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Preliminaries

This is an incomplete draft. In this version of the notes, I introduce basic tools of
convex analysis and the saddle-point method. As an application of this powerful method,
I derive the basic results of the optimal transport theory.
Other probabilistic applications in connection with large deviations are possible. I will
try to write some of them later.
The reference list hasn’t been worked at this stage. No reference to the literature is given,
I only state references to precise results in the body of the proofs. Nevertheless, before
completing these notes, I inform the reader that good references for convex analysis are
the monographs of R. T. Rockafellar: [7], [6] and good references for the optimal transport
are the books of S. Rachev and L. Rüschendorf [5] and of C. Villani [9].

The minimization problem. We are interested in the optimization problem

minimize h(x) subject to x ∈ C (0.1)

where h is a convex function and C a convex set. We wish to find the minimum value
infx∈C h(x) together with the x∗’s in C for which h(x∗) is minimal.

Definition 0.2 (Value and Minimizers). Such x∗’s are the solutions of the problem (0.1),
they are called minimizers while infx∈C h(x) is called the value of the minimization prob-
lem.

1. Convexity without topology

1.1. Basic notions. For convexity to be defined, one needs an addition and a scalar
multiplication. This means that the underlying space X must be a vector space.

Definition 1.1 (Convex set). A subset C of the vector space X is convex if for all
x0, x1 ∈ C, the segment [x0, x1] := {xt = (1− t)x0 + tx1 ∈ X; 0 ≤ t ≤ 1} is included in C.
As a convention, the empty set is considered to be convex.
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2 CHRISTIAN LÉONARD

Exercice 1.2. Show that the image of a convex subset of X by a linear transformation
from X to some vector space Y is a convex subset of Y.

Definition 1.3 (Convex hull). The convex hull of a subset B of X is the smallest convex
set which contains B. It is denoted cvB.

The following proposition states that the convex hull of any set exists.

Proposition 1.4. Let {Ci; i ∈ I} be a collection of convex subsets of X. Then its inter-
section ∩i∈ICi is still a convex set.
The convex hull of B is

cvB =
⋂
{C ⊂ X : C convex, B ⊂ C}.

Proof. The last statement is a direct consequence of the first one.
Let us prove the first statement. Let x0, x1 stand in ∩i∈ICi. This means that for all i ∈ I,
x0, x1 ∈ Ci. As Ci is convex, we have [x0, x1] ⊂ Ci, for all i ∈ I. That is [x0, x1] ⊂ ∩i∈ICi
which is the desired result. �

It will turn out to be comfortable to work with extended real-valued functions on X, that
is R∪{−∞,+∞} = [−∞,+∞]-valued functions. For instance, considering for any x ∈ X,

f(x) =

{
h(x) if x ∈ C
+∞ otherwise

(1.5)

the minimization problem (0.1) is equivalent to

minimize f(x), x ∈ X (1.6)

Let us introduce the useful notions of effective domain and epigraph of a function.

Definition 1.7 (Effective domain). The effective domain of the extended real-valued func-
tion f is dom f := {x ∈ X; f(x) < +∞}.

Clearly, with f given by (1.5), dom f is a subset of C.

Definition 1.8 (Epigraph). The epigraph of an extended real-valued function f is the
subset of X × R defined by epi f := {(x, α) ∈ X × R; f(x) ≤ α}.

Note that (x, α) ∈ epi f implies that x ∈ dom f. More precisely the projection {x ∈
X; (x, α) ∈ epi f for some α ∈ R} is exactly dom f.
The epigraph of f is the set of all points in X×R that lie above the graph of f (including
this graph).
One usually defines a real valued function f (with dom f the entire space) to be convex
if for any x0, x1 in X, the graph of f restricted to the segment [x0, x1] lies below the
chord joining (x0, f(x0)) to (x1, f(x1)). In other words, f is a convex function if for all
x0, x1 ∈ X and all 0 ≤ t ≤ 1, f((1 − t)x0 + tx1) ≤ (1 − t)f(x0) + tf(x1). The following
definition extends this notion to extended real-valued functions.

Definition 1.9 (Convex function). The extended real-valued function f on X is convex
if its epigraph is a convex set.

Conventions 1.10. From now on, all functions will be supposed to be [−∞,+∞]-valued.
The function which is identically +∞ is convex since epi (+∞) = ∅ is a convex set.

Proposition 1.11. Let us take an extended real-valued function f : X → [−∞,∞].

(a) If f is a convex function, dom f is a convex set.
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(b) f is a convex function if and only if for all x0, x1 ∈ dom f and all 0 ≤ t ≤ 1,

f((1− t)x0 + tx1) ≤ (1− t)f(x0) + tf(x1).

Proof. The easy proof of (b) is left as an exercice.
Let us prove (a). As dom f = {x ∈ X : ∃α ∈ R, (x, α) ∈ epi f}, it is the canonical
projection of the epigraph of f onto X. Therefore, dom f is the image of the convex set
epi f by a linear transformation. Hence, it is a convex set. �

Examples 1.12. Here are typical convex functions.

(1) On X = R, f(x) = |x|p with p ≥ 1, f(x) = eax with a ∈ R, or for any a ≥ 0,

f(x) =

 x log x if x > 0
a if x = 0
+∞ if x < 0

(2) Any twice differentiable real-valued function f on Rd with a nonnegative Hessian
matrix D2f(x) = (∂i∂jf(x))1≤i,j≤d i.e. 〈ξ,D2f(x)ξ〉 ≥ 0 for all x, ξ ∈ Rd.

(3) Any affine function f(x) = 〈u, x〉+ α where u is a linear form on X and α is real.
(4) Any function f(x) = g(〈u, x〉) where u is a linear form on X and g is an extended

real-valued convex function on R.
(5) More generally, f(x) = g(Ax) where A is a linear operator and g is a convex

function.
(6) Any function f(x) = g(‖x‖) where ‖x‖ is a norm on X and g is an extended

real-valued increasing convex function on [0,∞). Typically, ‖x‖p with p ≥ 1.
(7) Beware: the composition of two convex functions may not be convex. For in-

stance f(x) = |x| and g(y) = −y are convex but g[f(x)] = −|x| isn’t. Another
counterexample is by g ◦ f with f(x) = x2 and g(y) = e−y.

(8) Let ϕ(t, x) be a function on T × X such that for each t ∈ T, x 7→ ϕ(t, x) is
a (−∞,∞]-valued convex function. For any nonnegative measure µ(dt) on T,
x 7→

∫
T
ϕ(t, x)µ(dt) is a convex function, provided that this integral is meaningful.

In particular, any nonnegative linear combination of convex functions is convex.
(9) If you are used to abstract integration and probability theory, you already know

the indicator of a set: 1C(x) =

{
1 if x ∈ C
0 otherwise

which is not convex. Convex

analysis requires another indicator which is defined by

ζC(x) =

{
0 if x ∈ C
+∞ otherwise

Of course, epi ζC = C × [0,∞) and C is a convex set if and only if ζC is a convex
function. We also have formally 1C = e−ζC .

Definition 1.13 (Strictly convex function). A function f on X is strictly convex if dom f
is a convex set and f((1− t)x0 + tx1) < (1− t)f(x0) + tf(x1) for all distinct x0, x1 ∈ X
and all 0 < t < 1.

Of course, a strictly convex function is convex. Strict convexity is very useful to derive
uniqueness results.

Proposition 1.14 (Uniqueness of the minimizer). Let f be a stricly convex function,
then it admits at most one minimizer.

Proof. Suppose that x0 and x1 are two distinct minimizers of f. They are in dom f,
x0.5 = (x0 + x1)/2 is also in dom f and inf f ≤ f(x0.5) < (f(x0) + f(x1))/2 = inf f, which
is a contradiction. �
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Definition 1.15 (Convex envelope). Let f be any extended real-valued function on X. Its
convex envelope is the greatest convex function which is less than f. It is denoted cv f.

The following proposition shows that this definition is meaningful.

Proposition 1.16. Let {fi; i ∈ I} be a collection of convex functions. Then supi fi is
also convex.
The convex envelope of a function f is

cv f = sup{g : g convex extended real-valued function on X such that g ≤ f}.
Proof. The last statement is a direct consequence of the first one.
To prove the first statement, note that the epigraph of a supremum is the intersection of
the epigraphs (see Lemma 1.17 below) and the intersection of convex sets is a convex set
(Proposition 1.4). �

Lemma 1.17. Let {fi; i ∈ I} be a collection of extended real-valued functions. Then⋂
i∈I

epi fi = epi sup
i∈I

fi.

Proof. For any x ∈ X, the section ({x} × R) ∩ (∩iepi fi) is ∩i[({x} × R) ∩ epi fi] =
{x} × ∩i[fi(x),+∞) = {x} × [supi fi(x),+∞) = ({x} × R) ∩ epi supi fi. �

Notations 1.18. We write inf f for short instead of infx∈X f(x).
The set of all the (global) minimizers of f is denoted argmin f.

The next result relates the global minimization problems of f and cv f.

Proposition 1.19. Let g be a convex function, then argmin g is a convex set.
Let f be any function on X. Then, inf f = inf cv f and argmin f ⊂ cv argmin f ⊂
argmin cv f.

Proof. Let g be a convex function and xo, x1 ∈ argmin g. Then, for all 0 ≤ t ≤ 1,
inf g ≤ g((1 − t)xo + tx1) ≤ (1 − t)g(xo) + tg(x1) = (1 − t) inf g + t inf g = inf g. This
proves that [xo, x1] ⊂ argmin g and means that argmin g is a convex set.
Let f be any function. As the constant function inf f is convex and below f, we have
inf f ≤ cv f ≤ f. This yields the identity inf f = inf cv f together with the inclusion
argmin f ⊂ argmin cv f. Now, taking the convex hulls on both sides of this inclusion, one
gets: cv argmin f ⊂ cv argmin cv f = argmin cv f since argmin cv f is a convex set (first
part of this proposition with g = cv f). �

Examples 1.20. We give some examples on X = R to illustrate this proposition.

(1) Let f(x) = 1/(1 + x2), x ∈ R. Its convex envelope is cv f ≡ 0, argmin f is empty
and argmin cv f = R. Note that ∅ = cv argmin f ( argmin cv f = R.

(2) Let f(x) = x4−x2, x ∈ R. We have argmin f = {−1/
√

2, 1/
√

2} and inf f = −1/4.

The convex envelope of f is cv f(x) =

{
inf f, if x ∈ [−1/

√
2, 1/

√
2];

f(x), otherwise.
Therefore,

argmin cv f = cv argmin f = [−1/
√

2, 1/
√

2] and inf cv f = inf f = −1/4.

(3) Let f(x) =

{
+∞, if x < 0
−x2, if x ≥ 0

Then, cv f(x) =

 +∞, if x < 0
0, if x = 0.
−∞, if x > 0

Then, inf cv f =

inf f = −∞ and argmin f = ∅ ( argmin cv f = (0,+∞).

(4) Let f(x) =

{
|x|, if x 6= 0
1, if x = 0

Then, cv f(x) = |x| for all x ∈ R and ∅ = cv argmin f (

argmin cv f = {0}.
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(5) Let f(x) =

{
x2, if x ≤ 1
x, if x ≥ 1

. Then cv f(x) =

{
x2, if x ≤ 1/2
x− 1/4 if x ≥ 1/2

, so that

f 6= cv f, but argmin f = cv argmin f = argmin cv f = {0}.
1.2. Subdifferentiability. Working with convex functions usually requires less regular-
ity than the standard differentiability. Nevertheless, the notion of affine approximations
of a convex function is crucial. For this to be defined, one needs a vector space U of linear
functions on X. At this stage, it is not necessary to consider a topological structure on X.
It is not required either that U is the space of all linear forms on X. We introduce a

Definition 1.21 (Algebraic dual pairing). Let U and X be two vector spaces. An alge-
braic dual pairing of U and X is a bilinear form 〈u, x〉, u ∈ U, x ∈ X.
Note that this notion gives a symmetric role to U and X : X acts linearly on U and U
acts linearly on X.
Also note that it is not supposed that this pairing separates U or X.
An affine function on X is given by

x ∈ X 7→ 〈u, x〉+ α ∈ R
with u ∈ U and α ∈ R and an affine function on U is given by

u ∈ U 7→ 〈u, x〉+ ξ ∈ R
with x ∈ X and ξ ∈ R.
Definition 1.22 (Subgradient, subdifferential). Let f be an extended real-valued function
on X (possibly nonconvex). A linear form u ∈ U is a subgradient of f at xo ∈ X if

f(x) ≥ f(xo) + 〈u, x− xo〉,∀x ∈ X
The set of all these subgradients is called the subdifferential of f at xo and is denoted
∂f(xo).

In contrast with the usual notion of differential which is local and requires regularity, this
notion is a global one and f may not even be continuous at xo for ∂f(xo) to be nonempty.
Note that this definition depends on the underlying dual pairing 〈U,X〉. In particular,
∂f(xo) is a subset of U.
Clearly, if f(xo) = +∞, ∂f(xo) is empty unless f is identically +∞ (in which case
∂f(x) = U for all x). On the other hand, if f(xo) = −∞, ∂f(xo) = U.

Exercice 1.23. Show that for all x ∈ X, ∂f(x) is a convex set.

Subgradients are well designed for minimization. Indeed, playing with the definitions, we
get

Proposition 1.24. Let f be any extended real-valued function on X. The point x∗ is a
global minimizer of f if and only if

0 ∈ ∂f(x∗).

1.3. Convex conjugation. For all u ∈ ∂f(xo), x 7→ f(xo) + 〈u, x − xo〉 is an affine
function which is tangent to f at xo. More, the graph of f lies above the graph of the
tangent line on the whole space.
Let us rewrite the equation of this tangent line. For all x ∈ X,

x 7→ f(xo) + 〈u, x− xo〉 = 〈u, x〉 − β

with β = 〈u, xo〉 − f(xo). Since this tangent line is the highest one below f with slope u,
the additive constant −β is the greatest α ∈ R such that f(x) ≥ 〈u, x〉+ α for all x ∈ X.
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Hence, −β = infx∈X{f(x) − 〈u, x〉} or equivalently β = supx∈X{〈u, x〉 − f(x)}. Looking
at β as a function of the slope u, one introduces the following definition.

Definition 1.25 (Convex conjugate). Let f be an extended real function on X. We define
the convex conjugate of f with respect to the algebraic dual pairing 〈U,X〉, by

f ∗(u) = sup
x∈X

{〈u, x〉 − f(x)}, u ∈ U

Examples 1.26. As an exercice, prove these results.

(1) X = U = R, f(x) = |x|p/p with p ≥ 1, f ∗(u) = |u|q/q where 1/p+ 1/q = 1.

(2) X = U = R, f(x) = ex − 1, f ∗(u) =

 u log u− u+ 1 if u > 0
1 if u = 0
+∞ if u < 0

Proposition 1.27. The function f ∗ is an extended real-valued convex function on X.

Proof. As the supremum of convex (affine) functions, f ∗ is convex (Proposition 1.16),
even if f is not convex. �

As β = f ∗(u) and β = 〈u, xo〉 − f(xo), we have just proved that for all u ∈ U and x ∈ X
such that u ∈ ∂f(x), we have f ∗(u) = 〈u, x〉 − f(x). The converse of this statement will
be proved at Proposition 1.37.
A direct consequence of the definition of f ∗ is the following inequality.

