ∗

dR .
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In the special case of the relative entropy, ([Cs1], Theorem 3.1) states a necessary condition
and a sufficient condition as well, for a density to be dQ∗

dR . Except for a finite number of moment
constraints, it remains a gap between these conditions to be both necessary and sufficient. Similar
conditions in more general situations are obtained in ([Cs2], Lemma 3.4) and ([LV], Theorem 8.20).

For a finite number of qualified constraints, the characterization of dQ∗
dR is given in [BL4] and

extended in [CGG]. Let us mention that a qualified constraint is ”interior” and it follows from our
results that the force field associated with Q∗ doesn’t take any infinite values.

Our main results: Theorem 4.4, 4.5 and 4.6, close the problem of the characterization of dQ∗
dR

under the integrability condition (1.7), without any topological restrictions, for a large class of
energy functionals including the relative entropy. They improve the already published related
results.

As an application of these abstract results, we shall consider in Section 5, energy minimization
problems related to the marginal problem. In this setting, a necessary condition for a density to be
dQ∗
dR is stated in ([CG], Theorem 5.4). Our Theorem 5.1 gives a necessary and sufficient condition

for a density to be dQ∗
dR under general conditions. In particular, no topological restrictions on the

underlying measure space are assumed. This new result is the complete solution to the problem of
characterizing the energy minimizer in the marginal problem.

For the general shape of the minimizing density in the important special case of the relative
entropy, see (5.9).

Outline of the paper. Our approach mainly relies on classical results of convex conjugacy.
We consider algebraic duality rather than any arbitrary topological duality: linear forms are not
subject to any a priori regularity restrictions. Of course, this creates difficulties. They have been
partly solved in [Lé1], taking advantage of the convex integral functional form of the objective
function I. The results of [Lé1] which will be used later are recalled in Section 2.

In Section 3, our representation problem is solved for the ”subgradient constraints” and a rough
representation of the solutions is proved for the ”boundary constraints”.

In Section 4, a detailed representation of the solution of (1.1) is derived and a necessary and
sufficient condition is obtained in Theorems 4.4, 4.5 and 4.6.

In Section 5, we give some illustrations of our general results in the special case of the marginal
problem. Finally, an astonishing counterexample of I. Csiszár is clarified: a natural candidate to
be a minimizer is shown not be the correct answer for its related force field isn’t admissible.

2. Preliminaries

In the first subsection, some usual results of convex analysis are recalled. In the second subsection,
a minimization problem for a convex conjugate (see (2.2)) is introduced in a general setting; then,
our approach for solving this minimization problem is described at Proposition 2.3. In the last
subsection, the statements of some results of [Lé1] are recalled in Proposition 2.4 and Theorem 2.5;
our approach deeply relies on them.
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Basic convex analysis. Let X and Y be two vector spaces in separating duality for the bracket:
(x, y) ∈ X × Y 7→ 〈x, y〉 ∈ IR. We consider a function

f : x ∈ X 7→ f(x) ∈]−∞, +∞].

Its conjugate f∗ is defined by

f∗ : y ∈ Y 7→ sup
x∈X

{〈x, y〉 − f(x)} ∈]−∞,+∞],

where we assume that there exists xo ∈ X such that f(xo) < +∞, so that f∗(y) > −∞,∀y ∈ Y. In
particular, if f(0) = 0, then f∗(Y ) ⊂ [0, +∞].

The topology σ(X,Y ) is the weakest topology on X such that every linear form 〈·, y〉, y ∈ Y is
continuous and σ(Y,X) is the weakest topology on Y such that every linear form 〈x, ·〉, x ∈ X is
continuous.
As a supremum of affine continuous functions, f∗ is a convex σ(Y, X)-lower semicontinuous function.

In this paper, it is understood that all the convex functions are proper convex, that is: convex and
]−∞, +∞]-valued with at least one finite value.

The geometric interior (core) of a subset A of X is the set of those a ∈ A such that for any x ∈ X,

there exists λ > 0 satisfying [a, λx[⊂ A.

The affine hull of A : aff A, is the smallest affine space containing A. The relative interior of A :
ri A, is the geometric interior of A considered as a subset of its affine hull: ri A = {a ∈ A ; ∀x ∈
aff A, ∃λ > 0, [a, λx[⊂ A}.
The relative boundary of A : rb A, is defined by: rb A = A \ ri A. Notice that rb A is included in
A rather than in its closure.
The effective domain of f is dom f := {x ∈ X ; f(x) < +∞}.
The relative interior of dom f is denoted by ridom f and the relative boundary of dom f is denoted
by rbdom f

If x belongs to dom f, the subdifferential of f at x is

∂Y f(x) = {y ∈ Y ; f(x) + 〈h, y〉 ≤ f(x + h), ∀h ∈ X}.

The following basic result will be used later several times.

Proposition 2.1.
(a) for any x ∈ dom f such that ∂Y f(x) 6= ∅ and any y ∈ Y,we have:

y ∈ ∂Y f(x) ⇐⇒ f(x) + f∗(y) = 〈x, y〉
(b) y ∈ ∂Y f(x) =⇒ x ∈ ∂Xf∗(y)

Proof. See for instance [EkT], Ch. 1, Proposition 5.1 and Corollary 5.2.

Minimization of a convex conjugate under linear constraints. Let U be a vector space
and V a vector subspace of U. The algebraic dual and bidual spaces of U and V are denoted by:
U∗, U∗∗, V ∗ and V ∗∗. We consider a nonnegative convex function

Φ : u ∈ U 7→ Φ(u) ∈ [0,∞]
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such that Φ(0) = 0. Its conjugates are

Φ∗ : ` ∈ U∗ 7→ sup
u∈U

{〈`, u〉 − Φ(u)} ∈ [0,∞],

Φ : ξ ∈ U∗∗ 7→ sup
`∈U∗

{〈ξ, `〉 − Φ∗(`)} ∈ [0,∞].

Let us consider the relations between the vector spaces. We define the equivalence relation on U∗ :
` ∼ `′ for any `, `′ ∈ U∗ if and only if `(u) = `′(u), ∀u ∈ V. In other words: ` ∼ `′ ⇐⇒ `V = `′V .

We identify V ∗ with the factor space:

(2.1) V ∗ = U∗/ ∼

and ˙̀ ∈ V ∗ stands for the equivalence class of ` ∈ U∗. Therefore, one can identify V ∗∗ with a vector
subspace of U∗∗ : V ∗∗ ⊂ U∗∗ as follows. For any ξ ∈ U∗∗,

ξ ∈ V ∗∗ ⇐⇒
(
∀`, `′ ∈ U∗, ` ∼ `′ =⇒ 〈ξ, `− `′〉 = 0

)
.

In this article, we are going to solve a minimization problem of the type

(2.2) inf{Φ∗(`) ; ` ∈ ˙̀
o}

with ˙̀
o ∈ V ∗. Since ˙̀

o is an affine subspace of U∗, ` ∈ ˙̀
o can be interpreted as a linear constraint.

In order to solve (2.2), let us introduce the restriction Ψ of Φ to V ⊂ U :

Ψ : u ∈ V 7→ Φ(u) ∈ [0,∞].

Its conjugates are

Ψ∗ : v∗ ∈ V ∗ 7→ sup
u∈V

{〈v∗, u〉 − Φ(u)} ∈ [0,∞],

Ψ : ξ ∈ V ∗∗ 7→ sup
v∗∈V ∗

{〈ξ, v∗〉 −Ψ∗(v∗)} ∈ [0,∞].

Proposition 2.2. For any ˙̀
o in V ∗, we have

Ψ∗( ˙̀
o) ≤ inf

`∈ ˙̀
o

Φ∗(`).

Proof. For any ˙̀
o ∈ V ∗ and ` ∈ ˙̀

o, we have: Ψ∗( ˙̀
o) = supu∈V {〈 ˙̀o, u〉 −Ψ(u)} = supu∈V {〈`, u〉 −

Φ(u)} ≤ supu∈U{〈`, u〉 − Φ(u)} = Φ∗(`), from which the result follows.

For any ˙̀ ∈ V ∗, ∂Ψ∗( ˙̀) stands for the algebraic subdifferential of Ψ∗ at ˙̀ : ∂Ψ∗( ˙̀) = ∂V ∗∗Ψ∗( ˙̀) ⊂
V ∗∗ and for any ξ ∈ V ∗∗, ∂Ψ(ξ) stands for the algebraic subdifferential of Ψ at ξ : ∂Ψ(ξ) =
∂V ∗Ψ(ξ) ⊂ V ∗.
If Ψ is Gâteaux differentiable at ξ ∈ V ∗∗, Ψ

′
(ξ) stands for the Gâteaux derivative at ξ. Since Ψ is

convex, Ψ
′
(ξ) belongs to V ∗.

As an application of Proposition 2.1, one obtains the following proposition.
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Proposition 2.3.
(a) If ˙̀

o belongs to ridom Ψ∗, then ∂Ψ∗( ˙̀
o) is nonempty.

(b) Let ˙̀
o be such that ∂Ψ∗( ˙̀

o) 6= ∅, for any ξo ∈ ∂Ψ∗( ˙̀
o), we have:

˙̀
o ∈ ∂Ψ(ξo) and Ψ∗( ˙̀

o) = 〈ξo, ˙̀
o〉 −Ψ(ξo).

If Ψ is Gâteaux differentiable at ξo, then:
˙̀
o = Ψ

′
(ξo) and Ψ∗( ˙̀

o) = 〈ξo,Ψ
′
(ξo)〉 −Ψ(ξo).

Proof. The statement (a) is a direct consequence of the geometric version of Hahn-Banach
theorem.

Since Ψ is the convex conjugate of Ψ∗ for the duality (V ∗, V ∗∗), the first part of (b) follows from
Proposition 2.1. The second part follows from the identity ∂Ψ(ξo) = {Ψ′(ξo)} which holds when Ψ
is Gâteaux differentiable.

The equality ˙̀
o = Ψ

′
(ξo) leads us to a belonging relation of the type `ξo ∈ ˙̀

o, so that if one can
rewrite Ψ∗( ˙̀

o) = 〈ξo, `ξo〉−Ψ(ξo) as Ψ∗( ˙̀
o) = Φ∗(`ξo), with Proposition 2.2, one obtains that `ξo is

a solution to the minimization problem (2.2). In the case where Φ∗ is strictly convex (this property
is close to the differentiability of Φ and Ψ), `ξo is the unique solution to (2.2).

The biconjugate of a convex integral functional. In this subsection, we express Φ∗ and Ψ
when Φ is an integral functional.

Let Ω be an arbitrary set, A a σ-field of subsets of Ω and R a nonnegative measure on A. Let γ be
a nonnegative convex function on IR; γ∗ stands for its convex conjugate.
Our assumptions are

(2.3)

A is R-complete,
R is σ-finite,
γ : IR → [0,+∞[ is a nonnegative convex function such that γ(0) = 0 and
dom γ = IR.

We consider the integral functional

(2.4) Φ : u ∈ U 7→
∫

Ω

γ(u) dR ∈ [0,∞[

defined on

(2.5) U :=
{

u : Ω → IR, measurable such that
∫

Ω

γ(λu) dR < ∞,∀λ ∈ IR
}

where R-almost equal functions are identified.

Proposition 2.4. Under the assumptions (2.3), Φ and U being defined by (2.4) and (2.5), for any

` ∈ U∗, we have

Φ∗(`) =
{ ∫

Ω
γ∗

(
d`
dR

)
dR if ` ¿ R

+∞ otherwise,

where ` ¿ R means that there exists a measurable function d`
dR : Ω → IR such that ` = d`

dR ·R.
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Proof. See for instance ([Lé1], Proposition 6.2).

Let θ be a Young function and θ∗ be its convex conjugate. The Orlicz space associated with θ is
Lθ = {f : Ω → IR ; f is A-measurable and ‖f‖θ < +∞} with the Luxemburg norm
‖f‖θ = inf

{
β > 0 ;

∫
Ω

θ
(
|f(ω)|

β

)
R(dω) ≤ 1

}
. The space (Lθ, ‖ · ‖θ) is a Banach space.

Any continuous linear form on Lθ : ξ ∈ L′θ, is uniquely decomposed into the sum ξ = ξa + ξs where
ξa belongs to the Orlicz space Lθ∗ and ξs is singular with respect to R, that is

L′θ = Lθ∗ ⊕ Ls
θ.

where Ls
θ is the space of all the singular forms with respect to R. The forms ξa and ξs are called

respectively the absolutely continuous and singular parts of ξ with respect to R. For more details,
see ([Lé1], Section 5).

If γ satisfies

(2.6) lim
t→+∞

γ(t) = lim
t→−∞

γ(t) = ∞,

the functions

γ+(t) := γ(|t|) and γ−(t) := γ(−|t|), t ∈ IR

are Young functions. The corresponding Luxemburg norms ‖·‖γ+ and ‖·‖γ− are defined respectively
on the Orlicz spaces Lγ+ and Lγ− . As usual, γ∗+ and γ∗− are their convex conjugates.