Proposition 1.28 (Young’s inequality). For all x ∈ X and u ∈ U,

f ∗(u) ≥ 〈u, x〉 − f(x).

Remark 1.29. To emphasize the u, x-symmetry, one is tempted to rewrite Young’s in-
equality as 〈u, x〉 ≤ f ∗(u) + f(x). This is true when it is meaningful. But troubles occur
when the right hand side is +∞−∞ or −∞+∞.

Exercice 1.30.

- Show that if f ≤ g, then g∗ ≤ f ∗.
- Let g(x) = f(λx), x ∈ X, with λ 6= 0. Show that g∗(u) = f ∗(u/λ), u ∈ U.
- Let g = λf, with λ > 0. Show that g∗(u) = λf ∗(u/λ), u ∈ U.

One can take advantage of the symmetric role played by X and U. The convex conjugate
(with respect to the pairing 〈U,X〉) of any function g on U, is

g∗(x) = sup
u∈U

{〈u, x〉 − g(u)}, x ∈ X

We will have to consider subgradients of f ∗ and more generally subgradients of functions
g on U with respect to the dual pairing 〈U,X〉. They are defined by

∂g(uo) := {x ∈ X : g(u) ≥ g(uo) + 〈x, u− uo〉,∀u ∈ U}

Note that ∂g(u) is a subset of X.
One can iterate convex conjugation and consider f ∗∗ = (f ∗)∗ which is defined by

f ∗∗(x) = sup
u∈U

{〈u, x〉 − f ∗(u)}, x ∈ X.

Proposition 1.31. Let f be any function on X.

(a) f ∗∗ is a convex function and f ∗∗ ≤ f.
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(b) Denoting f ∗n = (f ∗(n−1))∗ the n-th iterate for the convex conjugation, we have:{
f ∗n = f ∗, if n is odd;
f ∗n = f ∗∗, if n is even, n ≥ 2.

Proof. Let us prove (a). As a convex conjugate, f ∗∗ is a convex function. For all x ∈ X,
we have

f ∗∗(x) = sup
u
{〈u, x〉 − f ∗(u)}

= sup
u
{〈u, x〉 − sup

y
(〈u, y〉 − f(y))}

= sup
u

inf
y
{〈u, x− y〉+ f(y)}

≤ f(x)

where the last inequality is obtained by choosing y = x.
To prove (b), it is enough to show that f ∗∗∗ = f ∗. For all u ∈ U, f ∗∗∗(u) = supx{〈u, x〉 −
f ∗∗(x)} ≥ supx{〈u, x〉 − f(x)} = f ∗(u), where the inequality follows from f ∗∗ ≤ f.
Therefore, f ∗∗∗ ≥ f ∗. But we also know by (a) that f ∗∗∗ = (f ∗)∗∗ ≤ f ∗, so that f ∗∗∗ =
f ∗. �

Reversing conjugation is often useful.

Proposition 1.32. For any functions f on X and g on U, we have{
f ∗ = g
f = f ∗∗

⇔
{
f = g∗

g = g∗∗

Proof. Suppose that f ∗ = g and f = f ∗∗. Then, f = f ∗∗ = g∗ and g = f ∗ = g∗∗. The
converse follows the same line. �

Proposition 1.33 (Geometric characterization of a convex biconjugate). Let f be any
function on X. Its convex biconjugate f ∗∗ is the supremum of all the affine functions (with
respect to the pairing 〈U,X〉) which are less than f. In other words,

f ∗∗(x) = sup{h(x) : h affine such that h ≤ f}, x ∈ X

or equivalently

epi f ∗∗ =
⋂
{epih : h affine such that epih ⊃ epi f}.

Proof. For all x ∈ X,

f ∗∗(x) = sup
u
{〈u, x〉 − f ∗(u)}

= sup
u

sup
α:α≥f∗(u)

{〈u, x〉 − α}.

But,

α ≥ f ∗(u) ⇔ α ≥ sup
y
{〈u, y〉 − f(y)}

⇔ α ≥ 〈u, y〉 − f(y),∀y ∈ X
⇔ 〈u, y〉 − α ≤ f(y),∀y ∈ X

and the first statement is proved.
The last statement is a rewriting based on Lemma 1.17. �
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What happens when a convex function f achieves the value−∞ at some point xo? Usually,
a degenerate behaviour occurs. For instance, suppose that f is defined on R, and f(0) =
−∞. If f(1) is finite (say), then one must have f(x) = −∞ for all 0 ≤ x < 1 and
f(x) = +∞ for all x > 1.

Proposition 1.34 (Pathologies). Let’s have a look at some degenerate situations.

(a) Let f ≡ +∞. Then, f ∗ ≡ −∞ and f = f ∗∗.
(b) Suppose that f(xo) = −∞ for some xo ∈ X. Then, f ∗ ≡ +∞ and f ∗∗ ≡ −∞.
(c) Suppose that f ∗(uo) = −∞ for some uo ∈ U. Then, f ≡ +∞. In particular,

f ∗ ≡ −∞.

Proof. These direct easy computations are left as an exercice. �

1.4. Relations between subdifferentials and convex conjugates. The main result
of this section is stated at Theorem 1.38. It states that if f = f ∗∗, then the set-valued
function ∂f : x 7→ ∂f(x) ⊂ U is the inverse of the set-valued function ∂f ∗ : u 7→ ∂f ∗(u) ⊂
X.

Remark 1.35. It is very important to be remember that both notions of subgradient and
convex conjugate are associated with a given algebraic dual pairing 〈U,X〉.

Proposition 1.36. Let f be any function on X. For all x ∈ X and u ∈ U,
u ∈ ∂f(x) ⇔ f ∗(u) = 〈u, x〉 − f(x).

Proof. For any x ∈ X and u ∈ U, we have:

u ∈ ∂f(x) ⇔ f(x) + 〈u, y − x〉 ≤ f(y),∀y ∈ X
⇔ 〈u, y〉 − f(y) ≤ 〈u, x〉 − f(x),∀y ∈ X
⇔ f ∗(u) ≤ 〈u, x〉 − f(x)

⇔ f ∗(u) = 〈u, x〉 − f(x)

where the last equivalence follows from Young’s inequality (Proposition 1.28). �

Proposition 1.37. Let f be any function on X.

(a) For all x ∈ X such that f(x) = f ∗∗(x) we have ∂f(x) = ∂f ∗∗(x).
(b) For all x ∈ X such that ∂f(x) 6= ∅, we have f(x) = f ∗∗(x) and ∂f(x) = ∂f ∗∗(x).
(c) If f(xo) > −∞, then ∂f(xo) ⊂ dom f ∗.
(d) If f(xo) = −∞, then f ∗ ≡ +∞. Hence ∂f(xo) = U and dom f ∗ = ∅.

Proof. • Let us prove (a). For all u ∈ U and x ∈ X, applying Proposition 1.36 with f ∗∗

instead of f, one obtains that u ∈ ∂f ∗∗(x) ⇔ f ∗∗∗(u) = 〈u, x〉 − f ∗∗(x). But, f ∗∗∗ = f ∗

(Proposition 1.31), and we have

u ∈ ∂f ∗∗(x) ⇔ f ∗(u) = 〈u, x〉 − f ∗∗(x).

The desired result follows from this together with Proposition 1.36 and the hypothesis:
f(x) = f ∗∗(x).
• Let us prove (b). It is assumed that ∂f(x) 6= ∅. As we already know that f ∗∗ ≤ f,
with Proposition 1.36 again we get u ∈ ∂f(x) ⇒ f ∗(u) ≤ 〈u, x〉 − f ∗∗(x). By Young’s
inequality, this last inequality is equivalent to the corresponding equality, so that

u ∈ ∂f(x) ⇒ f ∗(u) = 〈u, x〉 − f ∗∗(x).

For u ∈ U and x ∈ X with u ∈ ∂f(x), we have shown that f ∗(u) = 〈u, x〉 − f ∗∗(x) =
f ∗(u) = 〈u, x〉 − f(x). As 〈u, x〉 is finite, we get the equality f(x) = f ∗∗(x). Statement
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(b) now follows from (a).
• Let us prove (c). Note that if ∂f(xo) is empty, (c) holds trivially. Suppose now that
∂f(xo) 6= ∅. It is worth discussing the cases where f(xo) = +∞ and −∞ < f(xo) < +∞.

Case where f(xo) = +∞, ∂f(xo) 6= ∅: In this case, f ≡ +∞ and it follows that:
f ∗ ≡ −∞, f ∗∗ ≡ +∞, ∂f(xo) = ∂f ∗∗(xo) = U and dom f ∗ = U. One sees that (c)
holds in this situation.

Case where −∞ < f(xo) < +∞, ∂f(xo) 6= ∅: We have u ∈ ∂f(xo) ⇔ f ∗(u) =
〈u, xo〉 − f(xo). As 〈u, xo〉 and f(xo) are finite, so is f ∗(u); and (c) is satisfied.

• Let us get rid of the special case (d). As f(xo) = −∞, we have f ∗ ≡ +∞ and
∂f(xo) = U. �

Theorem 1.38. For any function f on X, the following assertions hold.

(a) For all x ∈ X, u ∈ U, u ∈ ∂f(x) ⇒ x ∈ ∂f ∗(u).
(b) For all x ∈ X, u ∈ U, if f(x) = f ∗∗(x) then u ∈ ∂f(x) ⇔ x ∈ ∂f ∗(u).
(c) If f(0) = f ∗∗(0), in particular if ∂f(0) 6= ∅, then ∂f(0) = argmin f ∗.

Of course, (b) implies that if f = f ∗∗, then

u ∈ ∂f(x) ⇔ x ∈ ∂f ∗(u), ∀x ∈ X, u ∈ U.

Proof. Applying Proposition 1.36 with f and f ∗, one sees that for all x ∈ X and u ∈ U,
u ∈ ∂f(x) ⇔ f ∗(u) = 〈u, x〉 − f(x)

x ∈ ∂f ∗(u) ⇔ f ∗∗(x) = 〈u, x〉 − f ∗(u)

Let us prove (a). By Proposition 1.37-b, we have u ∈ ∂f(x) ⇒ ∂f(x) 6= ∅ ⇒ f(x) =

f ∗∗(x). Therefore, u ∈ ∂f(x) ⇒
{
f ∗(u) = 〈u, x〉 − f(x)
f(x) = f ∗∗(x)

⇒ f ∗∗(x) = 〈u, x〉 − f ∗(u) ⇒

x ∈ ∂f ∗(u), which is (a).
Let us show that (b) holds. If f(x) = f ∗∗(x), then u ∈ ∂f(x) ⇔ f ∗(u) = 〈u, x〉 − f(x) ⇔
f ∗∗(x) = 〈u, x〉 − f ∗(u) ⇔ x ∈ ∂f ∗(u).
Assertion (c) follows from (b), Proposition 1.37-b and Proposition 1.24. �

As appears with this theorem, it is worth knowing when f = f ∗∗. This problem is solved
at the next section in terms of a topological characterization.

1.5. Similar tools for maximizing. Maximization problems occur naturally when work-
ing with the saddle-point method (see Section 3). Note that maximizing g is equivalent
to minimizing −g since sup g = − inf(−g) and argmax g = argmin (−g) where argmax g
is the set of all the maximizers of g : argmax g = {x ∈ X : g(x) = sup g}.
One says that a function g is concave if −f is convex.
A maximum criterion similar to Proposition 1.24 will be useful. To state it, one needs
the notion of supergradient.

Definition 1.39 (Supergradient, superdifferential). Let g be an extended real-valued func-
tion on X. A linear form u ∈ U is a supergradient of g at xo ∈ X if

g(x) ≤ g(xo) + 〈u, x− xo〉,∀x ∈ X
The set of all these supergradients is called the superdifferential of g at xo and is denoted

∂̂g(xo).

Supergradients are well designed for maximization. Indeed, playing with the definitions,
we get
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Proposition 1.40. Let g be any extended real-valued function on X. The point x∗ is a
global maximizer of g if and only if

0 ∈ ∂̂g(x∗).

Of course, there is a relation between subgradients and supergradient: for all x ∈ X,

∂(−g)(x) = −∂̂g(x). (1.41)

Now, let us introduce the notion of concave conjugate. For all u ∈ ∂̂g(xo), x 7→ g(xo) +
〈u, x−xo〉 is an affine function which is tangent to g at xo. More, the graph of g lies below
the graph of the tangent line on the whole space.
Let us rewrite the equation of this tangent line. For all x ∈ X, x 7→ g(xo) + 〈u, x− xo〉 =
〈u, x〉 − β with β = 〈u, xo〉 − g(xo). Since this tangent line is the lowest one above g with
slope u, the additive constant −β is the least α ∈ R such that g(x) ≤ 〈u, x〉 + α for all
x ∈ X. Hence, −β = supx∈X{g(x) − 〈u, x〉} or equivalently β = infx∈X{〈u, x〉 − g(x)}.
Looking at β as a function of the slope u, one introduces the following definition.

Definition 1.42 (Concave conjugate). Let g be an extended real function on X. We define
the concave conjugate of g with respect to the algebraic dual pairing 〈U,X〉, by

g∗̂(u) = inf
x∈X

{〈u, x〉 − g(x)}, u ∈ U

Concave and convex conjugates are related as follows. For all u ∈ U,

(−g)∗(u) = −g∗̂(−u). (1.43)

Using the relations (1.41) and (1.43), one can translate all the preceding convex results
into concave ones. For instance, g∗̂ is a concave function,

(−f)∗̂∗̂ = −f ∗∗

and Theorem 1.38 becomes

Theorem 1.44. For any function g on X, the following assertions hold.

(a) For all x ∈ X, u ∈ U, u ∈ ∂̂g(x) ⇒ x ∈ ∂̂g∗̂(u).
(b) For all x ∈ X, u ∈ U, if g(x) = g∗̂∗̂(x) then u ∈ ∂̂g(x) ⇔ x ∈ ∂̂g∗̂(u).
(c) If g(0) = g∗̂∗̂(0), in particular if ∂̂g(0) 6= ∅, then ∂̂g(0) = argmax g∗̂.

Of course, (b) implies that if g = g∗̂∗̂, then

u ∈ ∂̂g(x) ⇔ x ∈ ∂̂g∗̂(u), ∀x ∈ X, u ∈ U.

2. Convexity with a topology

Introducing a topological structure on X is useful to derive optimization results.

(i) While optimizing possibly nonconvex functions, topology may be used to prove
that optimum values are attained: for instance, we feel at ease with a continuous
function on a compact subset.

(ii) Usual optimization of nonconvex regular functions requires a notion of differentia-
bility: local optimizers x∗ satisfy f ′(x∗) = 0. Talking about local properties refers
to an underlying topology. In addition, to define a derivative one needs to consider
limiting increment rates; this requires a topological structure.
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As regards item(i), in the framework of global minimization lower semicontinuity of func-
tions is the good notion of regularity to be considered. This is developped at Section 2.2
below. The main result of attainment of global minimum values is stated at Theorem
2.12.
As was already seen at Proposition 1.24 and Theorem 1.38-c, while considering global
minimization problems, instead of local optimization, it is enough to work with a geo-
metric notion of subgradients (without any reference to a topology). This is in contrast
with (ii) above. Nevertheless, it will be needed to derive criteria for f = f ∗∗ to be able to
apply Theorem 1.38. Again, a useful tool will be the lower semicontinuity. This criterion
in terms of lower semicontinuity is stated at Theorem 2.30.
The main results of this section are Theorem 2.12 about the existence of minimizers and
Theorem 2.46 about the main properties the Fenchel transform: f → f ∗.

2.1. Compactness results. Let us recall basic compactness results. Let X be a topolog-
ical space (possibly not a vector space). An open cover of a subset E of X is a collection
of open sets {Oi; i ∈ I} such that E ⊂

⋃
i∈I Oi. As a definition, a subset K of X is a

compact set if, from any open cover of K, it is possible to extract a finite subcover.
A topological space X is said to be Hausdorff if for all distinct x, y ∈ X, there exist two
open neighbourhoods Gx 3 x and Gy 3 y such that Gx ∩Gy = ∅.
A useful result to derive attainment results (see Theorem 2.12) is the following proposition.

Proposition 2.1. Let X be a Hausdorff topological space.
For any nonincreasing sequence of compact sets (Kn)n≥1 such that

⋂
n≥1Kn is empty,

there exists N ≥ 1 such that Kn is empty for all n ≥ N.
This implies that for any nonincreasing sequence of nonempty compact sets (Kn)n≥1, we
have

⋂
n≥1Kn 6= ∅.

Proof. As X is supposed to be Hausdorff, by Lemma 2.2 below, each Kn is closed: its
complement Kc

n is open.
Suppose that

⋂
nKn is empty. Then {Kc

n;n ≥ 1} is an open subcover of X and a
fortiori of the compact set K1. One can extract a finite subcover (Kc

n)1≤n≤N such that
K1 ⊂

⋃
1≤n≤N K

c
n. But,

⋃
1≤n≤N K

c
n = Kc

N and Kc
1 ⊂ Kc

N , so that X = K1

⋃
Kc

1 ⊂ Kc
N .

This implies that KN = ∅. �

Lemma 2.2. If X is Hausdorff, each compact set is closed.

There exist non-Hausdorff spaces with non-closed compact sets. Indeed, let X be endowed
with the coarsest topology: the open sets are X and ∅. Then, all subset E of X is trivially
compact and each subset E which is different from X and ∅ is non-closed.

Proof. Let K be a compact subset of the Hausdorff space X and xo be any point in the
complement of K. We have to prove that there exists an open neighbourhood of xo which
doesn’t intersect K.
As X is Hausdorff, for each x ∈ K, there exist two open sets Gx 3 x and Ox 3 xo
such that Ox ∩ Gx = ∅. As K is compact and K ⊂

⋃
x∈K Gx, there exists a finite subset

{xi; i ∈ I} of K such that K ⊂
⋃
i∈I Gxi

. Since
⋂
i∈I Oxi

and
⋃
i∈I Gxi

are disjoint sets,
we have K ∩ (

⋂
i∈I Oxi

) = ∅. One concludes noting that as a finite intersection of open
neighbourhoods,

⋂
i∈I Oxi

is still an open neighbourhood of xo. �

We have recalled the proofs of these basic compactness results to emphasize the role of
the Hausdorff assumption.
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2.2. Lower semicontinuity. A good notion of regularity for a minimization problem is
the lower semicontinuity. Indeed, it will be proved in a while at Theorem 2.12 that any
lower semicontinuous function on a compact space attains its minimum value.

Definition 2.3 (Lower semicontinuity). Let X be a topological space (possibly not a vector
space). An extended real-valued function f on X is lower semicontinuous if its epigraph
is a closed subset of X × R.

This is a definition of global lower semicontinuity. One says that f is lower semicontinuous
at x ∈ X, if

f(x) ≤ sup
V ∈N (x)

inf
y∈V

f(y) (2.4)

where N (x) is the collection of all open neighbourhoods of x. In particular, if X is a
metric space, f is lower semicontinuous at x if and only if for any sequence (xn) with
limn→∞ xn = x, we have f(x) ≤ lim infn→∞ f(xn) in [−∞,+∞].
Note that the converse inequality f(x) ≥ supV ∈N (x) infy∈V f(y) always holds, so that (2.4)
is equivalent to the corresponding equality:

f(x) = sup
V ∈N (x)

inf
y∈V

f(y).

Exercice 2.5. Show that the global lower semicontinuity is equivalent to the local lower
semicontinuity at every point of X.

A function f is said to be upper semicontinuous at x if −f is lower semicontinuous at x.
In other words, if f(x) ≥ infV ∈N (x) supy∈V f(y).

Exercice 2.6. Show that f is continuous at x if and only if f is both upper and lower
semicontinuous at x.

Definition 2.7 (Level set). The level sets of a function f are the subsets of X of the
form

{f ≤ α} = {x ∈ X : f(x) ≤ α} ⊂ X

with α ∈ R.

Clearly, {f ≤ α} is a nondecreasing collection of sets (as α increases).

Proposition 2.8. Let f be a function on X. The following statements are equivalent.

(a) f is lower semicontinuous.
(b) All the level sets of f are closed.

Proof. (a) ⇒ (b). For all real α, (X×{α})
⋂

epi f is closed. We have, (X×{α})
⋂

epi f =
{(x, β) : x ∈ X, β ∈ R, β = α, f(x) ≤ β} = {(x, α) : x ∈ X, f(x) ≤ α} = {f ≤ α} × {α}.
Hence, the level set {f ≤ α} is the inverse image of the closed set (X × {α})

⋂
epi f for

the continuous mapping x ∈ X 7→ (x, α) ∈ X × R. Therefore, it is closed.
(b) ⇒ (a). Let us prove that the complement of epi f is open. Let (xo, α) 6∈ epi f. This
means that α < f(xo). Take β < ∞ such that α < β < f(xo). Hence, xo doesn’t belong
to the closed level set {f ≤ β} and there exists an open neighbourhood G of xo which is
disjoint from {f ≤ β}. Finally, G×] −∞, β[ is an open neighbourhood of (xo, α) which
doesn’t intersect epi f. �

Definition 2.9 (Lower semicontinuous envelope). Let f be any extended real-valued func-
tion on X. Its lower semicontinuous envelope is the greatest lower semicontinuous function
which is less than f. It is denoted ls f.
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The following proposition shows that this definition is meaningful.

Proposition 2.10. The following statements are true.

(a) Let {fi; i ∈ I} be a collection of lower semicontinuous functions. Then supi fi is
also lower semicontinuous.

(b) The lower semicontinuous envelope of a function f is

ls f = sup{h : h lower semicontinuous function on X such that h ≤ f}.
(c) The epigraph of ls f is the topological closure of the epigraph of f :

epi ls f = cl epi f.

Proof. (a) By Lemma 1.17, we have epi supi fi = ∩iepi fi which is closed as the inter-
section of a collection of closed sets.
(b) and (c) are direct consequences of (a). �

Proposition 2.11. Let f be any function, its lower semicontinuous envelope is given for
all x ∈ X by

ls f(x) = sup
V ∈N (x)

inf
y∈V

f(y)

where N (x) is the collection of all open neighbourhoods of x.

Proof. Let us denote h(x) := supV ∈N (x) infy∈V f(y). We have h ≤ f since for all x ∈ X and
V ∈ N (x), infy∈V f(y) ≤ f(x), which implies that h(x) := supV ∈N (x) infy∈V f(y) ≤ f(x).
More, h is lower semicontinuous since it satisfies (2.4). Indeed,

sup
V ∈N (x)

inf
y∈V

h(y) = sup
V ∈N (x)

inf
y∈V

sup
W∈N (y)

inf
z∈W

f(z)

≥ sup
V ∈N (x)

inf
y∈V

inf
z∈V

f(z)

= sup
V ∈N (x)

inf
y∈V

f(y)

= h(x)

where the inequality is obtained by choosing W = V.
Now, let ho be a lower semicontinuous function such that h ≤ ho ≤ f. As ho is lower
semicontinuous, we have ho(x) ≤ supV ∈N (x) infy∈V ho(y). With, ho ≤ f this gives us
ho(x) ≤ supV ∈N (x) infy∈V f(y) := h(x). This proves that h = ho. Hence, h is the greatest
lower semicontinuous minorant of f. �

Theorem 2.12 (Attainment of the minimum on a compact set). Let X be a Hausdorff
topological space, f a lower semicontinuous function and K a compact subset of X. Then,
there exists at least one x∗ ∈ K such that f(x∗) = infK f.

Proof. If K ∩dom f = ∅, we have infK f = +∞ and this infimum is realized at each point
of K.
If K ∩ dom f 6= ∅, we have infK f < +∞.
Suppose that −∞ < β := infK f. As f is lower semicontinuous, its level sets are closed
(Proposition 2.8). Since K is compact, Kn := K ∩ {f ≤ β + 1/n} is compact. Since
−∞ < infK f < +∞, (Kn) is a nonincreasing sequence of nonempty compact sets. By
Proposition 2.1, its limit

⋂
nKn = {x ∈ K; f(x) = β} is also nonempty.

Suppose now that infK f = −∞. Considering the sets Kn := K ∩ {f ≤ −n}, n ≥ 1, we
obtain a nonincreasing sequence of non-empty compact sets, since the level sets {f ≤ −n}
are closed (Proposition 2.8). As

⋂
nKn = {x ∈ K : f(x) = −∞}, the result follows again

by means of Proposition 2.1. �
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Let us state a useful corollary of this theorem.

Definition 2.13. A function f on a topological space X is said to be inf-compact if all
its level sets are compact.

Definition 2.14. A sequence (xn)n≥1 in X is a minimizing sequence of a function f if
limn→∞ f(xn) = inf f.

Corollary 2.15. Let X be a Hausdorff topological space and f an inf-compact function
on X. Then f is lower semicontinuous and its infimum is attained.
Any minimizing sequence admits accumulation points and these accumulation points are
minimizers of f.

Proof. As the level sets of f are compact and X is Hausdorff, they are closed (Lemma
2.2). By Proposition 2.8, this proves that f is lower semicontinuous.
If f ≡ +∞, its infimum is attained at every point. As f is inf-compact, this implies that
X is compact and any sequence admits accumulation points.
Otherwise, inf f < +∞ and the non-empty level set K = {f ≤ β} is compact, with
β > infX f. Clearly, infX f = infK f. One concludes with Theorem 2.12.
Let (xn) be a minimizing sequence. For n large enough, xn is in the compact level set
{f ≤ inf f + 1}. Hence there exist accumulation points. Let x∗ be one of them: there
exists a subsequence (x′k) with limk x

′
k = x∗. As f is lower semicontinuous, we have

inf f ≤ f(x∗) ≤ lim infk f(x′k) = limn f(xn) = inf f. This proves that f(x∗) = inf f : x∗ is
a minimizer. �

For a useful criterion of inf-compactness, see Proposition 2.43 below.

2.3. Hahn-Banach Theorem. We are going to give at Theorem 2.30 a characterization
in terms of lower semicontinuity of the functions f which satisfy the identity f = f ∗∗.
The proof of this result relies upon a geometric form of Hahn-Banach Theorem which we
are going to state.

Definition 2.16. Let X be a vector space endowed with some topology. It is a topological
vector space if both the addition (x, y) ∈ X×X 7→ x+y ∈ X and the scalar multiplication
(x, λ) ∈ X × R 7→ λx ∈ X are continuous functions.
A topological vector space X is locally convex if 0 ∈ X possesses a fundamental system
of convex neighbourhoods.

Since the addition is continuous, in a locally convex topological vector space each vector
possesses a fundamental system of convex neighbourhoods.
Let X be a topological vector space, u a continuous linear form on X and α a real number.
The set

H = {x ∈ X : 〈u, x〉 = α}
is called a closed affine hyperplane. As u is continuous, it is clearly a closed set.
A closed affine hyperplane is said to separate two sets E and F if each of the closed
half-spaces bounded by H : {x ∈ X : 〈u, x〉 ≤ α} and {x ∈ X : 〈u, x〉 ≥ α}, contains one
of them. If 〈u, x〉 = α is the equation of H, this means

〈u, x〉 ≤ α, ∀x ∈ E and 〈u, x〉 ≥ α,∀x ∈ F.
Similarly, a closed affine hyperplane is said to strictly separate two sets E and F if each
of the open half-spaces bounded by H : {x ∈ X : 〈u, x〉 < α} and {x ∈ X : 〈u, x〉 > α},
contains one of them. If 〈u, x〉 = α is the equation of H, this means

〈u, x〉 < α,∀x ∈ E and 〈u, x〉 > α,∀x ∈ F.
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The proofs of all the following results can be found for instance in the book of F. Trèves
([8], Chapter 18).

Theorem 2.17 (Hahn-Banach Theorem). Let X be a topological vector space, E an
open non-empty convex set and F a non-empty affine subspace which does not intersect
E. Then there exists a closed affine hyperplane H which contains F and does not intersect
E.

Let us give some important corollaries of this foundamental result.

Corollary 2.18. Let X be a topological vector space, E an open non-empty convex set
and F a non-empty convex set which does not intersect E. Then there exists a closed
affine hyperplane H which separates E and F.

Corollary 2.19. Let X be a locally convex topological vector space, E a closed non-empty
convex set and K a compact non-empty convex set which does not intersect E. Then there
exists a closed affine hyperplane H which stricly separates E and K.

As a consequence of this last result, we have

Corollary 2.20. In a locally convex topological vector space, every closed convex set is
the intersection of the closed half-spaces which contain it.

Although Corollary 2.18 will not be used later, we have stated it to emphasize the role of
the locally convex assumption in Corollaries 2.19 and 2.20.
Note that it is not assumed that X is Hausdorff to get these separation results.

2.4. Closed envelopes. Mixing the notions of convex hull and closure one obtains the

Definition 2.21 (Closed convex hull). Let E be any subset of X. Its closed convex hull
is the smallest closed convex set which contains E. It is denoted clcvE.

Mixing the notions of convex and lower semicontinuous envelopes one obtains the

Definition 2.22 (Lower semicontinuous convex envelope). Let f be any extended real-
valued function on X. Its lower semicontinuous convex envelope is the greatest convex
lower semicontinuous function which is less than f. It is denoted lscv f.

The following proposition shows that this definition is meaningful.

Proposition 2.23. The lower semicontinuous convex envelope of a function f is the
pointwise supremum of all the convex and lower semicontinuous functions less than f :

lscv f = sup{h : h convex lower semicontinuous function on X such that h ≤ f}.

Proof. Because of Propositions 1.16 and 2.10, the pointwise supremum of any collection
of convex lower semicontinuous functions is convex and lower semicontinuous. It follows
that sup{h : h convex lower semicontinuous function on X such that h ≤ f} is convex
and lower semicontinuous. �

Proposition 2.24. Assuming that X is a locally convex topological vector space, the
following statements are true.

(a) The closure of a convex set is convex.
(b) The closed convex hull of E is the closure of its convex hull:

clcvE = cl (cvE).