We define the cone WΦ which consists of all the elements of the form ξ = ξ1 − ξ2 + ξ3 − ξ4,

ξ1, ξ2, ξ3, ξ4 ≥ 0 with ξ1 ∈ Lγ+ , ξ2 ∈ Lγ− , ξ3 ∈ Ls
γ∗+

, ξ4 ∈ Ls
γ∗−

, where the above spaces appear in
the decompositions L′γ∗+ = Lγ+ ⊕ Ls

γ∗+
and L′γ∗− = Lγ− ⊕ Ls

γ∗−
. Any element of WΦ can uniquely be

written in the form

(2.7) ξ = ξa
+ − ξa

− + ξs
+ − ξs

− = ξa + ξs

(putting ξa = ξa
+ − ξa

− and ξs = ξs
+ − ξs

−), with ξa
+, ξa

−, ξs
+, ξs

− ≥ 0, ξa
+ ∈ Lγ+ ,ξa

− ∈ Lγ− ,

ξs
+ ∈ Ls

γ∗+
,ξs
− ∈ Ls

γ∗−
and ξa ∧ ξs = ξa

+ ∧ ξa
− = ξs

+ ∧ ξs
− = 0.

We define

W = σ(WΦ, dom Φ∗)-closure of V in WΦ.

Any element of W can uniquely be written in the form (2.7).

Let us denote respectively W a and W s the cones of the absolutely continuous and singular forms
in W : W = W a ⊕W s.

Let us define the functions Ψ
a

and Ψ
s

on V ∗∗, for any ξ ∈ V ∗∗, by:

Ψ
a
(ξ) =





∫
Ω

γ (ξ) dR if ξ ∈ W a

+∞ otherwise
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and

Ψ
s
(ξ) =





sup
{〈ξs

+, v〉 ; v ≥ 0,
∫
Ω

γ∗(v) dR < ∞}
+sup

{〈ξs
−, |v|〉 ; v ≤ 0,

∫
Ω

γ∗(v) dR < ∞}
if ξ ∈ W s

+∞ otherwise

We are ready to give the expression of Ψ.

Theorem 2.5. Under the assumptions (2.3) and (2.6), Φ and U being defined by (2.4) and (2.5),

for any ξ ∈ V ∗∗, taking the decomposition (2.7) into account, we have

Ψ(ξ) = Ψ
a
(ξa) + Ψ

s
(ξs).

Proof. See ([Lé1], Theorem 6.4).

3. The minimization
The main result of this section is Theorem 3.6 which states the solution to a minimization problem
(2.2) where Φ∗ is given by Proposition 2.4 and the linear constraints are described below. In the
rest of the paper, Φ and U are given by (2.4) and (2.5).

Description of the constraints. We consider a vector space Y and its algebraic dual and bidual
spaces Y∗ = X and X ∗. The space X is endowed with the Borel σ-field of the weak topology
σ(X ,Y). Let ϕ : Ω → X be a measurable function which satisfies

(3.1)
∫

Ω

γ(〈y, ϕ(ω)〉)R(dω) < ∞, ∀y ∈ Y.

We define the constraints (` ∈ ˙̀
o) by means of (2.1) with

V =
{
(ω ∈ Ω 7→ 〈y, ϕ(ω)〉 ∈ IR) ; y ∈ Y}

.

Because of (3.1), V is a vector subspace of U (see (2.5)).

We define the “projection” Π : U∗ → X , for all ` ∈ U∗, by

(3.2.a) ∀y ∈ Y,
〈
`, 〈y, ϕ(·)〉

〉
U∗,U

=
〈
Π(`), y

〉
X ,Y

so that, for any xo ∈ X ,

Π(`) = xo

is the expression of a linear constraint on ` ∈ U∗. Similarly, let Π̇ : V ∗ → X be defined for all
˙̀
o ∈ V ∗ by:

(3.2.b) Π̇( ˙̀
o) = Π(`), ` ∈ ˙̀

o :

the common value of Π(`) when ` describes ˙̀
o.

With the notations of the Section 1, this corresponds to 〈y, ϕ(ω)〉 = A∗y(ω) (see (1.2)). In [Lé2], it
is shown that with this description of the linear constraints, one almost doesn’t lose any generality
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(see [Lé2], (3.10)) and that the assumption (3.1) (see also (1.7)) is a continuity hypothesis for the
constraint operator A.

The assumptions. The assumptions of the main result of this section: Theorem 3.6, are:

(3.3)
The assumptions (2.3) and (3.1) hold and γ is differentiable,
if R(Ω) = ∞, the assumption (3.3.a) or (3.3.b) below also holds.

If R(Ω) = +∞, we shall need the following additional assumptions.
A Young function θ satisfies the ∆2-condition, if there exists K > 0 and to ≥ 0 such that
θ(2t) ≤ Kθ(t), ∀t ≥ to. The ∆2-condition is said to be global when to = 0.

When R(Ω) = +∞, the additional assumptions are

(3.3.a) If lim
t→+∞

γ(t) = lim
t→−∞

γ(t) = +∞, then:

there exists a convex function ρ : [0, 2] → [0,∞[ such that ρ(t) ≤ min(γ(t), γ(−t)), ∀0 ≤
t ≤ 2 which satisfies (3.4).

(3.3.b) If lim
t→+∞

γ(t) = +∞ and γ− ≡ 0, then: γ+ satisfies (3.4).

If lim
t→−∞

γ(t) = +∞ and γ+ ≡ 0, then: γ− satisfies (3.4).

We say that ρ satisfies the ∆2-condition around zero if

(3.4) (ρ(t) = 0 ⇐⇒ t = 0) and ∃K > 0, ρ(2t) ≤ Kρ(t), ∀t ∈ [0, 1].

Note that, if γ is equivalent to C|t|p around t = 0, with C > 0 and 1 ≤ p < ∞, there exists
a function ρ as in (3.3.a). Similarly, if γ± is equivalent to C|t|p around t = 0, with C > 0 and
1 ≤ p < ∞, it satisfies (3.4) as in (3.3.b).

Let us give some more comments about the assumption (3.3.a). Let θ be a Young function, we
denote Mθ =

{
f ∈ Lθ ; ∀α > 0,

∫
Ω

θ(αf) dR < ∞}
. If θ(IR) = [0,∞[ and if

(3.5) R(Ω) = ∞ =⇒ (θ(t) = 0 ⇐⇒ t = 0),

the strong dual space of Mθ can be identified, by means of the dual bracket 〈f, g〉 =
∫
Ω

fg dR, ∀f ∈
Lθ, with Lθ∗ : M ′

θ ' Lθ∗ , which means that for any χ ∈ M ′
θ, there exists a unique gχ ∈ Lθ∗ such that

χ(f) =
∫
Ω

fgχ dR, for all f ∈ Mθ (see [RaR], Theorem 4.1.7).
The assumption [(2.6) & (3.3.a)] implies that γ± satisfy (3.5). Therefore, under [(2.6) & (3.3.a)],
we have

(3.6) M ′
γ± ' Lγ∗± .

If R is bounded, in order that Mθ = Lθ, it is enough that θ satisfies the ∆2-condition, while if R

is unbounded (but σ-finite), in order that Mθ = Lθ, it is enough that θ satisfies the ∆2-condition
globally (see [RaR], Corollary 3.4.5).

Assuming (2.3) and [(2.6) & (3.3.a)], there exists a Young function σ which matches with ρ on [0, 1]
and satisfies limt→∞ σ(t)/t < ∞. Since, it satisfies the ∆2-condition (globally if R(Ω) = ∞), we
obtain:

(3.7) the dual space of Lσ is Lσ∗ .
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The Orlicz space Lσ is close to L1. Indeed, if R is a bounded measure, Lσ = L1; while if R is
unbounded, Lσ takes into consideration the behavior of its elements around zero.
Similarly, the space Lσ∗ is close to L∞. In particular, if R is a bounded measure, then Lσ∗ = L∞.

We clearly have:

(3.8) Lγ± ⊂ Lσ and Lσ∗ ⊂ Lγ∗± .

Subgradient constraints. A constraint ˙̀ is said to be a subgradient constraint if ∂Ψ∗( ˙̀) is
nonempty. Any element of the relative interior of the effective domain of Ψ∗ : ridom Ψ∗, is a
subgradient constraint. In Proposition 3.3 below, we give a description of those constraints. In
Lemma 3.1 and Lemma 3.2, preliminaries for its proof are established.

Lemma 3.1. Let us assume (2.3), (2.6) and if R(Ω) = ∞ : (3.3.a). Then, the domain of Ψ
a

consists

of the measurable functions 〈z, ϕ(·)〉, z ∈ X ∗, which satisty
∫
Ω

γ(〈z, ϕ(·)〉) dR < ∞ and

∀ε > 0, ∀K ≥ 1,1 ≤ k ≤ K, fk ∈ Lγ∗+ , gk ∈ Lγ∗− , ∃y ∈ Y such that

K∑

k=1

∣∣∣∣
∫

Ω

〈z − y, ϕ(·)〉(1I{〈z,ϕ(·)〉≥0}fk + 1I{〈z,ϕ(·)〉≤0}gk) dR

∣∣∣∣ ≤ ε.

Moreover, for any 〈z, ϕ(·)〉 ∈ dom Ψ
a
, there exists a sequence (yn)n≥1 in Y such that

lim
n→∞

‖〈z, ϕ(·)〉 − 〈yn, ϕ(·)〉‖σ = 0 and

lim
n→∞

〈yn, ϕ(ω)〉 = 〈z, ϕ(ω)〉, for R-almost every ω ∈ Ω.

Similarly, let ρ be a Young function satisfying the ∆2-condition globally and ρ(t) ≤ min(γ(t), γ(−t)),
for all t ≥ 0. There exists a sequence (yn)n≥1 in Y such that limn→∞ ‖〈z, ϕ(·)〉 − 〈yn, ϕ(·)〉‖ρ = 0.

In particular, if R is bounded and γ grows faster than any polynomial at infinity, by means of a
diagonal sequence argument, it follows that 〈yn, ϕ(·)〉 tends to 〈z, ϕ(·)〉 in all the Lp’s.

Proof. We only have to show that an element ξ of dom Ψ
a

satisfies limn→∞ ‖ξ − 〈yn, ϕ(·)〉‖σ = 0
for some sequence (yn)n≥1 in Y. In fact, the first statement follows easily from this together with
the inclusion dom Ψ

a ⊂ W a.

Thanks to (3.8), V is σ(Lσ, Lσ∗)-dense in dom Ψ
a ⊂ Lσ. Therefore, for any ξ ∈ dom Ψ

a
and any

neighbourhood T of ξ for the topology σ(Lσ, Lσ∗), V ∩ T is nonempty: let us pick ηT in V ∩ T .

Denote C the convex hull of {ηT ; T : σ(Lσ, Lσ∗)-neighbourhood of ξ}, C̄w its σ(Lσ, Lσ∗)-closure
and C̄ its ‖ · ‖σ-closure. Because of the assumption [(2.6) & (3.3.a)], we have (3.7) and we obtain
that: C̄w = C̄ (see [Rud], Theorem 3.12). But, we have just seen that ξ ∈ C̄w, so that ξ ∈ C̄. It
follows that for any n ≥ 1, there exists ηn ∈ C such that ‖ηn − ξ‖σ ≤ 1

n . From (ηn)n≥1, one can
extract a subsequence which converges R-a.e. to ξ : there exists a sequence (yn)n≥1 in Y such that

lim
n→∞

〈yn, ϕ(ω)〉 = ξ(ω)
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for R-almost every ω ∈ Ω. Hence, there exist a vector subspace: Xξ, of X such that R◦ϕ−1(X\Xξ) =
0 and a numerical function z(·) on Xξ (taking ξ = z ◦ ϕ) such that

lim
n→∞

〈yn, x〉 = z(x), ∀x ∈ Xξ.

Clearly z is measurable and linear on Xξ. By Hahn-Banach theorem, it admits a linear extension
to X denoted 〈z, ·〉 ∈ X ∗.
The proof of the statement with ρ is similar since under our assumptions, Lγ ⊂ Lρ, Lρ∗ ∈ Lγ∗ and
Lγ

′ ' Lγ∗ . This completes the proof of the lemma.

Let γo be the Young function defined by γo(x) = max (γ(x), γ(−x)). The associated Orlicz space
is Lγo = {v ; v : Ω → IR measurable such that ∃λ > 0,

∫
Ω
[γ(λv) + γ(−λv)] dR < ∞}.

Lemma 3.2. (Characterization of the subgradient constraints). Let ξ ∈ V ∗∗ be such that

Ψ(ξ) < ∞.

If ∂V ∗Ψ(ξ) 6= ∅, then the absolutely continuous part ξa of ξ satisfies

0 ≤
∫

Ω

ξaγ′(ξa) dR < ∞ and 0 ≤
∫

Ω

γ∗ ◦ γ′(ξa) dR < ∞.

In addition, for any v in Lγo :
∫
Ω
|vγ′(ξa)| dR < ∞.

Conversely, if
∫
Ω

ξaγ′(ξa) dR = ∞, then ∂V ∗Ψ(ξ) = ∅.
Proof. The function g(t) =

∫
Ω

γ(tξa) dR, 0 ≤ t ≤ 1 is convex nondecreasing and 0 = g(0) ≤ g(t) ≤
g(1) =

∫
Ω

γ(ξa) dR = Ψ
a
(ξa) ≤ Ψ(ξ) < ∞ (see Theorem 2.5). Since for any x ∈ IR, t ∈ [0, 1] 7→

γ(tx) is convex, γ((1−h)x)−γ(x)
−h increases towards xγ′(x) ≥ 0 as h decreases to zero. It follows from

the monotone convergence theorem that

(3.9) g′(1−) =
∫

Ω

ξaγ′(ξa) dR ∈ [0,∞].

On the other hand, as Ψ(ξ) < ∞ and ∂V ∗Ψ(ξ) 6= ∅, for any ˙̀ ∈ ∂V ∗Ψ(ξ) and any 0 ≤ h ≤ 1, we
have g(1− h)− g(1) = Ψ

a
((1− h)ξa)−Ψ

a
(ξa) = Ψ((1− h)ξa)−Ψ(ξa) ≥ 〈 ˙̀,−hξa〉. Consequently,

g(1−h)−g(1)
−h ≤ 〈 ˙̀, ξa〉 < ∞, ∀0 < h ≤ 1. Hence, g′(1−) < ∞. Together with (3.9), this leads us to:

0 ≤ ∫
Ω

ξaγ′(ξa) dR < ∞ and with the identity

(3.10) tγ′(t)− γ(t) = γ∗ ◦ γ′(t), ∀t ∈ IR

we get:
∫
Ω

γ∗ ◦ γ′(ξa) dR < ∞.

For any v : Ω → IR, γ′(ξa)v ≤ γ∗ ◦ γ′(ξa)+ γ(v) and −γ′(ξa)v ≤ γ∗ ◦ γ′(ξa)+ γ(−v). Therefore, for
any λ > 0, |γ′(ξa)v| ≤ 1

λ [γ∗ ◦ γ′(ξa) + γ(λv) + γ(−λv)]. Choosing λ > 0 small enough, one deduces
that

∫
Ω
|γ′(ξa)v| dR < ∞ provided that v ∈ Lγo .

The converse part is clear from the above proof.

Proposition 3.3. We assume (3.3) and (2.6). Let ˙̀ ∈ dom Ψ∗ be such that ∂Ψ∗( ˙̀) 6= ∅. One can

associate a measurable z ˙̀ ∈ X ∗ such that
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(a) γ′(〈z ˙̀, ϕ〉) ·R ∈ ˙̀,

(b) Ψ∗( ˙̀) = Φ∗
(
γ′(〈z ˙̀, ϕ〉) ·R

)
=

∫
Ω

γ∗
[
γ′

(〈z ˙̀, ϕ〉
) ]

dR < ∞ and

(c) 〈z ˙̀, ϕ(·)〉 ∈ dom Ψ
a
.

More precisely, any z ˙̀ such that 〈z ˙̀, ϕ〉 = ξa with ξ ∈ ∂Ψ∗( ˙̀) is convenient.

Remark. By the geometric version of Hahn-Banach theorem, any ˙̀ in ridom Ψ∗ satisfies the
assumption: ∂Ψ∗( ˙̀) 6= ∅.
Proof. Let ξ ∈ ∂Ψ∗( ˙̀). By Proposition 2.1: ξ ∈ dom Ψ and ˙̀ ∈ ∂V ∗Ψ(ξ). Let ξ = ξa + ξs be the
decomposition (2.7). By Theorem 2.5, for any v ∈ W a,

Ψ(ξ + v)−Ψ(ξ) = [Ψ
a
(ξa + v)−Ψ

a
(ξa)] + [Ψ

s
(ξs + 0)−Ψ

s
(ξs)]

= Ψ
a
(ξa + v)−Ψ

a
(ξa).

Therefore, ∂V ∗Ψ(ξ) = ∂V ∗Ψ
a
(ξa). But, as Ψ∗ is strictly convex (since γ is differentiable), we have

∂V ∗Ψ(ξ) = { ˙̀}. This gives

(3.11) ∂V ∗Ψ(ξa) = ∂V ∗Ψ
a
(ξa) = { ˙̀}

As γ(a + b) ≥ γ(a) + γ′(a)b,∀a, b ∈ IR, for any v ∈ Lγo ,
∫

γ(ξa + v) dR− ∫
γ(ξa) dR ≥ ∫

γ′(ξa)v dR

where the last integral is finite by Lemma 3.2. It follows that γ′(ξa) · R ∈ ∂V ∗Ψ
a
(ξa). Together

with (3.11), this leads us to

(3.12) γ′(ξa) ·R ∈ ˙̀.

As Ψ∗ and Ψ are conjugate to each other for the duality (V ∗, V ∗∗), thanks to Proposition 2.1,
(3.11) and (3.12), we obtain

Ψ∗( ˙̀) = 〈ξa, ˙̀〉 −Ψ(ξa)(3.13)

=
∫

Ω

[
ξaγ′(ξa)− γ(ξa)

]
dR

=
∫

Ω

γ∗ ◦ γ′(ξa) dR

= Φ∗ (γ′(ξa) ·R) ,

where we have used (3.10) and Proposition 2.4.

Thanks to Lemma 3.1, there exists z ˙̀ ∈ X ∗ such that ξa = 〈z ˙̀, ϕ〉 belongs to dom Ψ
a
. Finally,

(3.12) is (a) and (3.13) is (b).

Boundary constraints. Now, we focus our attention on those ˙̀ which stand on the relative
boundary of dom Ψ∗ : ˙̀ ∈ rbdom Ψ∗.

Let us sketch an analogy with mechanics. If the elements of X are the possible states of a system, the
elements of X ∗ may be interpreted as forces. More precisely, the vector z ˙̀ appearing in Proposition
3.3 is the “force” one has to apply in order that the system stands in the state Π̇( ˙̀). The equilibrium
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state of the system is the state Π̇( ˙̀) such that Ψ∗( ˙̀) is minimal, that is: Π̇( ˙̀) = 0. The corresponding
force is z0 = 0. We are going to establish that, in some circumstances, the force corresponding to
boundary states may assume infinite (±∞) values. Let us fix some conventions and notations:

lim
t→+∞

γ′(t) = γ′(+∞) def= κ+ ∈ [0,+∞],

lim
t→−∞

γ′(t) = γ′(−∞) def= κ− ∈ [−∞, 0],

lim
t→+∞

γ∗(t) = γ∗(+∞) = +∞ and

lim
t→−∞

γ∗(t) = γ∗(−∞) = +∞,

so that for any z(·) : X → [−∞, +∞], γ′ ◦ z(x) ∈ [κ−, κ+] and γ∗ ◦ γ′ ◦ z(x) ∈ [0, +∞] are well
defined.

Proposition 3.4. We assume (3.3) and (2.6). To any ˙̀ ∈ rbdom Ψ∗, one can associate a measurable

function z ˙̀ : X → [−∞, +∞], which is the pointwise limit of a sequence in Y ⊂ X ∗, such that

(a) γ′(z ˙̀ ◦ ϕ) ·R ∈ ˙̀ and

(b) Ψ∗( ˙̀) = Φ∗
(
γ′(z ˙̀ ◦ ϕ) ·R

)
=

∫
Ω

γ∗
[
γ′(z ˙̀ ◦ ϕ)

]
dR < ∞.

Remark. Suppose that z ˙̀◦ϕ assumes infinite values. As Ψ∗( ˙̀) is finite, this implies that γ∗(κ+) < ∞
or γ∗(κ−) < ∞. It is necessary that 0 ≤ κ+ < ∞ or −∞ < κ− ≤ 0 which means that γ+ or γ−
admits an asymptot with slope κ+ or κ−.

Proof. Let ˙̀ be on the boundary rbdom Ψ∗. Let us define ˙̀
n = (1− 1

n ) ˙̀. We have: limn→∞ ˙̀
n = ˙̀

for the topology σ(V ∗, V ) on the segment [0, ˙̀]. Since Ψ∗ is convex and σ(V ∗, V )-lower semicontin-
uous, it comes out that

(3.14) lim
n→∞

Ψ∗( ˙̀
n) = Ψ∗( ˙̀).

As the ˙̀
n’s are in ridom Ψ∗ (by (2.6), 0 is interior), by Proposition 3.3, for any n ≥ 1, there exists

zn = z ˙̀
n
∈ X ∗ such that

(3.15)
γ′(〈zn, ϕ〉) ·R ∈ ˙̀

n

〈zn, ϕ〉+ ∈ Lγ+ and 〈zn, ϕ〉− ∈ Lγ−

Ψ∗( ˙̀
n) =

∫
Ω

γ∗ ◦ γ′(〈zn, ϕ〉) dR < ∞

Let us consider the function θ defined on [−∞, +∞] by θ(t) =





t
1+|t| if t ∈ IR
+1 if t = +∞
−1 if t = −∞

. It is contin-

uous, increasing and bounded. By Tychonov’s theorem, one can extract from (θ ◦ γ′(〈zn, ·〉))n≥1 a
subsequence pointwise converging to a [−1,+1]-valued limit g : limn→∞ θ ◦γ′(〈zn, x〉) = g(x), ∀x ∈
X . Let us suppose for a while that γ′ is increasing, then the reciprocal function (θ ◦ γ′)−1 of θ ◦ γ′

is continuous. Putting z ˙̀ = (θ ◦ γ′)−1 ◦ g, for any x ∈ X , we obtain

(3.16)

{
lim

n→∞
〈zn, x〉 = z ˙̀(x) ∈ [−∞, +∞],

lim
n→∞

γ′(〈zn, x〉) = γ′ ◦ z ˙̀(x) ∈ [κ−, κ+].
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In the general case where γ′ is nondecreasing, it may assume constant values ck on some intervals
Ik = γ′−1(ck) with a nonempty interior. There exist at most countably many such Ik’s. They
are bounded, except possibly for two intervals of the form [a+, +∞[ and ] −∞, a−] where γ′ may
assume the values κ+ and κ−. As θ−1 is continuous, the limit limn→∞ γ′(〈zn, ·〉) = θ−1 ◦ g exists.
In addition, limn→∞〈zn, x〉 def= z ˙̀(x) exists for all the x’s such that θ−1 ◦ g(x) 6∈ {ck ; k ≥ 1}. But
for any bounded Ik, Tychonov’s theorem allows us to extract a pointwise converging subsequence:
limn→∞〈zn, x〉 def= z ˙̀(x) ∈ Ik, for all x such that θ−1 ◦ g(x) = ck. For the intervals of the form

[a+, +∞[ and ]−∞, a−], put z ˙̀(x) = ±∞ for all x ∈ X such that θ−1 ◦ g(x) = κ±. Finally, (3.16)
is obtained by means of a diagonal subsequence procedure.

Now, let us prove the statement (a) of the proposition. By (3.14) and (3.15), possibly dropping the
first terms of the sequence, we have

(3.17) sup
n≥1

( ∫

Ω

γ∗+ ◦ γ′+(〈zn, ϕ〉+) dR +
∫

Ω

γ∗− ◦ γ′−(〈zn, ϕ〉−) dR
)
≤ Ψ∗( ˙̀) + 1 < +∞

so that, together with (3.6), this allows us to extract from (γ′(〈zn, ϕ〉))n≥1 a subsequence such that
the following limits with respect to the ∗-weak topologies σ(Lγ∗± ,Mγ±) :
limn→∞ γ′±(〈zn, ϕ〉±) = h± ∈ Lγ∗± , exist. This means

(3.18) ∀v ∈ Mγ± , lim
n→∞

∫

Ω

vγ′±(〈zn, ϕ〉±) dR =
∫

Ω

vh± dR

where Mγ± = {f ∈ Lγ± ; ∀α > 0,
∫
Ω

γ±(αf) dR < ∞}.
In particular, choosing ṽ+ = 1I{z ˙̀◦ϕ=+∞} (which is in Mγ+ thanks to (3.17)), (3.16) and (3.18)
provide us with

κ+R(z ˙̀ ◦ ϕ = +∞) =
∫

Ω

ṽ+ lim
n→∞

γ′+(〈zn, ϕ〉+) dR

≤ lim inf
n→∞

∫

Ω

ṽ+γ′+(〈zn, ϕ〉+) dR (Fatou)

=
∫

Ω

ṽ+h+ dR < +∞

from which it comes out (with a similar argument for the nonpositive parts) that

(3.19) [κ± > 0 ⇒ R(z ˙̀ ◦ ϕ = ±∞) < ∞] and [κ± = ±∞⇒ R(z ˙̀ ◦ ϕ = ±∞) = 0]

Since dom γ = IR, we have: lim
t→±∞

γ∗(t)/|t| = +∞. Together with (3.17) and de la Vallée-Poussin’s

theorem, this leads us to the following statement: for any bounded measurable function v, the
families {vγ′±(〈zn, ϕ〉±) ; n ≥ 1} are uniformly integrable. From (3.16), (3.18) and (3.19), one
deduces that for any bounded measurable function v :

∫
Ω

vγ′±(〈z ˙̀, ϕ〉±) dR =
∫
Ω

vh± dR. It follows
that: Lγ∗± 3 h± = γ′±(〈z ˙̀, ϕ〉±). But, taking the assumption (3.1) into account, for any y ∈ Y,

〈y, ϕ(·)〉 belongs to Mγ± and (3.18) yields

∀y ∈ Y, lim
n→∞

∫

Ω

〈y, ϕ〉γ′(〈zn, ϕ〉) dR =
∫

Ω

〈y, ϕ〉γ′(〈z ˙̀, ϕ〉) dR.
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On the other hand, limn→∞ ˙̀
n = ˙̀ and γ′(〈zn, ϕ〉) ·R ∈ ˙̀

n (see (3.15)) mean that

∀y ∈ Y, lim
n→∞

∫

Ω

〈y, ϕ〉γ′(〈zn, ϕ〉) dR = 〈y, Π̇( ˙̀)〉.