(c) The lower semicontinuous envelope of a convex function is convex.
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Proof. Proof of (a). Let E be a convex subset of X, xo, x1 stand in clE and 0 ≤ t ≤ 1.
We want to show that xt := (1− t)xo + tx1 stands in clE.
Let W be any open neighbourhood of xt. There exists a convex neighbourhood of the
origin V such that xt + V ⊂ W. As xo, x1 stand in clE, there exist yo ∈ xo + V and
y1 ∈ x1 + V with yo, y1 in the convex set E. It follows that yt := (1− t)yo + ty1 is also in
E and yt ∈ (1 − t)[xo + V ] + t[x1 + V ] ⊂ xt + V ⊂ W, since (1 − t)V + tV ⊂ V as V is
convex. We have shown that for any neighbourhood W of xt, there exists a point yt in
W ∩ E. This means that xt belongs to clE.
Let us prove (b). As cvE is the smallest convex set which contains E and clcvE is
a convex set which contains E, we have: cvE ⊂ clcvE. Taking the closures, we get
E ⊂ cl (cvE) ⊂ clcvE. But, we have just proved at (a) that cl (cvE) is closed and convex.
As clcvE is the smallest closed convex set which contains E, we get cl (cvE) = clcvE.
Let us prove (c). Let f be a convex function. Then, epi f is a convex set and epi ls f =
cl epi f (Proposition 2.10 (c)). Thanks to statement (a), epi ls f is a convex set. �

Proposition 2.25. Assuming that X is a locally convex topological vector space, the
following statements are true.

(a) The lower semicontinuous convex envelope of a function f is the lower semicon-
tinuous envelope of its convex envelope:

lscv f = ls (cv f).

(b) The epigraph of lscv f is the closed convex hull of the epigraph of f :

epi lscv f = clcv epi f.

Proof. Let us prove (a). As cv f is the greatest convex function below f and lscv f is
a convex function below f, we have lscv f ≤ cv f. As lscv f is lower semicontinuous,
taking the lower semicontinuous envelopes in both sides of this inequality implies that
lscv f = ls (lscv f) ≤ ls (cv f) ≤ f. Since ls (cv f) is clearly lower semicontinuous. To
obtain the desired identity: lscv f = ls (cv f), it remains to notice that ls (cv f) is also a
convex function. This holds because of Proposition 2.24 (c), assuming that X is a locally
convex topological vector space.
Statement (b) is the epigraph version of statement (a), noting that the closure of an
epigraph is still an epigraph (Proposition 2.10 (c)). �

2.5. Convex conjugation and topology. Now, let X be a vector space endowed with
some topology. At this stage it is not necessary that X is a topological vector space. Let
U be its topological dual space: U = X ′. We consider the associated dual pairing 〈u, x〉 :
the action of the continuous linear form u on the vector x. This means that for all function
f on X

f ∗(u) = sup
x∈X

{〈u, x〉 − f(x)}, u ∈ X ′

f ∗∗(x) = sup
u∈X′

{〈u, x〉 − f ∗(u)}, x ∈ X

where X ′ is the topological dual space of X.

Proposition 2.26. With these assumptions, the convex conjugate

x ∈ X 7→ g∗(x) = sup
u∈X′

{〈u, x〉 − g(u)} ∈ [−∞,+∞]

of any function g on U is convex lower semicontinuous and satisfies (with f = g∗)

(∃xo ∈ X, f(xo) = −∞) ⇒ f ≡ −∞. (2.27)
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In particular, the biconjugate f ∗∗ of any function f on X is convex lower semicontinuous
and satisfies (2.27).

Proof. As a convex conjugate, g∗ is convex (Proposition 1.27). Since U = X ′, g∗ is the
supremum of continuous (affine) functions. It follows from Proposition 2.10 that it is
lower semicontinuous. The property (2.27) is the statement (c) of Proposition 1.34. �

Hahn-Banach Theorem will allow us to prove the converse result at Theorem 2.30.

Definition 2.28 (Closed functions and Γ(X)). A function f on X is said to be closed
function if  f is lower semicontinuous and f(x) > −∞,∀x ∈ X

or
f ≡ −∞

We denote Γ(X) the set of all closed convex functions on X.

Of course, a closed convex function is also lower semicontinuous convex, since a function
f is closed if and ony if it is lower semicontinuous and satisfies (2.27).
To make precise the difference between closed convex functions and lower semicontinuous
convex functions, we state the following result.

Proposition 2.29. Let f be a lower semicontinuous convex function. If there exists
xo ∈ X such that −∞ < f(xo) < +∞, then f(x) > −∞ for all x ∈ X.
In particular, a lower semicontinuous convex function which admits one finite value is
closed convex.

Proof. Suppose that there exists x1 ∈ X such that f(x1) = −∞. As f is convex, for all
0 < t ≤ 1, we have

f((1− t)x0 + tx1) ≤ (1− t)f(x0) + tf(x1) = −∞
But f is lower semicontinuous at xo, and letting t tend to zero one gets: f(xo) ≤
lim inft→0 f((1− t)x0 + tx1) = −∞. Which contradicts f(xo) > −∞. �

Theorem 2.30. Let X be a locally convex topological vector space. For all function f on
X, we have

f = f ∗∗ ⇔ f ∈ Γ(X).

In particular, for all f ∈ Γ(X), g = f ∗ ⇒ f = g∗.

Note that it is not assumed that X is Hausdorff.
Let us state the corresponding results with concave functions.

Definition 2.31 (Closed concave function). A function f is said to be closed concave if
−f is closed convex. We denote −Γ(X) the set of all closed concave functions defined by
f ∈ −Γ(X) ⇔ −f ∈ Γ(X).

A function f is closed concave if and only if it is concave, upper semicontinuous and
satisfies: (∃xo ∈ X, f(xo) = +∞) ⇒ f ≡ +∞.

Corollary 2.32. Let X be a locally convex topological vector space. For all function f on
X, we have

f = f ∗̂∗̂ ⇔ f ∈ −Γ(X).

In particular, for all f ∈ −Γ(X), g = f ∗̂ ⇒ f = g∗̂.

Proof. Translate the results of Theorem 2.30, by means of (1.43): (−f)∗ = −f ∗̂(−·). �
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Let us proceed with the proof of the theorem.

Proof of Theorem 2.30. The “⇒” part is already proved at Proposition 2.26. Let us prove
the “⇐” part. Suppose that f ∈ Γ(X).
If f ≡ +∞, then f = f ∗∗ is satisfied
If there exists xo ∈ X such that f(xo) = −∞, then it is assumed that f ≡ −∞. Conse-
quently, f ∗∗ ≡ −∞ = f.
Suppose now that f(x) > −∞ for all x ∈ X and that there exists at least one x such that
f(x) < +∞. In view of Proposition 1.33 applied with U = X ′, we have to prove that f
is the pointwise supremum of continuous affine functions. All we have to show is that for
all xo ∈ X and all real αo such that αo < f(xo), there exists a continous affine function h
such that αo < h(xo) < f(xo) and h ≤ f.
As αo < f(xo), the point (xo, αo) is not in epi f. But {(xo, αo)} is a convex compact
set and epi f is a convex closed set since f is convex and lower semicontinuous. By the
Corollary 2.19 of Hahn-Banach Theorem (note that X is assumed to be a locally convex
topological vector space for this purpose), there exists uo ∈ X ′ and two real numbers β, γ
such that

〈uo, xo〉+ γαo < β < 〈uo, x〉+ γα, ∀(x, α) ∈ epi f.

This implies that γ ≥ 0. Indeed, suppose that γ < 0, letting α tend to +∞ in β <
〈uo, x1〉+ γα for some x1 in dom f, we obtain β < −∞ which is absurd.
More precisely,

xo ∈ dom f ⇒ γ > 0 or equivalently γ = 0 ⇒ xo 6∈ dom f. (2.33)

Indeed, if γ = 0 one gets 〈uo, xo〉 < β < 〈uo, x〉 for all x ∈ dom f. This clearly implies
that xo 6∈ dom f, otherwise we would have 〈uo, xo〉 < 〈uo, xo〉 which is absurd.
If γ > 0, one gets

β/γ − 〈uo, x〉/γ < f(x), ∀x ∈ X
and

αo < β/γ − 〈uo, xo〉/γ < f(xo)

which is the desired result with h(x) = β/γ − 〈uo, x〉/γ, x ∈ X.
If γ = 0, then denoting ho(x) = −〈uo, x〉+ β, x ∈ X, we have,

ho(x) < 0 < ho(xo), ∀x ∈ dom f.

Choosing x1 in dom f, the associated γ1 must be positive thanks to (2.33) and we have
just proved that there exists a continuous affine function h1 such that h1 < f. Now, for
all c ≥ 0, we have h1(x) + cho(x) < f(x) for all x ∈ X, and choosing c large enough, we
get h1(xo) + cho(xo) > αo and the desired results holds with h = h1 + cho. �

To state the next result which is a corollary of this theorem, one needs a new definition.

Definition 2.34 (Closed convex envelope). Let f be any function on X. Its closed convex
envelope is denoted clcv f and defined as the greatest function in Γ(X) which is less than
f.

This definition is meaningful since Γ(X) is stable under an arbitrary number of supremum
operations.

Proposition 2.35. Let f be any function on X. Then,

clcv f =

{
lscv f, if for all x ∈ X, lscv f(x) > −∞
−∞, if there exists xo ∈ X such that lscv f(xo) = −∞

Proof. This is a direct consequence of Propositions 2.23 and 2.29. �
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Corollary 2.36 ( of Theorem 2.30). Let X be a locally convex topological vector space.
For any function f on X, we have

f ∗∗ = clcv f.

In particular, if f is bounded below by a continuous affine function, then

f ∗∗ = lscv f

and
f ∗ = (cv f)∗ = (ls f)∗ = (lscv f)∗.

Proof. As f ∗∗ ≤ f (see Proposition 1.31) and f ∗∗ is convex and lower semicontinuous, we
also have:

f ∗∗ ≤ lscv f. (2.37)

If there exists xo ∈ X such that lscv f(xo) = −∞, then f ∗∗(xo) ≤ lscv f(xo) = −∞. This
means that f ∗∗(xo) = −∞. It follows by Proposition 1.34 that f ∗∗ ≡ −∞.
Otherwise, by Theorem 2.30, we have lscv f = (lscv f)∗∗. With (2.37), this gives

f ∗∗ ≤ lscv f = (lscv f)∗∗ ≤ f ∗∗

where the last inequality follows from lscv f ≤ f. This proves the identity f ∗∗ = lscv f.
Let f be bounded below by a continuous affine function h : h ≤ f. As h is convex and
lower semicontinuous, we have h = lscv h ≤ lscv f which implies that lscv f(x) > −∞ for
all x ∈ X. We have just proved that in this situation: f ∗∗ = lscv f.
As lscv f ≤ cv f ≤ f, we get: f ∗ ≤ (cv f)∗ ≤ (lscv f)∗ = f ∗∗∗ = f ∗, where the last
equality is obtained at Proposition 1.31. This proves that: f ∗ = (cv f)∗ = (lscv f)∗. A
similar proof works with ls f instead of cv f. �

2.6. Weak topologies. Let 〈X,U〉 be an algebraic dual pairing.

Definition 2.38 (Weak topology). The topology σ(X,U) is the weakest topology on X
such that for all u ∈ U, the linear form x ∈ X 7→ 〈u, x〉 ∈ R is continuous. It is called the
topology of X weakened by U.
It makes X a locally convex topological vector space: a fundamental system of neighbour-
hoods of xo ∈ X is ({x ∈ X : |〈u, x− xo〉| < δ};u ∈ U, δ > 0).

One can prove that (voir Brézis, page 41, pour une preuve à écrire plus tard)

(X, σ(X,U))′ ' U.

This identity states that the topological dual space of X weakened by U is isomorphic to
U. Rewriting Theorem 2.30 with this topology, we obtain the

Proposition 2.39. Let 〈X,U〉 be an algebraic dual pairing. Then f = f ∗∗ if and only if
f is convex and σ(X,U)-closed.

Weak topologies are interesting regards to compactness. Indeed, a weak topology is coarse
in the sense that there are not many open sets, hence not many open covers and it is
easier for a set to be compact than with a finer topology. As a consequence of Tychonov’s
theorem which states that the product of an arbitrary number of compact spaces is still
compact with respect to the corresponding product topology, we have the following result.

Theorem 2.40 (Banach-Alaoglu). Let X be a seminormed space. The unit ball of its
dual space X ′ is compact for the ∗-weak topology σ(X ′, X).

Proof. See ([2], III.17, Corollaire 3). �
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On the other hand, it is difficult for a function to be semicontinuous with respect to a
coarse topology.

Remark 2.41. Weak topologies do not admit many semicontinuous functions but they
admit many compact sets. On the other hand, it is easier for a function to be semicon-
tinuous with respect to a stronger topology. But strenghtening the topology, one looses
compact spaces!

Fortunately, convex functions are not too irregular.

Theorem 2.42. Let X be a vector space with a topology τ which turns X into a locally
convex topological vector space. Let X ′ be the topological dual space of (X, τ). Consider
now the so-called weak topology on X : σ(X,X ′). Then any convex function f on X is
σ(X,X ′)-lower semicontinuous if and only if it is τ -lower semicontinuous.

Proof. Since the topology σ(X,X ′) is weaker than τ, if f is σ(X,X ′)-lower semicontinuous
then it is τ -lower semicontinuous.
Suppose now that f is τ -lower semicontinuous. Its epigraph epi f is a convex τ -closed
set. By Corollary 2.20 of Hahn-Banach theorem, epi f is the intersection of the τ -closed
half-spaces which contain it. But, a τ -closed half-space is also σ(X,X ′)-closed, so that
epi f is σ(X,X ′)-closed. This means that f is σ(X,X ′)-lower semicontinuous.
To see that a τ -closed half-space H is also σ(X,X ′)-closed, note that the generic equation
of H is x ∈ H ⇔ 〈u, x〉 ≤ α with u ∈ X ′ and α a real number. �

The next result is a useful criterion for inf-compactness with respect to a weak topology.

Proposition 2.43. Let X be a topological vector space and X ′ be its topological dual
space. The pairing to be considered is 〈X,X ′〉. If there exists a neighbourhood N of the
origin in X such that supx∈N f(x) < +∞, then f ∗ is inf-compact on X ′ for the topology
σ(X ′, X).

Proof. The set N ′ = N ∩ (−N) is still a neighbourhood of zero, with supx∈N ′ f(x) ≤
supx∈N f(x) < +∞. Therefore, one can assume without restriction that N = −N.

Denoting r := supx∈N f(x) and ζN(x) =

{
0 if x ∈ N
+∞ if x 6∈ N , our assumption gives us

f ≤ r+ζN . Hence, f ∗ ≥ ζ∗N−r and for all u ∈ X ′ and α ∈ R, f ∗(u) ≤ α⇒ supx∈N〈u, x〉 =
ζ∗N(u) ≤ α + r. As N = −N, one also obtains supx∈N |〈u, x〉| ≤ α + r, which implies that
the level set {f ∗ ≤ α} is an equicontinuous set of linear forms on X. It is therefore a
relatively σ(X ′, X)-compact set (see [8], Proposition 32.8).
As f ∗ is σ(X ′, X)-lower semicontinuous on X (Proposition 2.26), {f ∗ ≤ α} is σ(X ′, X)-
closed. One concludes that {f ∗ ≤ α} is σ(X ′, X)-compact. �

2.7. Continuity of convex functions. We follow ([3], Chapter 1, Section 2.3). The
main technical result for the study of continuous convex functions, is the following result.

Lemma 2.44. Let f be a convex function on a locally convex topological vector space X.
Let xo ∈ X satisfy f(xo) > −∞. If there exists an open neighbourhood V of xo such that
supx∈V f(x) < +∞, then f is continuous at xo.