Putting together the last two limits, we obtain the statement (a) of the proposition.

Now, let us prove the statement (b). By (3.14) and (3.15), we get

Ψ∗( ˙̀) = lim
n→∞

Ψ∗( ˙̀
n) = lim

n→∞

∫

Ω

γ∗ ◦ γ′(〈zn, ϕ〉) dR ≥
∫

Ω

γ∗ ◦ γ′ ◦ z ˙̀ ◦ ϕdR = Φ∗(γ′(z ˙̀ ◦ ϕ) ·R)

where the last equality is Proposition 2.4. The above inequality is due to the the decomposition
Φ∗(`) = Φ∗+(`+) + Φ∗−(`−) (see [Lé1], Proposition 4.4) together with the lower semicontinuities of
Φ∗± and the convergences: limn→∞ γ′±(〈zn, ϕ〉±) = γ′±((z ˙̀ ◦ ϕ)±), with respect to the topologies
σ(Lγ∗± , Mγ±). But, by Proposition 2.2, we have: Ψ∗( ˙̀) ≤ Φ∗(γ′(z ˙̀◦ϕ)·R). This proves the statement
(b) of the proposition and completes its proof.

An example. We now give an example of a non-subgradient constraint without an infinite force
representation. Consider the strongest constraint specified by ` = x ∈ Lγ∗o ·R which corresponds to
V = U = Y = Mγo and ϕ(ω) = δω, ω ∈ Ω. Take γ(s) = (|s|+1) log(|s|+1)−|s|, γ∗(t) = e|t|−|t|−1
and R(dω) = e−ω/(1 + ω2) dω on Ω = [0,∞[. The measure `(ω) = ω R(dω) corresponds to
` = γ′(ζ) ·R with ζ(ω) = eω − 1. We have:∫
Ω

γ∗ ◦ γ′(ζ) dR =
∫
[0,∞[

(eω − ω − 1)e−ω/(1 + ω2) dω < ∞ : x = ` ∈ C,∫
Ω

ζγ′(ζ) dR =
∫
[0,∞[

(eω − 1)ωe−ω/(1 + ω2) dω = ∞ : ∂Ψ∗(x) is empty (by Lemma 3.2), and∫
Ω

γ(ζ) dR =
∫
[0,∞[

(ωeω − eω + 1)e−ω/(1 + ω2) dω = ∞ : ζ doesn’t belong to Lγo .

The minimization result. Let us first note that it is possible to weaken the assumptions of
Propositions 3.3 and 3.4.

Lemma 3.5. The results of Proposition 3.3 and Proposition 3.4 still hold under the only assumption

(3.3) (without assuming (2.6)).

Proof. If (2.6) is satisfied the result is already proved. If γ ≡ 0, there is nothing to prove.

Let us suppose that γ− ≡ 0 and limt→+∞ γ(t) = +∞. Thanks to ([Lé1], Propositions 3.3 and 4.4),
Ψ is the restriction to the σ(V ∗∗V ∗)-closure of V in V ∗∗ of Φ(ξ) = Φ+(ξ+) + Φ−(ξ−). But, Φ− ≡ 0
since γ− ≡ 0. Hence, Ψ

a
(ξ) = Ψ

a

+(ξ+) where Ψ
a

+ is a function Ψ
a

built upon γ+ instead of γ.

Following the proof of Lemma 3.1 with the function σ built with ρ = γ+, we obtain that for any ξ

such that Ψ
a
(ξ) < ∞, there exists z ∈ X ∗ such that ξ+ = 〈z, ϕ〉+ where 〈z, ϕ〉 is measurable and

Ψ
a
(ξ) = Ψ

a
(ξ+) =

∫
Ω

γ(〈z, ϕ〉) dR.

An inspection of the proofs of Propositions 3.3 and 3.4 allows us to state that they still hold with
the above Ψ

a
(note that, thanks to γ′− ≡ 0, some statements of these proofs become trivial).

The same proof works when the parts of γ− and γ+ are exchanged.

We are now ready to state the main result of this section. Denoting

Λ : y ∈ Y 7→ ∫
Ω

γ(〈y, ϕ(ω)〉)R(dω) ∈ [0,∞[,

Λ∗ : x ∈ X 7→ sup
y∈Y

{〈x, y〉 − Λ(y)} ∈ [0,∞],
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we get: Ψ∗ = Λ∗ ◦ Π̇.

It will be useful to represent dom Λ∗ as a subset C of X , image of dom Ψ∗ by the application
˙̀ ∈ V ∗ 7→ Π̇( ˙̀), defined at (3.2.b):

C = {Π̇( ˙̀) ∈ X ; ˙̀ ∈ dom Ψ∗}.

As Π̇ is linear, C is a convex subset of X and ˙̀ is a boundary point of dom Ψ∗ if and only if Π̇( ˙̀)
is a boundary point of C.
Recall that the projection Π is defined at (3.2.a) and that (see Proposition 2.4), Φ and U being

defined by (2.4) and (2.5), for any ` ∈ U∗, we have Φ∗(`) =
{ ∫

Ω
γ∗

(
d`
dR

)
dR if ` ¿ R

+∞ otherwise , where

` ¿ R means that there exists a measurable function d`
dR : Ω → IR such that ` = d`

dR ·R.

Theorem 3.6. We assume (3.3). We have:

(3.20) Ψ∗( ˙̀
o) = inf{Φ∗(`) ; ` ∈ U∗, ` ∈ ˙̀

o}, ∀ ˙̀
o ∈ V ∗

and

(3.21) Λ∗(xo) = inf{Ψ∗( ˙̀) ; ˙̀ ∈ V ∗, Π̇( ˙̀) = xo} = inf{Φ∗(`) ; ` ∈ U∗, Π(`) = xo}, ∀xo ∈ X .

If the constraint xo ∈ X is such that Λ∗(xo) < +∞, the minimization problem

min
{

Φ∗(`) ; ` ∈ U∗such that ` ¿ R,

∫

Ω

γ∗
(

d`

dR

)
dR < ∞ and Π(`) = xo

}

admits a unique solution `xo in U∗. Moreover, `xo has the following form

(3.22) `xo = γ′(zxo ◦ ϕ) ·R

where zxo is the pointwise limit of a sequence in Y ⊂ X ∗. More precisely, if xo is an interior point

of C (xo ∈ ri C), zxo is a measurable linear form on X and 〈zxo , ϕ(·)〉 belongs to dom Ψ
a
, while if

xo is a boundary point of C (xo ∈ rb C), zxo may be [−∞, +∞]-valued.

In this situation (Λ∗(xo) < ∞), we also have:

(3.23) Λ∗(xo) = Ψ∗( ˙̀
xo) = Φ∗(`xo) =

∫

Ω

γ∗
[
γ′(zxo ◦ ϕ)

]
dR < ∞.

Remark. With the notations of Section 1, Λ∗(xo) is the value of the optimization problem (1.2).
Hence, (3.21) is the equality of the values of the primal problem (1.1) and the dual problem (1.2).

Proof. As γ is differentiable, γ∗ is strictly convex and so is Φ∗. The uniqueness of the solution to
the minimization problem follows.

Let us prove (3.20) and (3.22). For any ˙̀
o ∈ V ∗, by Proposition 2.2, we have: Ψ∗( ˙̀

o) ≤
inf{Φ∗(`) ; ` ∈ ˙̀

o}. If Ψ∗( ˙̀
o) = ∞, (3.20) is clear. While if Ψ∗( ˙̀

o) < ∞, by Propositions 3.3,
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3.4 and Lemma 3.5, we know that the infimum is achieved at some `xo ∈ U∗, as described in (3.22),
with Ψ∗( ˙̀

xo) = Φ∗(`xo). This proves (3.20) and (3.22).

Let us prove (3.21). Applying to our problem the following canonical transformations:

Ω → X , R → Rϕ
def= R ◦ ϕ−1, ϕ → (x ∈ X 7→ x ∈ X ),

U → S
def= {f : X → IR ; f ◦ ϕ ∈ U}, V → {f : X → IR ; f ◦ ϕ ∈ V } = Y,

the analogues of Φ and Φ∗ are: Γ(f) = Φ(f ◦ ϕ), f ∈ S and

Γ∗(λ) =

{∫
Ω

γ∗
(

dλ
dRϕ

)
dRϕ if λ ¿ Rϕ

+∞ otherwise
, λ ∈ S∗, and the analogues of Ψ and Ψ∗ are Λ and

Λ∗. Therefore, (3.20) becomes: Λ∗(xo) = inf{Γ∗(λ) ; λ ∈ S∗, Π̃(λ) = xo} where Π̃(λ) = xo means:
∀y ∈ Y,

〈
λ, 〈y, ·〉

〉
S∗,S

=
〈
xo, y

〉
X ,Y

.

In addition, if Λ∗(xo) < ∞, the infimum is achieved at a unique λxo ∈ S∗ such that Π̃(λxo) = xo and
this λxo has the special form: λxo = (γ′◦zxo)·Rϕ where zxo is as in (3.22). We have just shown that:
Λ∗(xo) = Γ∗(λxo

) =
∫
X γ∗ ◦ γ′ ◦ zxo

dRϕ and xo = Π̃(λxo
) = Π̇( ˙̀

xo
) with `xo

= γ′(zxo
◦ϕ) ·R. Since

we have: Ψ∗ = Λ∗ ◦ Π̇, we obtain: Λ∗(xo) = Ψ∗( ˙̀
xo). Together with (3.20), this provides us with

(3.21) when Λ∗(xo) < ∞. Suppose now that Λ∗(xo) = ∞. If there is no ` ∈ U∗ such that Π(`) = xo,

the equality is clear (with the convention that an infimum on the empty set is equal to infinity). If
there is an ` ∈ U∗ such that Π(`) = xo, then: ∞ = Λ∗(xo) = Ψ∗( ˙̀

o) ≤ inf{Φ∗(`) ; ` ∈ ˙̀
o}, which

proves the equality (3.21).

The statement (3.23) has been derived during the above argument.
Note that it has been proved in Propositions 3.3 and 3.4 that zxo is the pointwise limit of a sequence
in Y. This completes the proof of the theorem.

4. Characterization of the minimizer
Let us start making precise the situation where the force field zxo appearing in (3.22) assumes
infinite values. We begin with some notations.

We introduce now, two vector subspaces of X . As a definition, Xo is the linear span of C; it is
endowed with its relative topology σ(Xo,Y). We denote Xϕ := Π(U∗) = Π̇(V ∗). It is endowed with
its relative topology σ(Xϕ,Y) and the corresponding Borel σ-field. Notice that ϕ(Ω) ⊂ Xϕ since

〈ϕ(ω), y〉X ,Y =
〈
δω, 〈y, ϕ(·)〉

〉
U∗,U

,∀ω ∈ Ω, y ∈ Y. Clearly, Xo ⊂ Xϕ. Let Rϕ = R ◦ ϕ−1 stand for

the image measure of R on Xϕ by the measurable application ϕ : Ω → Xϕ. If g is a measurable
function on Xϕ and (g ◦ ϕ) ·R belongs to dom Φ∗, we state

xg
def=

∫

Xϕ

xg(x)Rϕ(dx) def= Π
(
(g ◦ ϕ) ·R

)
.

We define

G :=

{
g : Xϕ → IR, measurable such that

∫

Xϕ

γ∗(g) dRϕ < ∞
}

,
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By Theorem 3.6, we have: C = {xg ; g ∈ G} = dom Λ∗. This means that for any g ∈ G, we have:

(4.1) 〈xg, y〉X ,Y =
∫

Xϕ

〈x, y〉g(x)Rϕ(dx), ∀y ∈ Y.

Lemma 4.1. Let us assume (2.3) and if R(Ω) = ∞ : (3.3.a) or (3.3.b). Let xo be any boundary

point of C (xo ∈ rbdom Λ∗), then C admits at least one support hyperplane at xo in Xo.

The direction no ∈ X ∗o of any support hyperplane of C at xo : {x ∈ Xo ; 〈no, x − xo〉 = 0}, admits

a measurable extension n ∈ X ∗ϕ to Xϕ which satisfies

(4.2)
∫

Xϕ

γ
(
α〈n, x〉

)
Rϕ(dx) < ∞, for some α > 0.

In addition, for g ∈ G, we have:

〈no, xg〉X∗o ,Xo
=

∫

Xϕ

〈n, x〉g(x)Rϕ(dx)

where the integral is well defined.

Proof. Let V ∗ be endowed with the topology σ(V ∗, V ) and the corresponding Borel σ-field. Using
the one-one bimeasurable correspondence Π̇ : V ∗ → X , one transports the proof from (X , Λ∗) to
(V ∗,Ψ∗). We assume for a while that (2.6) holds.

Let us consider an even function σ as in (3.7). If R(Ω) < ∞, (Lσ∗ , ‖·‖σ∗) is (L∞, ‖·‖∞). If R(Ω) = ∞
and (2.6) holds, σ satisfies the ∆2-condition globally and limt→∞ σ(t)/t < ∞. If R(Ω) = ∞ and
γ− ≡ 0 (resp. γ+ ≡ 0), σ is defined upon γ+ (resp. γ−). If γ ≡ 0, there is nothing to prove.
The space V is endowed with the Luxemburg norm ‖ · ‖σ, V ′

σ and V ′′
σ stand for its strong dual and

bidual spaces. Let ˙̀
o ∈ V ∗ be a boundary point of dom Ψ∗ with Π( ˙̀

o) = xo. Let us first show that
any support hyperplane of dom Ψ∗ at ˙̀

o is σ(V ′
σ, V ′′

σ )-continuous.

The set A = { ˙̀ ∈ V ∗ ; Ψ∗( ˙̀) ≤ Ψ∗( ˙̀
o) + 1} is convex and closed in V ′

σ, as Ψ∗ is convex and lower
semicontinuous. More, it has a nonempty interior, since by ([Lé1], Lemma 2.1): Ψ∗ is continuous
on ridom Ψ∗. But, (see [Bou], Ch. 2, §5, Proposition 3) in a topological vector space, if A is a
closed convex set with a nonempty interior, any boundary point of A belongs to at least one support
hyperplane of A and any support hyperplane of A is closed. Clearly, ˙̀

o is also a boundary point of
A and any support hyperplane of dom Ψ∗ at ˙̀

o (with direction νo ∈ (V ′
σ)∗) is a support hyperplane

of A at ˙̀
o. Hence, νo is continuous on V ′

σ and therefore it is σ(V ′
σ, V ′′

σ )-continuous.

By Hahn-Banach Theorem, νo admits a σ(V ∗, V ′′
σ )-continuous extension: ν, on V ∗. We shall take

n = Π̇(ν). To prove the measurability of n, it remains to check that a continuous linear form ξ on
V ′

σ (ξ ∈ V ′′
σ ) is measurable with respect to the Borel σ-field of the ∗-weak topology σ(V ′

σ, V ).

Because of the identifications V ∗ ⊂ U∗ and V ∗∗ ⊂ U∗∗, it is enough to prove that any ξ in L′σ∗
is measurable with respect to the Borel σ-field of σ(Lσ∗ ,Mσ). By ([Koz], Theorem 2.2; see [Lé1],
Theorem 5.1), any ξ ∈ L′σ∗ may be decomposed into the sum of an absolutely continuous part ξa

and a singular part ξs = ξs
+ − ξs

− :

(4.3) ξ = ξa + ξs
+ − ξs

−,
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where ξs
+ and ξs

− are the nonnegative and nonpositive parts of ξs. This means that ξa ¿ R with
ξa ∈ Lσ and that there exists a nonincreasing sequence of measurable sets (Ak)k≥1 such that
limk→∞R(Ak) = 0 and 〈ξs, 1I(Ω\Ak)〉 = 0, ∀k ≥ 1.

As σ satisfies the ∆2-condition, we have: Mσ = Lσ and σ(Lσ∗ ,Mσ) = σ(Lσ∗ , Lσ). As a consequence,
ξa is σ(Lσ∗ , Mσ)-continuous, hence measurable. Thanks to (4.3), it remains to check that any
nonnegative singular ξ is measurable.

Let us notice that the norm h 7→ ‖h‖σ∗ = sup{〈h, u〉 ; u ∈ Lσ, ‖u‖σ ≤ 1} is measurable since Lσ

is separable (σ satisfies the ∆2-condition and A is assumed to be separable, see [RaR], Theorem
1, p. 87). It follows that the σ-field generated by the ‖ · ‖σ∗-balls is equal to the Borel σ-field of
σ(Lσ∗ , Lσ). But, in general, Lσ∗ is not separable and its ‖ · ‖σ∗-Borel σ-field is strictly larger than
the ‖ · ‖σ∗-ball σ-field (see [Pol] for this discussion). Notice that in the special case where R is a
bounded measure, then Lσ is L1 and Lσ∗ is L∞.

Let (Ωp)p≥1 be a localizing sequence for the σ-finite measure R : (Ωp)p≥1 is a nondecreasing sequence
of measurable sets such that R(Ωp) < ∞, for any p ≥ 1 and

⋃
p≥1 Ωp = Ω. Let ξs ∈ L′σ∗ be a

nonnegative singular form and (Ak)k≥1 satisfy limk→∞R(Ak) = 0 and 〈ξs, 1I(Ω\Ak)〉 = 0, ∀k ≥ 1.

As

{h ∈ Lσ∗ ; 〈ξs, h〉 ≥ 0} =
⋃

n,k≥1

⋂

p≥1

{
h ∈ Lσ∗ ;

∥∥1I(Ωp∩Ak)[h− n1IAk
]
∥∥
∞ ≤ n〈ξs, 1IAk

〉
}

and ‖ · ‖∞ is measurable in restriction to any Ωp, we have just proved that ξs is measurable. This
completes the proof of the measurability of n when (2.6) is satisfied.

Let us assume now that γ− ≡ 0 (resp. γ+ ≡ 0). Since Φ∗(ξ) = Φ∗+(ξ+) + Φ∗−(ξ−) (see [Lé1],
Proposition 4.4), one obtains that: Φ∗(ξ) = Φ∗+(ξ) if ξ is nonnegative (resp. nonpositive) and
+∞ otherwise. By Theorem 3.6, it follows that zxo appearing in (3.22) is nonnegative (resp.
nonpositive) Rϕ-a.e. Therefore, reproducing the above proof with γ+ (resp. γ−) instead of γ, we
obtain a similar result. This completes the proof of the existence and measurability of n.

Let us assume for a while that γ is an even function. Applying ([Lé1], Lemma 2.1) to Λ∗ and
reasonning with γ instead of σ, n is continuous on Y ′ : the strong dual of (Y, ‖·‖γ), that is: n ∈ Y ′′.
By Goldstine’s lemma ([Bou], Ch. 4, §3, Proposition 5), n is a pointwise limit (along a filter) of
elements of Y : n = limα yα such that ‖yα‖Y′′ ≤ ‖n‖Y′′ :

〈n, xg〉 = lim
α
〈yα, xg〉 = lim

α

∫

Xϕ

〈yα, x〉g(x)Rϕ(dx), ∀g ∈ G

where the last equality is given by (4.1). As yα ∈ Y, ‖yα‖Y′′ = ‖yα‖γ so that ‖yα‖Y′′ ≤
‖n‖Y′′ < ∞ implies the uniform integrability of {〈yα, ·〉g}α for any g ∈ Lγ∗(Rϕ). It comes out
that 〈n, xg〉 =

∫
Xϕ
〈n, x〉g(x)Rϕ(dx), for any g ∈ G and also that: | ∫Xϕ

〈n, x〉f(x)Rϕ(dx)| < ∞, for
any f ∈ Lγ∗(Rϕ). But the last estimate implies that n belongs to Lγ(Rϕ) (see [RaR], Proposition
4.1.1 for this argument).

One extends the argument to noneven functions γ, noticing that no is continuous on the strong
duals of (Y, ‖ · ‖γ+) and (Y, ‖ · ‖γ−). This gives: n ∈ Lγ+(Xϕ, Rϕ) ∩ Lγ−(Xϕ, Rϕ) which implies
(4.2), and completes the proof of the lemma.
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In order to describe properly the boundary of C, we still have to set some definitions up. Let n ∈ X ∗ϕ
be the outer direction of a support hyperplane. This means that n 6= 0 and there exists a boundary
point xo of C such that C ⊂ {x ∈ Xϕ ; 〈n, x− xo〉 ≤ 0}. For such an n, we call the n-facet of C, the
subset Fn of C :

Fn = C ∩ {x ∈ Xo ; 〈n, x− xo〉 = 0}.
We also extend this definition to the case where n = 0 : the 0-facet of C is F 0 = C itself.
As a definition, for any xo ∈ C, the facet of C at xo is the largest convex subset: Fxo , of C such that
xo belongs to the relative interior of Fxo

.

For instance, xo stands in the relative interior of C if and only if Fxo = C and xo is an extreme point
of C if and only if Fxo = {xo}.
If nxo ∈ X ∗ϕ belongs to the relative interior of the cone of the outer normals of C at xo, it is called
a strict outer normal. In the sequel, the notation nxo will always stand for a strict outer normal at
xo.

If xo is an interior point of C, then Fxo
= F 0 = C. In this case, we state nxo

= 0.

An extreme point xo is an exposed point of C if and only if {xo} = Fxo = Fnxo .

(4.4) Remark. In the following picture, (0, 0) is an extreme point which is not exposed.

C = IR×]0,∞[ ∪ [0,∞[×{0} F(0,0) = {(0, 0)} Fn0 = [0,∞[×{0}
We denote, for any A ⊂ C and any xo ∈ C,

G(A) = {g ∈ G ; xg ∈ A}, G(xo) = {g ∈ G ; xg = xo}.

We are now ready to give a precise description of the boundary of C.
Proposition 4.2. Let us assume (3.3). For any n ∈ X ∗ϕ such that

∫

Xϕ

γ
(
α〈n, x〉

)
Rϕ(dx) < ∞, for some α > 0 and(4.5.a)

γ∗(κ+)Rϕ(〈n, ·〉 > 0) + γ∗(κ−)Rϕ(〈n, ·〉 < 0) < ∞(4.5.b)

there exists an n-facet Fn of C.
Let us suppose that in addition,

(4.6) [γ∗(κ+) < ∞ or rb {z ∈ X ∗ϕ;
∫
Ω

γ∗+ ◦ γ′+ ◦ z dRϕ < ∞} = ∅]
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and [γ∗(κ−) < ∞ or rb {z ∈ X ∗ϕ;
∫
Ω

γ∗− ◦ γ′− ◦ z dRϕ < ∞} = ∅]
then, (4.5) is also a sufficient condition of existence of Fn and

G(Fn) =

{
κ+1I{〈n,·〉>0} + κ−1I{〈n,·〉<0} + go1I{〈n,·〉=0} ; go s.t.

∫

{〈n,·〉=0}
γ∗[go(x)] Rϕ(dx) < ∞

}

Convention. In the estimate (4.5.b), it is understood that 0·∞ = ∞·0 = 0.

Proof. In the following, we shall work in Xϕ. The result is clear when n = 0, let us consider
now that n 6= 0. Let n be an outer direction of a support hyperplane of C in Xϕ; we have:
Rϕ(〈n, ·〉 6= 0) > 0. A point xo belongs to Fn if and only if xo ∈ C and xo is a solution to
the optimization problem: max{〈n, x〉 ; x ∈ C}. Thanks to Lemma 4.1, Fn is the set of the xg’s
where g is a solution to

(4.7) max

{∫

Xϕ

〈n, x〉g(x)Rϕ(dx) ; g ∈ G
}

.

If we have (4.5), any xg with

g(x) =





κ+ if 〈n, x〉 > 0
κ− if 〈n, x〉 < 0
go(x) if 〈n, x〉 = 0

, for some go such that
∫

{n=0}
γ∗[go(x)] Rϕ(dx) < ∞, is a solution

to the optimization problem (4.7). Notice that (4.5.a) is necessary to state (4.7): thanks to
Hölder’s inequality for the dual pairings of Orlicz spaces: (Lγ+ , Lγ∗+) and (Lγ− , Lγ∗−) the integral∫
Xϕ
〈n, x〉g(x)Rϕ(dx) is well defined for any g ∈ G. Hence, such an xg belongs to Fn.

Now, let us prove the second statement. Let n ∈ X ∗ϕ be an outer direction of a support hyperplane
of C. The estimate (4.5.a) has already been obtained in Lemma 4.1.
Let us prove (4.5.b). If rb {z ∈ X ∗ϕ;

∫
Ω

γ∗± ◦ γ′± ◦ z dRϕ < ∞} = ∅, by Proposition 3.4, dom Ψ∗± has
no boundary. Under (4.6), one has only to consider the case where γ∗±(κ±) < ∞.