Proof. Without restriction, V can be assumed to be convex. The set W = [(V − xo) ∩
−(V − xo)] is a symmetric open neighbourhood of 0. Let us take 0 < t < 1. For all
x ∈ xo + tW, we have xo + (x − xo)/t ∈ V and xo − (x − xo)/t ∈ V. As f is convex, it
follows that

f(x)− f(xo) ≤ t[f(xo + (x− xo)/t)− f(xo)] ≤ t(sup
V
f − f(xo)),
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and

f(xo)− f(x) ≤ t[f(xo − (x− xo)/t)− f(xo)] ≤ t(sup
V
f − f(xo)).

This gives |f(x) − f(xo)| ≤ ta for all x ∈ xo + tW with 0 ≤ a := supV f − f(xo) < ∞.
This completes the proof of the lemma. �

2.8. Topologies on X and U . It is sometimes useful to take advantage of the symmetric
roles played by X and U in the algebraic setting of Section 1. It appears that it is worth
giving U a topology, in order for instance to talk about lower semicontinuous functions
on U to obtain a criterion for the identity g = g∗∗. If one wants to consider simultaneously
characterizations of functions f on X such that f = f ∗∗ (see Theorem 2.30) and functions
g on U such that g = g∗∗, one has to impose that: U = X ′ and X = U ′.

Definition 2.45 (Topological dual pairing). Let X and U be two vector spaces. They are
topologically paired if

• Both X and U are locally convex topological vector spaces.
• The topological dual space X ′ of X is (isomorphic to) U.
• The topological dual space U ′ of U is (isomorphic to) X.

The pairing is still denoted 〈u, x〉, x ∈ X, u ∈ U.

Note that X separates U and U separates X. Saying that X separates U means that for
all distinct u1, u2 ∈ U, there exists x ∈ X, such that 〈u1, x〉 6= 〈u2, x〉.
This separation propoerty implies that X and U are Hausdorff spaces.
A typical example of topological dual pairing is as follows. We take X a Hausdorff locally
convex topological vector space and U = X ′ is endowed with the weak topology σ(U,X)
so that U ′ = X.
If X and U are topologically paired, they are Hausdorff locally convex topological vector
spaces, so that all the preceding results hold.

Theorem 2.46. Let 〈X,U〉 be a topological dual pairing. Let us recall that Γ(X) is the
set of all closed convex functions on X and Γ(U) is the set of all closed convex functions
on U.
The Fenchel transform

f ∈ Γ(X) 7→ f ∗ ∈ Γ(U)

induces a one-to-one correspondence between Γ(X) and Γ(U) such that

g = f ∗ ⇔ f = g∗, ∀f ∈ Γ(X), g ∈ Γ(U).

More, for any f ∈ Γ(X) we have

u ∈ ∂f(x) ⇔ x ∈ ∂f ∗(u), ∀x ∈ X, u ∈ U

and for any g ∈ Γ(U) we have

x ∈ ∂g(u) ⇔ u ∈ ∂g∗(x), ∀x ∈ X, u ∈ U.

Proof. We apply Theorem 2.30 with X and U to obtain f ∈ Γ(X) ⇔ f = f ∗∗ and
g ∈ Γ(U) ⇔ g = g∗∗.
The first result follows immediately from Proposition 1.32 and the last result from Theo-
rem 1.38. �

One gets a similar result for concave functions.
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Theorem 2.47. Let 〈X,U〉 be a topological dual pairing. Let us recall that −Γ(X) is
the set of all closed concave functions on X and −Γ(U) is the set of all closed concave
functions on U.
The concave Fenchel transform

f ∈ −Γ(X) 7→ f ∗̂ ∈ −Γ(U)

induces a one-to-one correspondence between −Γ(X) and −Γ(U) such that

g = f ∗̂ ⇔ f = g∗̂, ∀f ∈ −Γ(X), g ∈ −Γ(U).

More, for any f ∈ −Γ(X) we have

u ∈ ∂̂f(x) ⇔ x ∈ ∂̂f ∗̂(u), ∀x ∈ X, u ∈ U
and for any g ∈ −Γ(U) we have

x ∈ ∂̂g(u) ⇔ u ∈ ∂̂g∗̂(x), ∀x ∈ X, u ∈ U.

Proof. Translate the results of Theorem 2.46 by means of (1.41) and (1.43). �

3. The saddle-point method

3.1. Primal and dual problems. Let A be a set (which may not be a vector space)
and f : A → [−∞,+∞] an extended real-valued function. We consider the following
minimization problem

minimize f(a), a ∈ A (P)

All the functions to be considered are supposed to be [−∞,+∞]-valued.
Let B be another set and K a function on A×B such that

f(a) = sup
b∈B

K(a, b), a ∈ A. (3.1)

Let us introduce the following maximization problem

maximize g(b), b ∈ B (D)

where g is the function on B which is defined by

g(b) = inf
a∈A

K(a, b), b ∈ B. (3.2)

Vocabulary. The function f is the objective function of the primal minimization problem
(P). The function K is called the Lagrangian. The maximization problem (D) is the dual
problem and g is its objective function.
We denote inf(P) = infa∈A f(a) and sup(D) = supb∈B g(b) the values of the primal and
dual problems.

Lemma 3.3. We have

(a) g(b) ≤ K(a, b) ≤ f(a) for all a ∈ A, b ∈ B.
(b) sup(D) ≤ inf(P).

Proof. Statement (a) is immediate and (b) follows from it/ �

Definition 3.4 (Saddle-point). One says that (ā, b̄) ∈ A × B is a saddle-point of the
function K if

K(ā, b) ≤ K(ā, b̄) ≤ K(a, b̄), ∀a ∈ A, b ∈ B.

As an example, consider K(a, b) = a2 − b2 on R2 which admits (0, 0) as a saddle-point.



CONVEX OPTIMIZATION AND PROBABILITY 23

Theorem 3.5 (Saddle-point theorem). We assume that f and g are related to K by
means of (3.1) and (3.2). The following statements are equivalent.

(1) The point (ā, b̄) is a saddle-point of the Lagrangian K
(2) f(ā) ≤ g(b̄)
(3) The following three statements hold

(a) we have the dual equality: sup(D) = inf(P),
(b) ā is a solution to the primal problem (P) and
(c) b̄ is a solution to the dual problem (D).

In this situation, one also gets

sup(D) = inf(P) = K(ā, b̄) = f(ā) = g(b̄). (3.6)

Moreover, suppose that A and B are vector spaces and that we are given a couple of
algebraic dual pairings 〈A,P 〉 and 〈B,Q〉. Then, the point (ā, b̄) is a saddle-point of K if
and only if it satisfies {

∂aK(ā, b̄) 3 0

∂̂bK(ā, b̄) 3 0
(3.7)

where the subscript a or b indicates the unfixed variable.

Proof. We begin with a circular proof of (1) ⇔ (2) ⇔ (3).

• (1) ⇒ (2). Let (ā, b̄) be a saddle-point of the Lagrangian K. Optimizing both sides of
the saddle-point property: K(ā, b) ≤ K(ā, b̄) ≤ K(a, b̄), ∀a ∈ A, b ∈ B, one gets (2).

• (2) ⇒ (3). Because of (2), we have inf(P) ≤ f(ā) ≤ g(b̄) ≤ sup(D). Thanks to Lemma
3.3-b, this yields the following sequence of equalities

inf(P) = f(ā) = g(b̄) = sup(D) (3.8)

which is clearly equivalent to (3).

• (3) ⇒ (1). It is assumed that (3.8) holds. Together with Lemma 3.3-a, this gives
f(ā) = K(ā, b̄) = g(b̄). But, by Lemma 3.3-a again , we have K(ā, b) ≤ f(ā),∀b ∈ B and
g(b̄) ≤ K(a, b̄),∀a ∈ A. Gathering these relations yields K(ā, b) ≤ K(ā, b̄) ≤ K(a, b̄),∀a ∈
A, b ∈ B : (ā, b̄) is a saddle-point.

The identity (3.6) follows from (3.8) and Lemma 3.3-a. The last statement is straightfor-
ward since (3.7) is simply a restatement of the saddle-point property in terms of subdif-
ferentials and superdifferentials, see Propositions 1.24 and 1.40. �

The relations (3.7) are usually called the Karush-Kuhn-Tucker relations.

The interest of the saddle-point method. The main interests of this method:

• The dual equality inf(P) = sup(D) allows us to obtain the value of (P) by com-
puting the value of (D). In general, the saddle-point method is interesting when
the dual problem is easier to solve than the primal one.

• Suppose that you can compute a maximizer b̄ of (D). Then, the Karush-Kuhn-
Tucker relations give us equations in a with b̄ as a parameter, whose solutions are
candidates to be solutions to the primal problem (P).
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3.2. Perturbations. Clearly, there are many Lagrangians K such that (3.1) holds for
a given objective function f. Of course, different K’s lead to different dual problems.
Following Rockafellar’s monograph [6], we are going to expose a general method for de-
riving Lagrangians. The main idea is to imbed the problem (P) in a family of perturbed
minimization problems (P)q∈Q :

minimize F (a, q), a ∈ A (Pq)

where q runs through a vector space Q and F : A × Q → [−∞,+∞] is a function such
that

F (a, q = 0) = f(a), ∀a ∈ A (3.9)

so that (Pq=0) is (P).
Let B be another vector space such that 〈B,Q〉 is a topological dual pairing. The La-
grangian associated with the perturbation F and the duality 〈B,Q〉 is defined by

K(a, b)
M
= inf

q∈Q
{〈b, q〉+ F (a, q)}, a ∈ A, b ∈ B. (3.10)

In other words, for any a ∈ A, b 7→ K(a, b) is the concave conjugate of the function
q 7→ −F (a, q) and as such it is a concave function: For all a ∈ A, b ∈ B

Ka(b) = (−Fa)∗̂(b) or equivalently −Ka(−b) = F ∗
a (b)

where the subscript a ∈ A indicates the fixed variable.
Assuming that F is chosen such that q ∈ Q 7→ F (a, q) ∈ [−∞,∞] is a closed convex
function for all a ∈ A, with Theorem 2.30 one can reverse the conjugate duality relation
−Ka(−b) = F ∗

a (b) to obtain

F (a, q) = sup
b∈B

{K(a, b)− 〈b, q〉},∀a ∈ A, q ∈ Q. (3.11)

In particular, with q = 0 and (3.9) one recovers (3.1):

f(a) = sup
b∈B

K(a, b), a ∈ A.

Let us think of K as a pivot: If K is convex in a then −K is concave in a and convex
in b. This suggests to introduce another vector space P such that 〈P,A〉 is a topological
dual pairing and to introduce also the function

G(b, p)
M
= inf

a∈A
{K(a, b)− 〈a, p〉}, b ∈ B, p ∈ P. (3.12)

This formula is analogous to (3.11). Since

G(b, p) = inf
a,q
{〈b, q〉 − 〈a, p〉+ F (a, q)}, b ∈ B, p ∈ P, (3.13)

one sees that G is jointly closed concave, as a concave conjugate. Going on symetrically,
one interprets G as the concave perturbation of the objective concave function

g(b)
M
= G(b, 0), b ∈ B

associated with the concave maximization problem

maximize g(b), b ∈ B (D)

which is called the dual problem of the primal problem (P). It is imbedded in the family
of concave maximization problems (Dp)p∈P

maximize G(b, p), b ∈ B. (Dp)
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The value function of (Pq)q∈Q is defined by

ϕ(q)
M
= inf(Pq) = inf

a∈A
F (a, q) ∈ [−∞,+∞], q ∈ Q.

Note that inf(P) = ϕ(0).
It will be very useful that ϕ is a convex function. This is the reason why we are going to
assume that the perturbation is chosen such that F is jointly convex on A×Q.
Then, (Pq)q∈Q is a family of convex minimization problems. In particular, because of
(3.9), this requires that f is a convex function.

Lemma 3.14. If F is jointly convex on A×Q, then ϕ is convex.

Proof. This follows from the fact that the epigraph of ϕ is “essentially” a linear (marginal)
projection of the convex epigraph of F so that it is also convex.
Let us prove that epiϕ is a convex set. For all q ∈ Q, α ∈ R,

(q, α) ∈ epiϕ ⇔ inf
a
F (a, q) ≤ α

⇔ ∀δ > 0,∃a ∈ A,F (a, q) ≤ α+ δ

⇔ ∀δ > 0,∃a ∈ A, (a, q, α + δ) ∈ epiF

⇔ ∀δ > 0, (q, α+ δ) ∈ proj(epiF )

where proj(epiF ) is the linear canonical projection from A × Q × R onto Q × R of the
set epiF. As epiF is convex and the projection is linear, proj(epiF ) is a convex set.
Let q0, q1 ∈ Q, α0, α1 ∈ R and for all 0 ≤ t ≤ 1, define qt := (1 − t)q0 + tq1 and
αt := (1− t)α0 + tα1. Suppose that (q0, α0) and (q1, α1) are in epiϕ. Then, for all δ > 0,
(q0, α0 + δ) ∈ proj(epiF ) and (q1, α1 + δ) ∈ proj(epiF ). As proj(epiF ) is convex, we also
have that (1− t)(q0, α0 + δ) + t(q1, α1 + δ) = (qt, αt + δ) ∈ proj(epiF ), for all 0 ≤ t ≤ 1.
But this is equivalent to (qt, αt) ∈ epiϕ, which is the desired result. �

If F is jointly convex on A × Q, for any b ∈ B, a 7→ K(a, b) is a convex function (same
argument as for the convexity of ϕ based on Lemma 3.14). Therefore, K is a convex-
concave function. We shall see that its saddle-points will play a central role.
Similarly, the value function of (Dp)p∈P is defined by

γ(p)
M
= sup

b∈B
G(b, p), p ∈ P.

We have sup(D) = γ(0).
As G is jointly concave, by Lemma 3.14, γ is a concave function.

3.3. The main abstract result. The main abstract result of the theory is stated at
Theorem 3.18 below.
We consider two topological pairings 〈A,P 〉 and 〈B,Q〉. We have the following diagram

γ(p) f(a)〈
P , A

〉
G(b, p) K(a, b) F (a, q)〈

B , Q
〉

g(b) ϕ(q)
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Because of (3.11) and (3.12) with q = 0 and p = 0 we obtain

f(a) = sup
b∈B

K(a, b), a ∈ A (3.15)

g(b) = inf
a∈A

K(a, b), b ∈ B (3.16)

and the values of the optimization problems satisfy

sup(D) = γ(0) = sup
b
g(b) = sup

b
inf
a
K(a, b) ≤ inf

a
sup
b
K(a, b) = inf

a
f(a) = ϕ(0) = inf(P).

It appears that the dual equality: inf(P) = sup(D) holds if and only if supb infaK(a, b) =
infa supbK(a, b). If this occurs, it is said that K has a saddle-value.
The next lemma will be the keystone of the proof of Theorem 3.18.

Lemma 3.17. We assume that 〈P,A〉 and 〈B,Q〉 are topological dual pairings.

(a) Without any additional assumptions, we have

g = (−ϕ)∗̂.

(b) If F is jointly closed convex on A×Q, we have

f = (−γ)∗.

Proof. Statement (a) is a direct consequence of the definitions. Indeed, for all b ∈ B,
g(b) := infaK(a, b) := infa,q{〈b, q〉 + F (a, q)} := infq{〈b, q〉 + ϕ(q)}, which is the desired
result.
Let us prove (b). Taking the convex conjugate of (3.13), one obtains

F ∗∗(a, q) = sup
b,p
{−〈b, q〉+ 〈a, p〉+G(b, p)}.