Supposing that Rϕ(〈n, ·〉 > 0) > 0, let us maximize
∫
{〈n,·〉>0}〈n, x〉g(x)Rϕ(dx) on G. Let

A ⊂ {〈n, ·〉 > 0} be such that Rϕ(A) < ∞. As Fn is nonempty, the maximum in (4.7) is attained,
and so is the maximum of

(4.8) max
{∫

A

〈n, x〉g(x)Rϕ(dx) ; g : A → IR such that
∫

A

γ∗[g(x)] Rϕ(dx) < ∞
}

.

But, if there exists B ⊂ A such that Rϕ(B) > 0 and ess sup x∈B g1(x) < κ+, the maximum in
(4.8) is not attained at g1, since the function g2 = g11IA\B + 1

2 (ess sup x∈B g1(x) + κ+)1IB gives a
strictly greater

∫
A
〈n, x〉g(x) Rϕ(dx). Consequently, as they are attained, the solutions of (4.8) are

the functions g which satisfy g1IA = κ+1IA. This implies that γ∗(κ+)Rϕ(A) < ∞.

As Rϕ is σ-finite, there exists a nondecreasing sequence (Ak)k≥1 such that
⋃

k≥1 Ak = {〈n, ·〉 > 0}
and Rϕ(Ak) < ∞, ∀k ≥ 1. Therefore, any solution g∗ of

max

{∫

{〈n,·〉>0}
〈n, x〉g(x) Rϕ(dx) ; g such that

∫

{〈n,·〉>0}
γ∗[g(x)] Rϕ(dx) < ∞

}
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satisfies g∗1IAk
= κ+1IAk

,∀k ≥ 1. It follows that g∗1I{〈n,·〉>0} = κ+1I{〈n,·〉>0} and γ∗(κ+)Rϕ(〈n, ·〉 >

0) < ∞. One concludes with
∫

Xϕ

〈n, x〉g(x)Rϕ(dx) =
∫

{〈n,·〉>0}
〈n, x〉g(x)Rϕ(dx) +

∫

{〈n,·〉<0}
〈n, x〉g(x)Rϕ(dx).

Remark. An extension of Proposition 4.2 when (4.6) fails, would require the knowledge of the
solutions to (4.7) in this situation.

Corollary 4.3. Let us assume (3.3) and (4.6). Let xo be an exposed boundary point of C (this

means that Fnxo = {xo}) and nxo be a strict outer normal of C at xo. Then,

G(xo) =
{
gxo

}

where gxo = κ+1I{〈nxo ,·〉>0} + κ−1I{〈nxo ,·〉<0}.

The equation Π(`) = xo, ` ∈ U∗ admits a unique solution `xo in dom Φ∗ :

`xo =
(
κ+1I{〈nxo ,ϕ〉>0} + κ−1I{〈nxo ,ϕ〉<0}

)
·R

In addition, we have

Λ∗(xo) = Φ∗(`xo) = γ∗(κ+)R(〈nxo , ϕ〉 > 0) + γ∗(κ−)R(〈nxo , ϕ〉 < 0).

Remark. Taking the convention stated under Proposition 4.2 into account, the functions being
defined up to negligible sets: if κ+ = +∞, then gxo = κ−1I{〈nxo ,·〉<0} and if κ− = −∞, then
gxo = κ+1I{〈nxo ,·〉>0}.

Proof. As xo is an exposed boundary point of C, we have Fnxo = {xo}. This means that
{〈nxo , ·〉 = 0} = {0}, Rϕ-a.e. in Xϕ. One obtains the uniqueness of the solutions with Proposition
4.2. The last identity follows from this uniqueness together with Theorem 3.6.

From now on, the restriction (4.6) will be assumed. Let γ be an even function. If γ∗ satisfies the
∆2-condition (globally if R is unbounded), then (4.6) is satisfied. On the other hand, γ∗(κ) < ∞
is equivalent to the existence of an asymptotic line at infinity with slope κ < ∞. The Boltzmann-
Shannon entropy (see (5.3)) corresponds to γ∗(t) = (t + 1) log(t + 1)− t. That is γ(s) = es − s− 1
which satisfies (4.6) since γ∗(κ−) = γ∗(−1) = 1 and γ∗+ is globally ∆2.

Let us describe the relevant force fieds. Let J be a totally ordered countable index set which admits
a smaller element: [. We consider a family (n) = (nj)j∈J of measurable linear forms on Xϕ. For
any j ∈ J, let us denote

T j
+ = {nj > 0} ∩

⋂

i<j

{ni = 0} and T j
− = {nj < 0} ∩

⋂

i<j

{ni = 0}

with the convention:
⋂

i<[{ni = 0} = Xϕ, so that T [
+ = {n[ > 0} and T [

− = {n[ < 0}. We define

S =
⋂

j∈J

{nj = 0}, T+ =
⋃

j∈J

T j
+, T− =

⋃

j∈J

T j
− and T = T+ ∪ T−

23



(S, T+ and T− form a measurable partition of Xϕ).

Let us introduce a new notation for the force fields. Let z̄ be a measurable linear form on Xϕ and
(n) = (nj)j∈J as above. We define the application z̄ +∞·(n) : Xϕ → [−∞, +∞], for any x ∈ Xϕ,

by

〈z̄ +∞·(n), x〉 =





+∞ if x ∈ T+

−∞ if x ∈ T−
〈z̄, x〉 if x ∈ S.

It is a measurable application. In the special case where (n) is reduced to a unique element
(J = {[}), we denote (n) = n. And if (n) = 0, z̄ +∞·(n) = z̄ belongs to X ∗ϕ.

One says that z̄ +∞·(n) is an admissible force field if

(4.9.a)
∫

S
γ(〈z̄, x〉) Rϕ(dx) < ∞ and

for any ε > 0, K ≥ 1, f1, . . . , fK ∈ Lγ∗+ , g1, . . . , gK ∈ Lγ∗− , there exists y ∈ Y
such that∑

k≤K

∣∣∣∣
∫

Ω

〈z̄ − y, ϕ(·)〉(1I{〈z̄,ϕ(·)〉·≥0}fk + 1I{〈z̄,ϕ(·)〉·≤0}gk) dR

∣∣∣∣ ≤ ε.

(4.9.b)
∫

S
γ∗[γ′(〈z̄, x〉)] Rϕ(dx) < ∞

(4.9.c) for any j ∈ J, there exists α > 0 such that∫

∩i<j{ni=0}
γ
(
α〈nj , x〉)Rϕ(dx) < ∞

(4.9.d) γ∗(κ+)Rϕ(T+) + γ∗(κ−)Rϕ(T−) < ∞.

By Lemma 3.1, the property (4.9.a) is satisfied if and only if 〈z̄, ϕ(·)〉 belongs to dom Ψ
a
.

Notice that, because of (4.9.b) and (4.9.d), we have: γ′(〈z̄ +∞·(n), ·〉) ∈ G.

Because of (4.9.d), in order that the force field admits a true infinite component, it is necessary
that γ∗(κ+) < ∞ or γ∗(κ−) < ∞.

Theorem 4.4. We assume (3.3) and (4.6).

With any xo ∈ C, one can associate an admissible force field zxo = z̄xo +∞·(n)xo such that

(4.10) xo =
∫

Xϕ

xγ′
(〈zxo , x〉

)
dRϕ

and

(4.11) Λ∗(xo) = Φ∗
(
γ′

(〈zxo , ϕ〉
) ·R

)
< ∞.

Conversely, if xo ∈ X is related to an admissible force field zxo by (4.10), then (4.11) is satisfied.

Remark. If there exists to ∈ IR such that γ′(to) ∈ {κ+, κ−}, then there may be several different
admissible force fields associated with one boundary constraint.
For instance, with κ− = 0 and κ+ > 0, z̄ = 0 is an admissible force field associated with xo = 0
which is a boundary point of C.
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An important consequence of Theorem 3.6 and Theorem 4.4 is the following result.

Theorem 4.5. We assume (3.3) and (4.6).

If xo ∈ X satisfies Λ∗(xo) < ∞, the minimization problem

(4.12) min
{

Φ∗(`) ; ` ∈ U∗such that ` ¿ R,

∫

Ω

γ∗
(

d`

dR

)
dR < ∞ and Π(`) = xo

}

admits a solution `xo which has the following form

`xo = γ′
(〈zxo , ϕ〉

) ·R

where zxo
is an admissible force field.

Conversely, if z̄ +∞·(n) is an admissible force field, putting xo =
∫
Xϕ

xγ′
(〈z̄ +∞·(n), x〉)Rϕ(dx),

we have Λ∗(xo) < ∞ and the minimization problem (4.12) admits `xo = γ′
(〈z̄ +∞·(n), ϕ〉) · R as

a solution.

In addition, since γ is assumed to be differentiable, the solution of (4.12) is unique when

Λ∗(xo) < ∞.

Proof of Theorem 4.5. It is a straightforward consequence of Theorems 3.6 and 4.4.

Proof of Theorem 4.4. We begin with the direct statement. If xo is an interior point of C, choosing
(n)xo = 0, the result has been proved in Proposition 3.3 and Lemma 3.5.

Let us first suppose that xo ∈ C satisfies

(4.13) Fxo = Fnxo

where nxo is a strict outer normal of C at xo. We denote T+ = {〈nxo , ·〉 > 0}, T− = {〈nxo , ·〉 < 0},
T = {〈nxo , ·〉 6= 0}, S = {〈nxo , ·〉 = 0} and gT := κ+1IT+ + κ−1IT− . By Proposition 4.2, we have

(4.14) g ∈ G(xo) =⇒ g = gT + 1ISgo for some go such that
∫

S
γ∗[go(x)] Rϕ(dx) < ∞.

Using the convention stated under Proposition 4.2, we denote

xT := κ+

∫

T+

xRϕ(dx) + κ−

∫

T−
xRϕ(dx)

xS := xo − xT =
∫

S
xgo(x)Rϕ(dx).

We shall write the subscripts T and S to indicate that we consider the measures 1IT ·Rϕ and 1IS ·Rϕ

instead of Rϕ.

We have Λ∗S(xS) ≤ Φ∗S
(
(go1IS)◦ϕ·Rϕ

)
< ∞. By (4.13), xS is an interior point of CS . By Proposition

3.3 and Lemma 3.5, there exists a real valued force field z̄xo defined on S such that

(4.15) z̄xo ∈ dom Λ
a

S

25



and

(4.16) xS =
∫

S
xγ′(〈z̄xo , x〉)Rϕ(dx)

and

(4.17) Λ∗S(xS) = Φ∗S
(
γ′(〈z̄xo , ϕ〉)1IS(ϕ) ·R

)
< ∞.

On the other hand, by Proposition 2.2 and (4.14), we get: Λ∗T (xT ) ≤ Φ∗T
(
gT ◦ϕ·R

)
≤ Λ∗(xo) < ∞.

Hence, applying Proposition 4.2, we obtain

(4.18) GT (xT ) = {gT }

and

(4.19) Λ∗T (xT ) = Φ∗T
(
gT ◦ ϕ ·R

)
= γ∗(κ+)Rϕ(T+) + γ∗(κ−)Rϕ(T−).

Taking zxo
= z̄xo

+∞·nxo
(with J = {[} and n[

xo
= nxo

), (4.10) follows from (4.16) and (4.18). We
also get:

Λ∗(xo) = inf{Φ∗(`) ; Π(`) = xo} (by Theorem 3.6)

= inf{Φ∗S(`1) + Λ∗T (xT ) ; ΠS(`1) = xS} (by (4.18))

= inf{Φ∗S(`) ; ΠS(`) = xS}+ Λ∗T (xT )

= Λ∗S(xS) + Λ∗T (xT ) (by Theorem 3.6, with (4.17)).

Together with (4.17) and (4.19), this yields (4.11) and the admissibility properties (4.9.b) and
(4.9.d) for zxo . Finally, thanks to (4.15) and Lemma 3.1, zxo satisfies the admissibility properties
(4.9.a) and (4.9.c).

Let us consider the general situation where (4.13) may not be satisfied (for an example of such
a situation, see (4.4)). We choose for n0

xo
a strict outer normal of C at xo. By Lemma 4.1, n0

xo

satisfies (4.2). If xo is a boundary point of E0 = {x ∈ C ; 〈n0
xo

, x− xo〉 = 0}, we go on and choose
for n1

xo
a strict outer normal of E0 at xo such that (n0

xo
, n1

xo
) is linearly independent. By Lemma

4.1, n1
xo

satisfies: ∃α > 0,
∫
{n0

xo
=0} γ(α〈n1

xo
, x〉)Rϕ(dx) < ∞. Recursively, if for k ∈ IN, k ≥ 1, xo is

a boundary point of Ek = {x ∈ C ; 〈n0
xo

, x − xo〉 = · · · = 〈nk
xo

, x − xo〉 = 0}, we choose for nk+1
xo

a
strict outer normal of Ek at xo such that (n0

xo
, . . . , nk+1

xo
) is linearly independent. By Lemma 4.1,

nk+1
xo

satisfies: ∃α > 0,
∫
∩0≤i≤k{ni

xo
=0} γ(α〈nk+1

xo
, x〉)Rϕ(dx) < ∞. If xo is an interior point of Ek+1,

we choose (n)xo = (n0
xo

, . . . , nk+1
xo

). Otherwise, we go on.
If xo is a boundary point of

⋂
k≥0 Ek, we go on with

⋂
k≥0 Ek instead of C. This is the reason why a

general ordered set J is needed, instead of IN with its natural order. Finally, we choose for (nj
xo

)j∈J

the maximal element of these recursively built (ni
xo

)i∈I , i.e.: J is the increasing union of these I’s
endowed with the induced order structure and (nj

xo
)j∈J is defined projectively.