As F is supposed to be jointly closed convex, by Theorem 2.30 we have F = F ∗∗ so
that for all a, q, F (a, q) = supb,p{−〈b, q〉 + 〈a, p〉 + G(b, p)}. In particular, with q = 0 we
get f(a) := F (a, 0) = supp{〈a, p〉 + supbG(b, p)} := supp{〈a, p〉 + γ(p)}. This states that
f = (−γ)∗. �

Theorem 3.18. We assume that 〈P,A〉 and 〈B,Q〉 are topological dual pairings.

(a) We have sup(D) = ϕ∗∗(0).
Hence, the dual equality inf(P) = sup(D) holds if and only if ϕ(0) = ϕ∗∗(0).

(b) In particular,

• F is jointly convex
• ϕ is lower semicontinuous at 0
• sup(D) > −∞

 ⇒ inf(P) = sup(D)

(c) If the dual equality holds, then

argmax g = −∂(ϕ)(0).

Let us assume in addition that F is jointly convex on A×Q and q 7→ F (a, q) is a closed
convex function for any a ∈ A. Of course, this holds in particular if F is jointly closed
convex on A×Q.

(a’) We have inf(P) = γ ∗̂∗̂(0).
Hence, the dual equality inf(P) = sup(D) holds if and only if γ(0) = γ ∗̂∗̂(0).
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(b’) In particular,

• γ is upper semicontinuous at 0
• inf(P) < +∞

}
⇒ inf(P) = sup(D)

(c’) If the dual equality holds, then

argmin f = −∂̂(γ)(0).

Proof. • Let us prove (a). Taking the conjugate of the identity of Lemma 3.17-a, one
obtains: −ϕ∗∗ = (−ϕ)∗̂∗̂ = g∗̂. Hence, for all q ∈ Q, ϕ∗∗(q) = supb{−〈b, q〉 + g(b)}.
In particular, with q = 0, one gets ϕ∗∗(0) = supb g(b) = sup(D). The dual equality is
ϕ(0) = ϕ∗∗(0).

• Let us prove (b). Suppose that F is jointly convex on A × Q. By Lemma 3.14, ϕ
is convex. As it is assumed that sup(D) = ϕ∗∗(0) > −∞, we have clcvϕ = lscvϕ
(see Proposition 2.35). As ϕ is convex, we also have: lscvϕ = lsϕ. By Corollary 2.36,
ϕ∗∗ = clcvϕ. Therefore, ϕ∗∗ = lsϕ and in particular ϕ∗∗(0) = lsϕ(0). With the help of
the local property stated at the Proposition 2.11, we see that ϕ(0) = lsϕ(0) if ϕ is lower
semicontinuous at 0.

• Let us prove (c). The dual equality ϕ(0) = ϕ∗∗(0) is equivalent to −ϕ(0) = (−ϕ)∗̂∗̂(0).
The result follows from Theorem 1.44-c and Lemma 3.17-a.

• Let us prove (a’). Taking the conjugate of the identity of Lemma 3.17-b, one obtains:
for all p ∈ P, (−γ)∗∗(p) = f ∗(p) = supa{〈a, p〉 − f(a)}. In particular, with p = 0, we get
γ ∗̂∗̂(0) = −(−γ)∗∗(0) = infa f(a) = inf(P) and the dual equality is γ(0) = γ ∗̂∗̂(0).

• Let us prove (b’). As it is assumed that − inf(P) = (−γ)∗∗(0) > −∞, we have
clcv (−γ) = lscv (−γ) (see Proposition 2.35). As −γ is convex, we also have: lscv (−γ) =
ls (−γ). By Corollary 2.36, (−γ)∗∗ = clcv (−γ). Therefore, (−γ)∗∗ = ls (−γ) and in partic-
ular (−γ)∗∗(0) = ls (−γ)(0). With the help of the local property stated at the Proposition
2.11, we see that (−γ)(0) = ls (−γ)(0) if γ is upper semicontinuous at 0.

• Let us prove (c’). The dual equality is (−γ)(0) = (−γ)∗∗(0). The result follows from
Theorem 1.38-c and Lemma 3.17-b. �

As a remark, the following result shows that if one wants K to be convex-concave, F
should be jointly convex.

Proposition 3.19. We assume that 〈P,A〉 and 〈B,Q〉 are topological dual pairings. If
for all a ∈ A, Fa is a closed convex function on Q, then Kb is convex on A for all b ∈ B
if and only if F is jointly convex on A×Q.

Proof. Let us prove the “⇒” part. Thanks to (3.11): F (a, q) = supb{Kb(a)− 〈b, q〉}, one
sees that F is convex as the supremum of convex functions.
Let us prove the “⇐” part. Thanks to the definition (3.10): Kb(a) = infq{F (a, q)+〈b, q〉}.
As F is jointly convex, one concludes with Lemma 3.14 that Kb is convex. �

3.4. Minimizing a convex function under convex constraints. Let us consider the
following minimization problem

minimize h(a), subject to Ta ∈ C, a ∈ A (P)

where h is a convex (−∞,∞]-valued function on a vector space A, T : A→ Q is a linear
operator from A to another vector space Q and C is a convex subset of Q.
Defining

f(a) = h(a) + ζ(a | Ta ∈ C), a ∈ A
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where ζ is the convex indicator function

ζ(a | Ta ∈ C) =

{
0 if Ta ∈ C
+∞ if Ta 6∈ C ,

so that (P) is also

minimize f(a), a ∈ A
with f a convex function on A. The perturbation worth considering is

F (a, q) := h(a) + ζ(a, q | Ta+ q ∈ C), a ∈ A, q ∈ Q.
Let B be another vector space topologically paired with Q. The corresponding Lagrangian
is

K(a, b) = inf
q∈Q

{〈b, q〉+ F (a, q)}

= inf
q∈Q

{〈b, q〉+ h(a) + ζ(a, q | Ta+ q ∈ C)}

= h(a) + inf
q∈Q

{〈b, q − Ta〉+ ζ(q | C)}

= h(a)− 〈b, Ta〉+ inf
q∈C

〈b, q〉

= h(a)− [T ∗b](a) + inf
q∈C

〈b, q〉

where T ∗ is the algebraic adjoint of T defined as a linear form on B, for all b ∈ B, by

[T ∗b](a) := 〈b, Ta〉, ∀a ∈ A.
Let us introduce another vector space P topologically paired with A and consider the
function G on B × P defined for all b ∈ B and p ∈ P by

G(b, p) := inf
a
{K(a, b)− 〈a, p〉}

= inf
q∈C

〈b, q〉+ inf
a
{h(a)− [T ∗b](a)− 〈a, p〉}

= inf
q∈C

〈b, q〉 − sup
a
{[T ∗b](a) + 〈a, p〉 − h(a)}

We make the assumption that

T ∗(B) ⊂ P, (3.20)

so that one can write [T ∗b](a) = 〈T ∗b, a〉P,A = 〈b, Ta〉B,Q. It follows that the diagram〈
P , A

〉
T ∗

x yT〈
B , Q

〉
is meaningful. It is now possible to rewrite

K(a, b) = inf
q∈C

〈b, q〉+ h(a)− 〈T ∗b, a〉, a ∈ A, b ∈ B. (3.21)

and

G(b, p) = inf
q∈C

〈b, q〉 − h∗(T ∗b+ p).

With p = 0, we obtain the objective function

g(b) = inf
q∈C

〈b, q〉 − h∗(T ∗b), b ∈ B
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of the associated dual problem

maximize inf
q∈C

〈b, q〉 − h∗(T ∗b), b ∈ B. (D)

Note that (D) is an unconstrained maximization problem. The value functions are

ϕ(q) = inf
a:Ta∈C−q

h(a), q ∈ Q

and

γ(p) = sup
b
{ inf
q∈C

〈b, q〉 − h∗(T ∗b+ p)}, p ∈ P.

Assumptions 3.22. Before stating the assumptions on h, C and T one has to describe
the topologies.
The topologies. We consider two topological dual pairings 〈A,P 〉 and 〈B,Q〉, where

• P is a Hausdorff locally convex topological vector space
• A = P ′ is the topological dual space of P endowed with the weak topology σ(A,P )
• B is a Hausdorff locally convex topological vector space
• Q = B′ is the topological dual space of B endowed with the weak topology σ(Q,B)

Note that A, B, P and Q are Hausdorff locally convex topological vector spaces.
The assumptions on h, C and T are

(A1) h is a convex σ(A,P )-lower semicontinuous function.
(A2) h is bounded below: inf h > −∞.
(A3) C is a convex σ(Q,B)-closed set.
(A4) T is a linear operator from A to Q such that T ∗B ⊂ P.
(A5) There exists an open neighbourhood N of zero in P such that

sup
p∈N

h∗(p) < +∞.

The next lemma will allow us to use the general results of Section 3.3.

Lemma 3.23. Under these assumptions, the following assertions hold.

(a) T is continuous
(b) h is a closed convex and inf-compact function on A.
(c) F is jointly closed convex on A×Q.

Proof. Let us prove (a). To prove that T is continuous, one has to show that for any
b ∈ B, a ∈ A 7→ 〈b, Ta〉 ∈ R is continuous. By (A4), we get a 7→ 〈b, Ta〉 = 〈T ∗b, a〉 which
is continuous since T ∗b ∈ P.
Let us prove (b). By (A1) and (A2), h is a convex lower semicontinuous function such
that f(a) > −∞,∀a ∈ A. Hence, it is closed convex. Thanks to (A5) and Proposition
2.43, h∗∗ is inf-compact. But we also have h = h∗∗ by Theorem 2.30.
Let us prove (c). As T is linear continuous and C is closed convex, {(a, q);Ta + q ∈ C}
is closed convex in A × Q. As h is closed convex on A, its epigraph is closed convex in
A× R. It follows that epiF = (Q× epih) ∩ {(a, q);Ta + q ∈ C} is closed convex, which
implies that F is convex and lower semicontinuous. As it is nowhere equal to −∞ (since
inf F ≥ inf h > −∞, by assumption (A2)), F is also a closed convex function. �

We are now ready to prove the primal attainment and the dual equality.
A minimizing sequence of (P) is a sequence (an) such that Tan ∈ C for all n ≥ 1 and
limn→∞ h(an) = inf(P).



30 CHRISTIAN LÉONARD

Theorem 3.24 (Primal attainment). Under our assumptions, suppose that inf(P) < +∞.
Then the primal problem (P) admits at least one solution and if h is stricly convex, this
solution is unique.
Any minimizing sequence admits σ(A,P )-accumulation points. All these accumulation
points are solutions to (P). If h is strictly convex, any minimizing sequence σ(A,P )-
converges to the unique solution of (P).

Proof. By Lemma 3.23, h is inf-compact and the constraint set {a ∈ A;Ta ∈ C} is closed.
All the statements of the theorem are direct consequences of Corollary 2.15 and Theorem
1.14.

�

Theorem 3.25 (Dual equality). Under our assumptions, the dual equality inf(P) =
sup(D) holds. That is

inf{h(a); a : Ta ∈ C} = sup
b∈B

{ inf
q∈C

〈b, q〉 − h∗(T ∗b)} ∈ (−∞,+∞].

Proof. We consider separately the two situations where inf(P) is finite or infinite.
Case where inf(P) < +∞. Thanks to Theorem 3.18-b’, it is enough to prove that γ is
upper semicontinuous at p = 0. We are going to prove that γ is continuous at p = 0.
Indeed, for all p ∈ P,

−γ(p) = inf
b
{h∗(T ∗b+ p)− inf

q∈Q
〈b, q〉} ≤ h∗(p)

where the inequality is obtained taking b = 0. But, by Assumption (A5), h∗ is upper
bounded on an open neighbourhood of 0, and so is the convex function −γ. Hence, −γ is
continuous at 0 by virtue of Lemma 2.44.

Case where inf(P) = +∞. Note that sup(D) ≥ g(0) = −h∗(0) = infa h(a) > −∞ by
Assumption (A2), so that we can apply Theorem 3.18-b. It is enough to prove that

lsϕ(0) = +∞
in the situation where ϕ(0) = inf(P) = +∞. By Proposition 2.11, we have lsϕ(0) =
supU∈N (0) inf{h(a); a : Ta ∈ C+U} where N (0) is the set of all the open neighbourhoods
of 0 ∈ Q. It follows that for all U ∈ N (0), there exists a ∈ A such that Ta ∈ C + U and
h(a) ≤ lsϕ(0). This implies that

T ({h ≤ lsϕ(0)}) ∩ (C + U) 6= ∅, ∀U ∈ N (0). (3.26)

On the other hand, inf(P) = +∞ is equivalent to: T (domh) ∩ C = ∅.
Now, we prove ad absurdum that lsϕ(0) = +∞. Suppose that lsϕ(0) < +∞. Because of
T (domh) ∩ C = ∅, we have a fortiori

T ({h ≤ lsϕ(0)}) ∩ C = ∅.
As h is inf-compact and T is continuous (Lemma 3.23, (a) and (b)), T ({h ≤ lsϕ(0)})
is a compact subset of Q. It is also convex, since the level sets of a convex function
are convex and the image of a convex set by a linear mapping is a convex set. But
C is assumed to be closed and convex, so that by Hahn-Banach theorem (Corollary
2.19), C and T ({h ≤ lsϕ(0)}) are strictly separated. This contradicts (3.26), considering
open neighbourhoods U of the origin in (3.26) which are open half-spaces. Consequently,
lsϕ(0) = +∞. �

Theorem 3.27 (Karush-Kuhn-Tucker relations). Under our assumptions, the following
statements are equivalent.
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(1) The primal and dual problems are attained at ā and b̄ respectively
(2) The following KKT relations hold:

(a) T ā ∈ C
(b) 〈b̄, T ā〉 ≤ 〈b̄, q〉 for all q ∈ C
(c) ā ∈ ∂h∗(T ∗b̄).

Proof. This is a direct application of the KKT part of Theorem 3.5 with K defined by
(3.21):

K(a, b) = inf
q∈C

〈b, q〉+ h(a)− 〈T ∗b, a〉, a ∈ A, b ∈ B.

Note that as the dual equality holds by Theorem 3.25, (1) is the statement (3) of Theorem
3.5 with K as above. Hence, it remains to check that (2) is (3.7) with K as above.
We have

0 ∈ ∂aK(ā, b̄) ⇔ T ∗b̄ ∈ ∂h(ā)
⇔ ā ∈ ∂h∗(T ∗b̄)

where the last equivalence holds by Theorem 2.46 since h is closed convex by Assumptions
(A1-2). We also have

0 ∈ ∂̂bK(ā, b̄) ⇔ T ā ∈ ∂̂
[
inf
q∈C

〈·, q〉
]

(b̄)

⇔ −T ā ∈ ∂
[

sup
q∈−C

〈·, q〉
]

(b̄) = ∂ζ∗−C(b̄)

(a)⇔ b̄ ∈ ∂ζ−C(−T ā)
⇔ ∀q ∈ Q, ζ−C(q) ≥ ζ−C(−T ā) + 〈b̄, q + T ā〉
⇔ ∀q ∈ −C, ζ−C(−T ā) + 〈b̄, q + T ā〉 ≤ 0

⇔
{
−T ā ∈ −C
〈b̄, T ā〉 ≤ 〈b̄,−q〉,∀q ∈ −C.