By construction, (nj
xo

)j∈J satisfies the admissibility condition (4.9.c).
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Let us check that J is countable. By (4.2), the family (nj
xo

)j∈J stands in Lσ which is a Hausdorff
separarable space (since σ satisfies the ∆2-condition and A is a separable σ-field). Therefore, any
linearly independent family of Lσ is countable, and so is (nj

xo
)j∈J .

By construction, we have

(4.20) Fxo = (xo + S) ∩ C

and applying recursively Proposition 4.2, we obtain

G(Fxo) =
{

κ+1IT+ + κ−1IT− + go1IS ; go such that
∫

S
γ∗([go(x)] Rϕ(dx) < ∞

}
.

By Theorem 3.6, there exists go such that γ∗(κ+)Rϕ(T+)+γ∗(κ−)Rϕ(T−)+
∫
S γ∗[go(x)] Rϕ(dx) =

Λ∗(xo) < ∞. This proves the admissibility property (4.9.d) for (nj
xo

)j∈J . Thanks to (4.20), one
concludes the proof of the direct statement as in the situation where (4.13) is satisfied.

Now, let us show the converse statement. An admissible force field z̄ + ∞·(n) is given, we put:
xo =

∫
Xϕ

xγ′(〈z̄ +∞·(n), x〉) Rϕ(dx). Taking the admissibility properties (4.9.b) and (4.9.d) into
account, with Proposition 2.2, we have

Λ∗(xo) ≤
∫

Xϕ

γ∗[γ′(〈z̄ +∞·(n), x〉)] Rϕ(dx) < ∞.

The admissibility properties (4.9.b), (4.9.c) and (4.9.d), together with Proposition 4.2 yield Fxo ⊂
(xo+S)∩C. (The equality (4.20) also holds when γ is not affine at infinity, i.e. γ′(IR) =]κ−, κ+[, but
it may fail otherwise). As for the proof of the direct statement, we denote gT := κ+1IT+ + κ−1IT−
and

xT :=
∫

T
xgT (x)Rϕ(dx) = κ+

∫

T+

xRϕ(dx) + κ−

∫

T−
xRϕ(dx)

xS := xo − xT =
∫

S
xγ′(〈z̄, x〉)Rϕ(dx).

Thanks to (4.9.b) and (4.9.d), we have Λ∗S(xS) < ∞ and Λ∗T (xT ) < ∞. As in the proof of the direct
statement, we obtain

Λ∗T (xT ) = Φ∗T
(
(gT ◦ ϕ) ·R

)
and

Λ∗(xo) = Λ∗S(xS) + Λ∗T (xT ).

Hence, to prove the converse statement, it remains to show that

(4.21) Λ∗S(xS) =
∫

S
γ∗[γ′(〈z̄, x〉)] Rϕ(dx).

We live in S. Because of the admissibility property (4.9.a), ξS := 〈z̄, ϕ〉 belongs to dom ΨS . More,
˙̀S : the class of γ′(〈z̄, ϕ〉)1IS(ϕ) ·R, belongs to ∂ΨS(ξS). Indeed, γ(t + s) ≥ γ(t) + sγ′(t), ∀t, s ∈ IR,

so that
ΨS(ξS + η) = Ψ

a

S(ξS + ηa) + Ψ
s

S(ηs)

≥ Ψ
a

S(ξS + ηa)

≥ Ψ
a

S(ξS) +
∫

{ϕ∈S}
ηaγ′(ξS) dR.
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As ηa stands in the linear span of dom ΨS , ηa
± ∈ Lγ± . On the other hand, by the admissibility

property (4.9.b), γ′(ξS)± stands in Lγ∗± . Therefore, the integral
∫
{ϕ∈S} ηaγ′(ξS) dR is well defined,

by Hölder’s inequality. It comes out that: ˙̀S ∈ ∂ΨS(ξS).

But Ψ∗S and ΨS are convex conjugate to each other for the duality (V ∗, V ∗∗), so that by Proposition
2.1.a: Ψ∗S( ˙̀S) + ΨS(ξS) = 〈 ˙̀S , ξS〉 =

∫
{ϕ∈S} γ′(ξS)ξS dR. It follows that

Λ∗S(xS) = Ψ∗S( ˙̀S) =
∫

{ϕ∈S}
[γ′(ξS)ξS − γ(ξS)] dR =

∫

{ϕ∈S}
γ∗[γ′(ξS)] dR,

which is (4.21). This completes the proof of the theorem.

As a direct corollary of the above proof, one obtains a similar characterization of the minimizers
associated with a subgradient constraint, without assuming (4.6).

Theorem 4.6. We assume (3.3).

With any xo ∈ C such that ∂Λ∗(xo) 6= ∅, in particular if xo stands in the relative interior of C, one

can associate an admissible force field z̄xo with no infinite component such that (4.10) and (4.11)

hold.

Moreover, the minimization problem (4.12) admits the unique solution `xo
= γ′(〈z̄xo

, ϕ〉) ·R.

Conversely, if xo ∈ X is related to an admissible force field z̄ without infinite component, xo being

defined by (4.10), we have Λ∗(xo) < ∞.

If in addition, ∂Λ∗(xo) 6= ∅, the minimization problem (4.12) admits `xo = γ′
(〈z̄, ϕ〉) · R as its

unique solution.

5. Some examples
We present some illustrations of the previous results. Other examples are developped in [Lé2]. We
begin with the traditional marginal problem on a product probability space. At the last subsection,
some comments will be given about an interesting counterexample of I. Csiszár.

Marginal problem. The dual equality for the problem (5.1.a) below and partial results of
representation of the minimizing solution have already been obtained in [Beu], [Cs1], [BLN], [CG]
and [Lé2] (see also the references quoted in [BLN] and [CG]). At Theorem 5.1 below, we give a
characterization of its solution.
Let (Ω1,A1) and (Ω2,A2) be measurable spaces, Ω = Ω1 ×Ω2 is endowed with the product σ-field
A = A1⊗A2. Let the probability measures R, ν1 and ν2 be given respectively on the spaces Ω, Ω1

and Ω2. If P is a probability measure on Ω, P1 and P2 stand for its marginals on Ω1 and Ω2 : for
any A1 ∈ A1, A2 ∈ A2, P1(A1) = P (A1 × Ω2) and P2(A2) = P (Ω1 × A2). We denote M1(Ω) the
set of all probability measures on Ω. We consider the minimization problem

(5.1.a) inf{Φ∗(P + κ−R) ; P ∈ M1(Ω), P ¿ R, P1 = ν1, P2 = ν2}

with Φ∗(P + κ−R) =
{ ∫

Ω
γ∗(dP

dR + κ−) dR if P ¿ R
+∞ otherwise , assuming κ− > −∞.
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Clearly, if Φ∗(P +κ−R) < ∞, then P is a nonnegative measure and since ν1 has a unit mass, (5.1.a)
is equivalent to

(5.1.b) inf{Φ∗(P + κ−R) ; P signed measure on Ω, P1 = ν1, P2 = ν2}.

In the special case where

(5.2) γ(x) = ex − x− 1, x ∈ IR,

in restriction to M1(Ω), Φ∗(P + κ−R) is the relative entropy of P with respect to R :

(5.3) I(P | R) =
{ ∫

Ω
log

(
dP
dR

)
dP if P ¿ R

+∞ otherwise , P ∈ M1(Ω).

Notice that ν1×ν2 has the desired marginals, but it may not be absolutely continuous with respect
to R. This happens for instance with Ω1 = Ω2 = [−1,+1], ν1 = ν2 = 1

21I[−1,+1](x) dx and R : any
measure supported by the unit circle.

Let B(Ω1) and B(Ω2) be the spaces of the bounded measurable functions on Ω1 and Ω2. For any
measurable functions θ1 on Ω1 and θ2 on Ω2, we denote θ1 ⊕ θ2(ω1, ω2) = θ1(ω1) + θ2(ω2), ω1 ∈
Ω1, ω2 ∈ Ω2.

Let us describe a general admissible force field in this framework: we transcript the definition of
Section 4 with Y = B(Ω1)×B(Ω2) and ϕ(ω1, ω2) = (δω1 , δω2), (see the proof of Theorem 5.1 below).
Let J be a totally ordered countable index set which admits a smaller element: [. We consider
two families of functions (hj

1)j∈J and (hj
2)j∈J on Ω1 and Ω2 respectively, such that for any j ∈ J,

hj
1 ⊕ hj

2 is measurable on Ω1 × Ω2. We denote

Ωh
o =

⋂

j∈J

{hj
1 ⊕ hj

2 = 0},

Ωh
+ =

⋃

j∈J

[
{hj

1 ⊕ hj
2 > 0} ∩

⋂

i<j

{hi
1 ⊕ hi

2 = 0}
]
,

Ωh
− =

⋃

j∈J

[
{hj

1 ⊕ hj
2 < 0} ∩

⋂

i<j

{hi
1 ⊕ hi

2 = 0}
]
,

with the convention:
⋂

i<[{hi
1 ⊕ hi

2 = 0} = Ω1 × Ω2. We also consider f1 and f2 two func-
tions on Ω1 and Ω2 respectively, such that f1 ⊕ f2 is measurable on Ω1 × Ω2. The collection
(J, (hj

1)j∈J , (hj
2)j∈J , f1, f2) corresponds to an admissible force field if and only if

(5.4.a)
∫

Ωh
o

γ(f1 ⊕ f2) dR < ∞ and

for any ε > 0, F ∈ Lγ∗+(Ω1×Ω2), G ∈ Lγ∗−(Ω1×Ω2), there exist θ1 ∈ B(Ω1), θ2 ∈
B(Ω2) such that∣∣∣∣

∫

Ω1×Ω2

(f1 ⊕ f2 − θ1 ⊕ θ2)(1I{f1⊕f2≥0}F + 1I{f1⊕f2≤0}G) dR

∣∣∣∣ ≤ ε.

(5.4.b)
∫

Ωh
o

γ∗[γ′(f1 ⊕ f2)] dR < ∞
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(5.4.c) for any j ∈ J, there exists α > 0 such that∫

∩i<j{hi
1⊕hi

2=0}
γ
(
αhj

1 ⊕ hj
2

)
dR < ∞

(5.4.d) γ∗(κ+)R(Ωh
+) + γ∗(κ−)R(Ωh

−) < ∞.

We define γ̃(x) := γ(x)− κ−x, x ∈ IR.

Theorem 5.1. We assume (2.3), γ is differentiable and κ− > −∞. The constraint (ν1, ν2) satisfies

(5.5) sup
{ ∫

Ω1

θ1 dν1 +
∫

Ω2

θ2 dν2 −
∫

Ω1×Ω2

γ̃(θ1 ⊕ θ2) dR ; θ1 ∈ B(Ω1), θ2 ∈ B(Ω2)
}

< ∞

if and only if there exists a measurable function g on Ω1 × Ω2 such that

ν1(dω1) = [
∫

Ω2

g(ω1, ω2) R(dω2 | ω1)] ·R1(dω1),

ν2(dω2) = [
∫

Ω1

g(ω1, ω2) R(dω1 | ω2)] ·R2(dω2) and

∫

Ω1×Ω2

γ∗(g + κ−) dR < ∞.

If this condition is satisfied, the minimization problem (5.1) admits a unique solution which has

the form

(5.6) P∗ =
[
(κ+ − κ−)1IΩh

+
+ (γ′(f1 ⊕ f2)− κ−) 1IΩh

o

] ·R

where Ωh
o , Ωh

+, f1 and f2 are built upon some (J, (hj
1)j∈J , (hj

2)j∈J , f1, f2) which satisfies (5.4).

Conversely, if (J, (hj
1)j∈J , (hj

2)j∈J , f1, f2) satisfies (5.4), then (5.5) is satisfied with ν1 = P∗1,
ν2 = P∗2 and (5.1) admits P∗ as its unique solution.

Proof. It is a direct application of Theorem 4.5 where Y and ϕ are correctly chosen. We take
Y = B(Ω1) × B(Ω2). The duality bracket between B(Ω1) × B(Ω2) and M1(Ω1) ×M1(Ω2) ⊂ X is
given, for any θ1 ∈ B(Ω1), θ2 ∈ B(Ω2), µ1 ∈ M1(Ω1), µ2 ∈ M1(Ω2), by

〈(θ1, θ2), (µ1, µ2)〉 =
∫

Ω1

θ1 dµ1 +
∫

Ω2

θ2 dµ2.