The equivalence (a) holds since C is a closed convex set so that the indicator function ζ−C
is a closed convex function and one can apply Theorem 2.46. This completes the proof of
the theorem. �

This result is far from being the whole story. In practice, the dual attainment in B is not
the rule and one has too work hard to obtain it in a larger space.

4. Optimal Transport

Let us consider two spaces X and Y equipped with σ-fields and c a measurable [0,∞)-
valued function on the product space X × Y . We are given two probability measures µ
on X and ν on Y . The Monge-Kantorovich optimal transport cost of µ on ν for the cost
function c is defined by

inf
π

∫
X×Y

c(x, y)π(dxdy) ∈ [0,∞]

where the infimum is taken over all probability measures π on X ×Y with first marginal
πX (dx) := π(dx × Y) = µ(dx) and second marginal πY(dy) := π(X × dy) = ν(dy). We
denote the constraint set

P (µ, ν) = {π ∈ P(X × Y) : πX = µ, πY = ν}.
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In the special important case where X = Y is equipped with a metric d, popular cost
functions are c(x, y) = d(x, y)p where p ≥ 1.
Denoting P(X ) the set of all probability measures on X , the Monge-Kantorovich problem
is the following

minimize

∫
X×Y

c(x, y)π(dxdy) subject to π ∈ P (µ, ν). (MK-P)

Any minimizer π ∈ P(X ×Y) of this problem is called an optimal transport plan of µ on
ν for the cost function c. It is immediate to check that this is a convex problem since the
constraint is convex and the objective function is linear.

Remark 4.1. The objective function π 7→
∫
c dπ is convex but not strictly convex, since it

is affine. Consequently, one may not expect uniqueness of the optimal plan in a general
situation. Recall that uniqueness is the rule if the objective function is strictly convex
(see Proposition 1.14).

4.1. Primal attainment. We first recall some useful results about compactness and
probability measures built on a Borel σ-field.
A probability measure µ ∈ P(X ) is said to be tight if for any ε > 0, there exists a compact
set Kε such that µ(X \Kε) ≤ ε.
Similarly, a family M ⊂ P(X ) of probability measures is said to be uniformly tight if for
any ε > 0, there exists a compact set Kε such that supµ∈M µ(X \Kε) ≤ ε.
On a metric space X , if M ⊂ P(X ) is uniformly tight, then it is relatively compact for
the usual weak topology (see [1], Theorem 6.1).
Recall that a topological space is said to be Polish if it is a separable complete metric
space. An important result is that any probability measure on a Polish space X is tight
(see [4], Proposition II.7.3) and more generally, M ⊂ P(X ) is uniformly tight if and only
if it is relatively compact for the usual weak topology (see [1], Theorem 6.2).

Theorem 4.2 (Primal attainment). We suppose that X and Y are Polish spaces and
that the cost function c is a [0,+∞)-valued lower semicontinuous function on X × Y . If
there exists πo ∈ P (µ, ν) such that

∫
X×Y c dπo < +∞, then the problem (MK-P) admits a

minimizer.
This is the case if there exist two [0,∞)-valued measurable functions cX on X and cY on
Y such that c ≤ cX ⊕ cY ,

∫
X cX dµ <∞ and

∫
Y cY dν <∞ (take πo = µ⊗ ν).

Proof. The sets of probability measures are equipped with their respective weak topolo-
gies.
Let us first prove that P (µ, ν) is compact. As the mapping π ∈ P(X × Y) 7→ (πX , πY) ∈
P(X )× P(Y) is continuous, P (µ, ν) is closed.
But, µ and ν are tight, since they are built on Polish spaces. This means that for all
ε > 0, there exist two compact sets K and K ′ such that µ(X \K) ≤ ε and ν(Y \K ′) ≤ ε.
Now, for all π ∈ P (µ, ν), we have

π(X × Y \K ×K ′) ≤ π(X × Y \K × Y) + π(X × Y \ X ×K ′)

= µ(X \K) + ν(Y \K ′) ≤ 2ε (4.3)

As K×K ′ is compact, this implies that P (µ, ν) is uniformly tight and it follows that it is
relatively compact. Therefore, P (µ, ν) is compact. It is also assumed that it is non-empty.
To complete the proof, thanks to Theorem 2.12, it remains to show that π ∈ P(X ×Y) 7→∫
X×Y c dπ ∈ [0,+∞] is lower semicontinuous. But, as c is assumed to be [0,∞)-valued

and lower semicontinuous, Lemma 4.4 below states that c is the limit of an increasing
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sequence (cn) of continuous bounded functions. By the monotone convergence theorem,
we obtain that

∫
c dπ = supn

∫
cn dπ. It follows that π 7→

∫
c dπ is lower semicontinuous,

being the supremum of continuous functions. �

During this proof, we used the following lemma.

Lemma 4.4 (Moreau-Yosida approximation). On a metric space, any lower semicontin-
uous real valued function which is bounded below is the pointwise limit of an increasing
sequence of Lipschitz continuous bounded functions.

Proof. Let f be a lower semicontinuous function on X equipped with its metric d. As f
is bounded below, one can assume without restriction that f ≥ 0. It is enough to build a
sequence (fn) of (possibly not bounded) Lipschitz continuous functions such that (fn) is
increasing and limn fn = f pointwise, since min(fn, n) still does the same work.
A good sequence is

fn(x) = inf{f(z) + nd(x, z); z ∈ X}.
It is called the Moreau-Yosida approximation of f. Clearly (fn) is an increasing sequence
since f(z) +md(x, z) ≤ f(z) + nd(x, z) for all x, z ∈ X and m ≤ n.
As x 7→ nd(x, z) a Lipschitz function (with Lipschitz constant n) for each z ∈ X, fn is
also n-Lipschitz (even if f is irregular) by virtue of Lemma 4.7 below.
Now, let us prove that limn fn(x) = f(x). For all k ≥ 1, we define gk(x) = inf{f(z); z ∈
X, d(x, z) < 1/k}. As f is lower semicontinuous, by Proposition 2.11, we have

lim
k
gk(x) = ls f(x) = f(x). (4.5)

On the other hand, for all k there exists Nk such that

gk(x) ≤ fn(x), ∀n ≥ Nk. (4.6)

This follows from

fn(x) = inf{f(z) + nd(x, z); z ∈ X}

= min
(

inf{f(z) + nd(x, z); z : d(z, x) < 1/k}, inf{f(z) + nd(x, z); z : d(z, x) ≥ 1/k}
)

≥ min
(

inf{f(z); z : d(z, x) < 1/k}, n/k + inf{f(z); z : d(z, x) ≥ 1/k}
)

≥ min
(
gk(x), n/k + inf{f(z); z ∈ X}

)
= gk(x)

for all n such that n/k ≥ f(x)− inf f, so that n/k + inf f ≥ f(x) ≥ gk(x).
Letting k tend to infinity in (4.6) and taking (4.5) into account together with the fact
that fn(x) admits a limit as an increasing sequence, we obtain f(x) ≤ lim supn fn(x) =
limn fn(x). But the converse inequality: limn fn(x) ≤ f(x) follows directly from the defi-
nition of fn which implies that fn ≤ f. We have proved that limn fn(x) = f(x) and this
completes the proof of the lemma. �

During the proof of this lemma, we used the following general fact about Lipschitz func-
tions.

Lemma 4.7. Let (fi; i ∈ I) be a collection of K-Lipchitz functions (with respect to some
metric d) for some constant K ≥ 0. That is |fi(x) − fi(y)| ≤ Kd(x, y) for all i ∈ I and
all x, y ∈ X . Then supi∈I fi and infi∈I fi are also K-Lipschitz functions.
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Proof. Let ε > 0 and x, y ∈ X . There exists io ∈ I such that supi fi(x) − supi f(y) ≤
fio(x) + ε− supi fi(y) ≤ fio(x)− fio(y) + ε ≤ Kd(x, y) + ε. As this holds for all ε > 0, we
get supi fi(x)− supi f(y) ≤ Kd(x, y). Inverting x and y leads us to the desired inequality.
A similar proof works for infi fi. �

4.2. An equivalent relaxed minimization problem. We first relax the problem (MK-
P). This will be the first step to obtain the dual equality for (MK-P) at Theorem 4.13.
We assume that X and Y are topological spaces endowed with their Borel σ-fields. The
space of continuous bounded functions on X : Cb(X ), is equipped with the topology of
uniform convergence and its topological space which is denoted E(X ) is equipped with
the ∗-weak topology σ(E(X ), Cb(X )). Similar notations hold for Y and X × Y instead of
X ; similar topologies are also considered: σ(E(Y), Cb(Y)) and σ(E(X × Y), Cb(X × Y)).
We are going to apply the results of Section 3 with〈

P = Cb(X × Y) , A = E(X × Y)
〉

T ∗ ↑ ↓ T〈
B = Cb(X )× Cb(Y) , Q = E(X )× E(Y)

〉
where T is the marginal operator, defined for all m ∈ E(X × Y), by

Tm = (mX ,mY) ∈ E(X )× E(Y)

and

〈mX , ϕ〉 = 〈ϕ⊗ 1,m〉, ∀ϕ ∈ Cb(X )

〈mY , ψ〉 = 〈1⊗ ψ,m〉, ∀ψ ∈ Cb(Y)

The relaxed version of the minimization problem (MK-P) is

minimize C(m) + ζE+(m) subject to Tm = (µ, ν), m ∈ E(X × Y) (P)

with
C(m) := sup{〈c̃, m〉; c̃ ∈ Cb(X × Y), c̃ ≤ c}, m ∈ E(X × Y)

and E+ := {m ∈ E(X ×Y);m ≥ 0} is the cone of the nonnegative elements of E(X ×Y) :
m ≥ 0 if and only if 〈m, θ〉 ≥ 0 for all nonnegative θ ∈ Cb(X × Y).

Proposition 4.8. Suppose that X and Y are Polish spaces and that c is a lower semi-
continuous [0,+∞]-valued function on X ×Y . Then, the minimization problems (MK-P)
and (P) are equivalent.

This means that they admit the same minimizers and values.

Proof. This result is a restatement of Lemmas 4.10 and 4.12 below. �

What a probability measure is. Before stating these lemmas, one needs to make
precise what it is meant for an element ` of E(X ) to be a probability measure. An element
` of E(X ) is said to act as a probability measure if there exits a unique probability measure
¯̀ on X equipped its Borel σ-field such that

〈ϕ, `〉 =

∫
X
ϕd¯̀, ∀ϕ ∈ Cb(X ).

Any ` ∈ E(X ) acts linearly on Cb(X ) and for any sequence (ϕn) in Cb(X ) converging
uniformly to zero, we have limn〈ϕn, `〉 = 0 as ` is continuous with respect to the uniform
topology. To be a probability measure, ` must of course be nonnegative: 〈ϕ, `〉 ≥ 0, for
all nonnegative ϕ in Cb(X ), and have unit mass: 〈1, `〉 = 1. But there are such `’s in
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E(X ) which are not countably additive (but only finitely additive), and therefore are not
measures. We have the following result. If X is a metric space, a nonnegative ` ∈ E(X )
with unit mass acts as a probability measure if and only if for any decreasing sequence
(ϕn) in Cb(X ) such that 0 ≤ ϕn ≤ 1 for all n and limn ϕn = 0 pointwise, we have

lim
n→∞

〈ϕn, `〉 = 0. (4.9)

This result is a generalized version of the extension result of Daniell’s integrals. For a
more general result with its proof, see ([4], Proposition II.7.2). The uniqueness of the
extension follows from the fact that in a metric space, the Borel σ-field is generated by
the continuous bounded functions.
We write shortly ` ∈ P(X ) to specify that ` acts as a probability measure on X .

Lemma 4.10. Suppose that X and Y are Polish spaces. Then, any m in E+ such that
Tm = (µ, ν) with µ ∈ P(X ) and ν ∈ P(Y), acts as a probability measure on X × Y .

Proof. Let m be any m in E+ such that Tm = (µ, ν) with µ ∈ P(X ) and ν ∈ P(Y). All
we have to prove is that m satisfies the σ-additivity property (4.9). Indeed, m is in E+

(it is a nonnegative), and as its marginal projections have a unit mass, m has also a unit
mass.
Let us prove that m satisfies (4.9). We have to check that for any sequence (θn)n≥1 in
Cb(X × Y) such that 0 ≤ θn ≤ 1 for all n, which is decreasing and converging pointwise
to zero: θn ↓ 0 as n tends to infinity, we have limn〈θn,m〉 = 0.
Since X and Y are Polish spaces, µ and ν are tight (see [4], Proposition II.7.3): for all
ε > 0, there exist K a compact subset of X and K ′ a compact subset of Y such that
µ(X \ K) ≤ ε and ν(Y \ K ′) ≤ ε. As a Polish space is completely regular, there also
exist ϕε ∈ Cb(X ) and ψε ∈ Cb(Y) both with a compact support such that 0 ≤ ϕε, ψε ≤ 1,∫
X (1−ϕε) dµ ≤ ε and

∫
Y(1−ψε) dν ≤ ε. But, as 1− ab ≤ 2− a− b for all a, b ≤ 1, taking

the nonnegativity of m into account, we obtain

〈(1− ϕε ⊗ ψε),m〉 ≤ 〈(1− ϕε ⊗ 1),m〉+ 〈(1− 1⊗ ψε),m〉
= 〈(1− ϕε),mX 〉+ 〈(1− ψε),mY〉

=

∫
X
(1− ϕε) dµ+

∫
Y
(1− ψε) dν

≤ 2ε.

Note that this argument mimicks (4.3).
Therefore, for all θ ∈ Cb(X×Y) with 0 ≤ θ ≤ 1, we have 0 ≤ 〈θ,m〉 ≤ 2ε+〈(ϕε⊗ψε)θ,m〉.
But, in restriction to any compact set, m is a measure. Indeed, let (θn) be a sequence in
Cb(X ×Y) such that 0 ≤ θn ≤ 1 for all n, which is decreasing and converging pointwise to
zero. Then, the sequence of continuous functions ((ϕε ⊗ ψε)θn)n≥1 decreases pointwise to
zero on the support of ϕε ⊗ ψε which is a compact set. Therefore, it converges uniformly
(see Lemma 4.11 below) and we obtain that limn〈(ϕε ⊗ ψε)θn,m〉 = 0 as m is continuous
on Cb(X × Y). Finally, for all ε > 0, we have 0 ≤ lim supn〈θn,m〉 ≤ 2ε. This completes
the proof, since ε is arbitrary. �

In the above proof, the following lemma has been used.

Lemma 4.11. Any decreasing sequence of [0,∞)-valued upper semicontinuous functions
on a Hausdorff compact set which converges pointwise to zero, also converges uniformly.