We also take
ϕ(ω) = (δω1 , δω2), ω = (ω1, ω2) ∈ Ω

and we note that (3.1) and (4.6) are satisfied: for all θ1 ∈ B(Ω1), θ2 ∈ B(Ω2)∫

Ω1×Ω2

γ[θ1(ω1) + θ2(ω2)] R(dω1dω2) < ∞,

∫

Ω1×Ω2

γ∗ ◦ γ′[θ1(ω1) + θ2(ω2)] R(dω1dω2) < ∞

The constraint energy functional is given, for any ν1 ∈ M1(Ω1), ν2 ∈ M1(Ω2), by

Λ∗(ν1 + κ−R1, ν2 + κ−R2)

= sup
{ ∫

Ω1

θ1 d(ν1 + κ−R1) +
∫

Ω2

θ2 d(ν2 + κ−R2)−
∫

Ω1×Ω2

γ[θ1(ω1) + θ2(ω2)] R(dω1dω2)

; θ1 ∈ B(Ω1), θ2 ∈ B(Ω2)
}

=sup
{ ∫

Ω1

θ1 dν1 +
∫

Ω2

θ2 dν2 −
∫

Ω1×Ω2

γ̃(θ1 ⊕ θ2) dR ; θ1 ∈ B(Ω1), θ2 ∈ B(Ω2)
}

.
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Therefore, (5.5) is Λ∗(ν1+κ−R1, ν2+κ−R2) < ∞. Thanks to Theorem 4.5, if the constraint (ν1, ν2)
satisfies (5.5), the minimization problem (5.1) admits a unique solution P∗ which has the form

(5.7) P∗(dω1dω2) =
[
γ′(〈zν , (δω1 , δω2)〉 − κ−

] ·R(dω1dω2)

where zν is an admissible force field.

Conversely, any probability measure P∗ of the form (5.7) is a solution to (5.1) with ν1 = P∗1, ν2 =
P∗2, provided that (5.5) holds.

Since any linear form z on the set {(δω1 , δω2) ; ω1 ∈ Ω1, ω2 ∈ Ω2} has the form: 〈z, (δω1 , δω2)〉 =
z1(ω1)+z2(ω2), (ω1, ω2) ∈ Ω, the admissible force fields zν are in correspondence with the collections
(J, (hj

1)j∈J , (hj
2)j∈J , f1, f2) which satisfy (5.4). This completes the proof of the theorem.

An admissible force field zν with at most one infinite direction ((n) = n, n = 0 corresponding to
the interior situation) is such that

〈zν , (δω1 , δω2)〉 =





f1(ω1) + f2(ω2) if h1(ω1) + h2(ω2) = 0
−∞ if h1(ω1) + h2(ω2) < 0
+∞ if h1(ω1) + h2(ω2) > 0

where f1 ⊕ f2 and h1 ⊕ h2 are measurable. In this case, (5.6) is

(5.8) P∗ =
[
(κ+ − κ−)1I{h1⊕h2>0} + (γ′(f1 ⊕ f2)− κ−) 1I{h1⊕h2=0}

] ·R.

Notice that it may happen that f1 and f2 fail to be separately measurable (see [BL6], [RüT], [FöG],
[CG] for this problem). Similarly, hi

1 and hi
2 may not be separately measurable.

Example 1. In the situation (5.2) where the relative entropy is minimized, for a general admissible
force field described by (J, (hj

1)j∈J , (hj
2)j∈J , f1, f2) which satisfies (5.4), (5.6) becomes

(5.9) P∗ = 1I[∩j∈J{hj
1⊕hj

2=0}] e
f1⊕f2 ·R with

{ ∑
j∈J R({hj

1 ⊕ hj
2 > 0} ∩ [∩i<j{hi

1 ⊕ hi
2 = 0}]) = 0∑

j∈J R({hj
1 ⊕ hj

2 < 0} ∩ [∩i<j{hi
1 ⊕ hi

2 = 0}]) < ∞

If there is at most one infinite direction, we obtain

P∗ = 1I{h1⊕h2=0}ef1⊕f2 ·R

with R(h1 ⊕ h2 > 0) = 0 and R(h1 ⊕ h2 < 0) < ∞.

Example 2. Let us consider (5.1) with Ω1 = Ω2 = [−1, +1], R(dω1dω2) = 1
41I{|ω1|,|ω2|≤1} dω1dω2,

ν1(dω1) = (1− |ω1|) 1I{|ω1|≤1} dω1, ν2(dω2) = (1− |ω2|) 1I{|ω2|≤1} dω2 and

γ∗(x) =





1+x
2 log(1 + x) + 1−x

2 log(1− x) if − 1 < x < +1
log 2 if x ∈ {−1, +1}
+∞ otherwise

.

This gives γ(x) = log
(

ex+e−x

2

)
, x ∈ IR, κ− = −1, κ+ = +1 and γ∗(κ−) = γ∗(κ+) = log 2 < ∞.

One can see that P (dω1dω2) = 21I(|ω1|+|ω2|<1) R(dω1dω2) has the desired marginals: P 1 = ν1, P 2 =
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ν2 and since 0 ≤ dP
dR ≤ 2, it follows that Φ∗(P + κ−R) < ∞. Denoting h1(ω1) = 1

2 − |ω1|,
h2(ω2) = 1

2 − |ω2|, we get

P + κ−R =
(
κ+1I{h1⊕h2>0} + κ−1I{h1⊕h2<0}

) ·R

with R(h1⊕h2 = 0) = 0. Thanks to Proposition 4.2, we obtain G(Fh) = {d(P+κ−R)
dR } which implies

that (ν1 + κ−R1, ν2 + κ−R2) is an exposed point of C. By Corollary 4.3, we know that P is the
unique measure P on Ω which satisfies:

(5.10) P1 = ν1, P2 = ν2, P ¿ R and 0 ≤ dP

dR
≤ 2.

On the other hand, since Φ∗(P + κ−R) = log 2 is the maximal finite value of Λ∗, it follows from
Proposition 2.2 that P is the unique solution to (5.10).

Example 3. Let us consider now the marginal problem in the following simple situation: Ω1 =
{a, b},Ω2 = {A,B}, R = 1

2δ(a,A) + 1
4δ(b,A) + 1

4δ(b,B), ν1 = 1
2δa + 1

2δb and ν2 = 1
2δA + 1

2δB . It is clear
that the unique solution to this marginal problem (without any minimization) is

P∗ =
1
2
δ(a,A) +

1
2
δ(b,B).

We have dP∗
dR (a,A) = 1, dP∗

dR (b, A) = 0 and dP∗
dR (b,B) = 2. This example was proposed by P. Cattiaux

and H. Föllmer ([CaF]) to show that in the situation (5.2), although the relative entropy I(P∗ | R)
is finite, dP∗

dR has not the product form suggested by ef1⊕f2 in the interior case.

We suppose, as in the case (5.2), that κ− > −∞ and κ+ = +∞. It is easily checked that P∗ has
the form (5.8), which is

P∗ = 1I{h1⊕h2=0}[γ′(f1 ⊕ f2)− κ−] ·R
with R(h1 ⊕ h2 > 0) = 0. Indeed, choose h1(a) = 1, h1(b) = −1, h2(A) = −1, h2(B) = 1 and for f1

and f2 take any solution of
{

γ′(f1(a) + f2(A)) = κ− + 1
γ′(f1(b) + f2(B)) = κ− + 2 .

One sees that, parametrizing the constraints by s(δa, 0) + t(δb, 0) + u(0, δA) + v(0, δB), (s, t, u, v) ∈

IR4, the set C has the equation





u + v = s + t
s ≥ κ−/2
v ≥ κ−/4

u− s ≥ κ−/4

and that (h1(a), h1(b), h2(A), h2(B)) =

(1,−1,−1, 1) is an outer normal of C at the boundary point ( 1
2 + κ−

2 , 1
2 + κ−

2 , 1
2 + 3κ−

4 , 1
2 + κ−

4 )
which corresponds to (ν1 + κ−R1, ν2 + κ−R2).

As indicated in Theorem 3.6, dP∗
dR is a pointwise limit of the form:

dP∗
dR

+ κ− = γ′( lim
n→∞

fn
1 ⊕ fn

2 ).

For instance, one may choose, for any n ≥ 1, fn
1 (a) = γ′−1(κ− + 1), fn

1 (b) = −n, fn
2 (A) = 0 and

fn
2 (B) = n + γ′−1(κ− + 2).

A counterexample of I. Csiszár. In [Cs1] (p. 152), I. Csiszár considers the following
minimization problem

(5.11) inf

{
I(P | R) ; P ∈ M1([0, 1]),

∫

[0,1]

fn dP =
1
4
, n ≥ 1

}
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where I is the relative entropy (see (5.3)),
dR

dω
=

4
1 + 3e

1I[0, 1
4 ](ω) +

4e

1 + 3e
1I] 14 ,1](ω) and for any

n ≥ 1, ω ∈ [0, 1], fn(ω) =





1 + un if 0 ≤ ω < 1
4n

1 if 1
4n ≤ ω < 1

4

−un/n if 1
4 ≤ ω < 1

2

0 if 1
2 ≤ ω ≤ 1

with un ≥ 0 and lim
n→∞

un

n
= 0. This problem

enters the framework of the present paper taking γ(x) = ex−x−1 (see (5.2)), Ω = [0, 1], for Y let us
choose the space of the real sequences (yn)n≥0 such that

∑

n≥1

|yn|(1 + un) < ∞ and for ϕ let us take

ϕ(ω) = (fn(ω))n≥0 where f0 ≡ 1. The dual bracket is given by 〈(yn)n≥0, ϕ(ω)〉 =
∑

n≥0 ynfn(ω).
The assumptions (3.3) are clearly satisfied.

Lebesgue’s measure on [0, 1] : Q(dω) = 1I[0,1](ω) dω satisfies: I(Q | R) < ∞,
∫
[0,1]

fn dQ = 1
4 , ∀n ≥ 1

and
dQ

dR
(ω) = e(c+g(ω)) where g(ω) = 1I[0, 1

4 [(ω) and ec is the normalizing constant. Moreover,

(fn)n≥1 tends to g pointwise (almost everywhere) and in L1(R) = L1(Q). Hence, Q is a candidate
to the solution of (5.11).

Nevertheless, by means of a geometric type argument, Csiszár shows that with un =
√

n, Q is not
the solution of (5.11). We recover this result by proving that c + g(·) is not an admissible force
field: the second part of condition (4.9.a) fails. Indeed, with h(ω) = ω−3/4, one gets 1I{c+g(·)≥0}h ∈
Lx log x(R), 1I{c+g(·)≤0}h ∈ L∞(R) (notice that c ≈ −0, 17) and lim

n→∞

∫

[0,1]

fnh dR = ∞.

Similarly, if inf
n≥1

un > 0 and for some δ > 0, lim inf
n→∞

un

(log n)2+δ
> 0, taking h(ω) =

1
ω| log ω|2+δ

, one

proves that Q is not the solution of (5.11).

On the other hand, if un = on→∞(log n), then lim
n→∞

‖fn − g‖ex = 0 and thanks to Hölder’s inequal-

ity in Orlicz spaces, (4.9.a) is satisfied. Hence, Q is the solution to (5.11).

References

[Beu] A. Beurling.An automorphism of product measures. Ann. Math. 72, No 1, (1960), 189–
200.

[BL1] J. M. Borwein and A. S. Lewis. Duality relationships for entropy-like minimization
problems. SIAM J. Control and Optim. 29, No 2, (1991), 325–338.

[BL2] J. M. Borwein and A. S. Lewis. On the convergence of moment problems. Trans. Amer.
Math. Soc. 325, No 1, (1991), 249–271.

[BL3] J. M. Borwein and A. S. Lewis. Convergence of best entropy estimates. SIAM J. Optim.
1, No 2, (1991), 191–205.

[BL4] J. M. Borwein and A. S. Lewis. Partially-finite programming in L1 and the existence of
maximum entropy estimates. SIAM J. Optim. 3, No 2, (1993), 248–267.

[BL5] J. M. Borwein and A. S. Lewis. Strong rotundity and optimization. SIAM J. Optim. 4,
No 1, (1994), 146–158.

[BL6] J. M. Borwein and A. S. Lewis. Decomposition of multivariate functions. Can. J. Math.
44, No 3, (1992), 463–482.

[BLN] J. M. Borwein, A. S. Lewis and R. D. Nussbaum. Entropy minimization, DAD problems
and doubly stochastic kernels. J. Funct. Anal. 123, (1994), 264–307.

33



[Bor] J. M. Borwein. On the failure of maximum entropy reconstruction for Fredholm equations
and other infinite systems. Math. Programming, 61, (1993), 251–261.

[Bou] N. Bourbaki. Espaces vectoriels topologiques. Masson, (Paris, 1981).
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