Proof. Let (fn) be a sequence of nonnegative upper semicontinuous functions on the com-
pact set K such that for all x ∈ K, fn(x) decreases to zero as n tends to infinity. To work
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with lower semicontinuous functions and epigraphs, let us consider gn = −fn. Then, for
all n, epi gn is a closed set of K ×R. As, gn increases to zero and g1 attains its minimum
value on the compact set K (see Theorem 2.12) we have −∞ < inf g1 ≤ gn(x) for all n
and x.
For all ε > 0, the sequence of compact subsets epi gn ∩ (K × [inf g1,−ε]) decreases to
the empty set:

⋂
n[epi gn ∩ (K × [inf g1,−ε])] = ∅. It follows from Proposition 2.1 that

epi gn ∩ (K × [inf g1,−ε]) = ∅ for all large enough n. But this means that fn < ε for all
large enough n. Since 0 ≤ fn, this completes the proof of the lemma. �

Lemma 4.12. Suppose that X and Y are metric spaces and that c is a lower semicon-
tinuous [0,+∞]-valued function. Then, for all m in E(X × Y) acting as a probability
measure on X × Y , we have

C(m) =

∫
X×Y

c(x, y)m(dxdy)

where the measure m in the right-hand side is the unique extension of m ∈ E(X × Y).

Note that a lower semicontinuous function f is Borel measurable since for all real α,
f−1((−∞, α]) is the level set {f ≤ α} which is closed (see Proposition 2.8). It follows
that the integral

∫
X×Y c(x, y)m(dxdy) ∈ [0,+∞] is well-defined.

Proof. By Lemma 4.4, c is the limit of an increasing sequence (cn) of continuous bounded
functions. Let m be a nonnegative measure. By monotone convergence (Beppo-Levi theo-
rem), we have

∫
X×Y c dm = supn

∫
X×Y cn dm = supn〈cn,m〉 ≤ C(m), where the inequality

follows from cn ≤ c and the definition of C.
On the other hand, we clearly have the converse inequality C(m) := sup{

∫
X×Y c̃ dm; c̃ ∈

Cb, c̃ ≤ c} ≤
∫
X×Y c dm. This completes the proof of the lemma. �

4.3. Dual equality. We are now ready to apply Theorem 3.25 with〈
P = Cb(X × Y) , A = E(X × Y)

〉
T ∗ ↑ ↓ T〈

B = Cb(X )× Cb(Y) , Q = E(X )× E(Y)
〉

Keeping the notations of Section 3, the function h(a) is h(m) = C(m) + ζE+(m), the
operator Ta is Tm = (mX ,mY) and the constraint set C is reduced to the point {(µ, ν)}.
Since, C is the supremum linear continuous function, it is convex and lower semicontinuous.
The cone E+ =

⋂
θ∈Cb;θ≥0{m ∈ E ; 〈θ,m〉 ≥ 0} is convex closed, as the intersection of closed

half-spaces. Therefore, h is convex and lower semicontinuous. This is assumption (A1) of
Theorem 3.25. As, h is nonnegative, (A2) holds. As, C is a single point, (A3) holds.
Let us show (A4): T ∗(Cb(X ) × Cb(Y)) ⊂ Cb(X × Y). By the very definition of T, we
obtain for all m ∈ E(X × Y), ϕ ∈ Cb(X ) and ψ ∈ Cb(Y),

〈Tm, (ϕ, ψ)〉Q,B = 〈mX , ϕ〉+ 〈mY , ψ〉 = 〈m,ϕ⊕ ψ〉 = 〈m,T ∗(ϕ, ψ)〉.

Hence,

T ∗(ϕ, ψ) = ϕ⊕ ψ ∈ Cb(X × Y)
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where ϕ⊕ ψ(x, y) := ϕ(x) + ψ(y), x ∈ X , y ∈ Y . This proves (A4).
Now, let us compute h∗. For any θ ∈ Cb(X × Y),

h∗(θ) = sup
m∈E

{〈θ,m〉 − C(m)− ζE+(m)}

= sup
m∈E+

{〈θ,m〉 − sup
c̃∈Cb:c̃≤c

〈c̃, m〉}

= sup
m∈E+

inf
c̃∈Cb:c̃≤c

〈θ − c̃, m〉

=

{
0 if ∀m ∈ E+, inf c̃∈Cb:c̃≤c〈θ − c̃, m〉 ≤ 0
+∞ if ∃m ∈ E+, inf c̃∈Cb:c̃≤c〈θ − c̃, m〉 > 0

=

{
0 if θ ≤ c
+∞ otherwise.

It appears that h∗ is the convex indicator of {θ ∈ Cb; θ ≤ c}
h∗(θ) = ζ{θ≤c}

If inf c > 0, θ = 0 is in the topological interior of {θ ∈ Cb; θ ≤ c} and (A5) holds.
Otherwise, consider the new cost function c1 = c + 1. Clearly, the relaxed problems Pc
and Pc1 associated with c and c1 admit the same minimizers and inf(Pc1) = inf(Pc) + 1.
We have checked all the requirements to apply Theorem 3.25, so that we have proved
the dual equality inf{h(a); a : Ta ∈ C} = supb∈B{infq∈C〈b, q〉 − h∗(T ∗b)} ∈ (−∞,+∞].
Rewriting this result with the computed expressions for h, h∗ and so on, and remembering
that by Proposition 4.8: inf(MK-P) = inf(P), we have proved the following theorem.

Theorem 4.13 (Kantorovich dual equality). Suppose that X , Y are Polish spaces and c
is a finite nonnegative lower semicontinuous function X × Y . Then,

inf

{∫
X×Y

c dπ; π ∈ P (µ, ν)

}
= sup

{∫
X
ϕdµ+

∫
Y
ψ dν; ϕ ∈ Cb(X ), ψ ∈ Cb(Y) : ϕ⊕ ψ ≤ c

}
.

An interpretation of the Kantorovich duality. The effective cost for transporting a unit
mass from x to y is c(x, y).
I wish to transport the mass distribution µ ∈ P(X ) to ν ∈ P(Y) and I ask a transport
company to send me its price to do this job. It answers me that the price for taking a
unit mass away from x is ϕ(x) and for putting a unit mass down at y is ψ(y). As these
prices are such that ϕ(x) + ψ(y) ≤ c(x, y) for all x, y, I find that this company is very
competitive, I ask it to do the job and I pay

∫
X ϕ(x)µ(dx) +

∫
Y ψ(y) ν(dy).

Since the transport company wants to maximize its income, it should have solved

maximize (ϕ, ψ) 7→
∫
X
ϕ(x)µ(dx) +

∫
Y
ψ(y) ν(dy) subject to ϕ⊕ ψ ≤ c (D)

On the other hand, the company also has to find the cheapest transport plan to minimize
its expenditure. As the cost of a transport plan π ∈ P (µ, ν) is

∫
X×Y c dπ, the company

should solve (MK-P) to find an optimal plan.
For any prices (ϕ, ψ) which are attractive in the sense that ϕ⊕ψ ≤ c and for any transport
plan π from µ to ν, that is π ∈ P (µ, ν), we have

∫
X ϕdµ +

∫
Y ψ dν =

∫
X×Y ϕ ⊕ ψ dπ ≤∫

X×Y c dπ which means: income(ϕ, ψ) ≤ expenditure(π). On the other hand Kantorovich
dual equality tells us that sup(D) = inf(MK-P) : the greatest possible income is equal to
the lowest possible expenditure. In other words, unless the company acts optimally, it



38 CHRISTIAN LÉONARD

looses money.
It will be proved below at Theorems 4.20 and 4.21, that under some assumptions there
exist optimal plan and prices: π∗ and (ϕ∗, ψ∗).Moreover it will be shown that although the
prices are attractive: ϕ∗⊕ψ∗ ≤ c everywhere, they are fair in the sense that ϕ∗⊕ψ∗ = c,
π∗-almost everywhere.

4.4. Dual attainment. The dual attainment result is stated below at Theorem 4.20.
Because of the monotonicity of

J(ϕ, ψ) :=

∫
X
ϕdµ+

∫
Y
ψ dν

as a function of (ϕ, ψ), one can expect that the maximizers of J subject to ϕ ⊕ ψ ≤ c
satisfy ϕ ⊕ ψ = c in some sense. As c is only supposed to be lower bounded and lower
semicontinuous, one cannot expect that continuous bounded functions ϕ and ψ do the
job. We are going to show that the dual attainment is achieved with ϕ ∈ L1(X , µ) and
ψ ∈ L1(Y , ν). We define

Φc := {(ϕ, ψ) ∈ L1(µ)× L1(ν) : ϕ⊕ ψ ≤ c}.

More precisely, (ϕ, ψ) stands in Φc if there exist two Borel sets Nx and Ny such that
µ(Nx) = 0, ν(Ny) = 0 and ϕ(x) + ψ(y) ≤ c(x, y) for all x 6∈ Nx and y 6∈ Ny. We say that
this inequality holds (µ, ν)-almost everywhere to signify this.
In order to work at ease with negligible sets we consider the following versions of ϕ and
ψ : ϕ̃(x) = ϕ(x) if x 6∈ Nx, ϕ̃(x) = −∞ if x ∈ Nx and ψ̃(y) = ψ(y) if y 6∈ Ny, ψ̃(y) = −∞
if y ∈ Ny, so that ϕ̃ ⊕ ψ̃ ≤ c everywhere. From now on, the choice of these versions will
be implicit and we drop the tilde.
The extended dual problem of interest is

maximize J(ϕ, ψ) subject to (ϕ, ψ) ∈ Φc. (MK-D)

The following proposition is a corollary of the Kantorovich dual equality. We denote
Φc ∩ Cb = Φc ∩ (Cb(X )× Cb(Y)).

Proposition 4.14. Under the assumption of Theorem 4.13, we have

inf(MK-P) := inf
π∈P (µ,ν)

∫
X×Y

c dπ = sup
(ϕ,ψ)∈Φc∩Cb

J(ϕ, ψ) = sup
(ϕ,ψ)∈Φc

J(ϕ, ψ) := sup(MK-D).

Proof. Let (ϕ, ψ) ∈ Φc, then for all π ∈ P (µ, ν) we have ϕ⊕ψ ≤ c, π-almost everywhere.
In fact, the undesirable set (Nx×Y)∪(X ×Ny) is π-negligible since 0 ≤ π((Nx×Y)∪(X ×
Ny)) ≤ π(Nx×Y)+π(X×Ny) = µ(Nx)+ν(Ny) = 0. Hence, J(ϕ, ψ) =

∫
ϕ⊕ψ dπ ≤

∫
c dπ.

Optimizing both sides of this inequality, one obtains

sup
(ϕ,ψ)∈Φc

J(ϕ, ψ) ≤ inf
π∈P (µ,ν)

∫
c dπ.

This is the easy part of the dual equality: sup(D) ≤ inf(P), see Lemma 3.3-b.
The converse inequality follows from Theorem 4.13, since

inf
π∈P (µ,ν)

∫
X×Y

c dπ = sup
(ϕ,ψ)∈Φc∩Cb

J(ϕ, ψ) ≤ sup
(ϕ,ψ)∈Φc

J(ϕ, ψ).

�
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c-conjugation. Let ϕ and ψ be functions on X and Y such that ϕ(x) + ψ(y) ≤ c(x, y)
for all x, y. The family of inequalities ψ(y) ≤ c(x, y) − ϕ(x), for all x, y is equivalent to
ψ(y) ≤ infx{c(x, y)− ϕ(x)} for all y. Therefore, the function

ϕc(y) := inf
x∈X

{c(x, y)− ϕ(x)}, y ∈ Y

satisfies ϕc ≥ ψ and ϕ ⊕ ϕc ≤ c. As J(ϕ, ψ) is an increasing function of its arguments ϕ
and ψ, in view of maximizing J on Φc, the couple (ϕ, ϕc) is better than (ϕ, ψ). Performing
this trick once again, we see that with

ψc(x) := inf
y∈Y

{c(x, y)− ψ(y)}, x ∈ X ,

the couple (ϕcc, ϕc) is better than (ϕ, ϕc) and (ϕ, ψ). We have obtained the following
result.

Lemma 4.15. Let ϕ and ψ be [−∞,+∞)-valued functions on X and Y . We assume that
they are not identically −∞ and ϕ(x) + ψ(y) ≤ c(x, y) for all x, y. Then, ϕc and ϕcc

are [−∞,+∞)-valued functions which are not identically −∞. They also satisfy ϕcc ≥
ϕ, ϕc ≥ ψ and ϕcc(x) + ϕc(y) ≤ c(x, y) for all x, y.

The operation ϕ→ ϕc is very close to the concave conjugation defined at Definition 1.42,
replacing formally 〈x, y〉 by c(x, y). This is the reason why it is called c-conjugation.
Iterating the trick of Lemma 4.15 doesn’t improve anything. Indeed, similarly to Propo-
sition 1.31, we have ϕnc = ϕcc if n ≥ 2 is even and ϕnc = ϕc if n is odd. To see this,
it is enough to show that ϕccc = ϕc. Let us show it. We have ϕccc = (ϕc)cc ≥ ϕc

and the converse inequality holds since ϕcc ≥ ϕ implies that ϕccc(y) = (ϕcc)c(y) =
infx{c(x, y)− ϕcc(x)} ≤ infx{c(x, y)− ϕ(x)} = ϕc(y), for all y ∈ Y .
This indicates that a maximizer (ϕ∗, ψ∗) of the dual problem should satisfy ϕ∗ = (ψ∗)

c

and ψ∗ = (ϕ∗)
c in some sense.

If c is a continuous cost function, it is easy to show that ϕc is measurable for all ϕ.
Unfortunately, when c is only lower semicontinuous, this is not so easy to obtain. We
shall restrict our attention to continuous ϕ’s.

Lemma 4.16 (Measurability of ϕc). If c is a real valued bounded below continuous
function, for any function ϕ, ϕc is a upper semicontinuous and therefore a measurable
[−∞,+∞)-valued function.
If c is a real valued bounded below lower semicontinuous function. For all upper semicon-
tinuous real-valued function ϕ such that

∫
X |ϕ| dµ <∞, there exists a version ϕ̃ of ϕ (ϕ̃ is

µ-almost everywhere equal to ϕ) such that ϕ̃c is a measurable [−∞,+∞)-valued function.

Note that when c is only lower semicontinuous, we do not prove the measurability of
ϕc for all integrable ϕ : it is required that ϕ is upper semicontinuous. We are going to
use Lemma 4.16 with ϕ continuous during the proof of Lemma 4.19 and with ϕ upper
semicontinuous during the proof of Strassen’s theorem (Proposition ??).

Proof. If c is continuous, then ϕc is upper semicontinuous as the infimum of a collection
of continuous functions. Hence, it is measurable.
Let us consider the general case where c is only lower semicontinuous. As µ is tight (it
is a probability measure on a Polish space), there exists an increasing sequence (Kn) of
compact subsets of X such that limn µ(X\Kn) = 0. The setN = X\(∪nKn) is µ-negligible
and we take for the version ϕ̃ of ϕ : ϕ̃(x) = −∞ if x ∈ N and ϕ̃(x) = ϕ(x) otherwise.
We have for all y ∈ Y , ϕ̃c(y) = infx∈X{c(x, y) − ϕ̃(x)} = infx∈∪nKn{c(x, y) − ϕ(x)} =
limn infx∈Kn{c(x, y)−ϕ(x)}. In view of this result, it remains to show that ϕc is measurable
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when X is a compact space.
Suppose that X is a compact space. Because of our assumptions on c, by Lemma 4.4 there
exists an increasing sequence (cn) of continuous functions such that c is the pointwise limit
of (cn).We have for all y, ϕc(y) = infx supn fn(x) with fn(x) = cn(x, y)−ϕ(x). Since cn(·, y)
is continuous and ϕ is assumed to be upper semicontinuous, fn is lower semicontinuous. As
X is compact and (fn) is increasing, thanks to Lemma 4.17 below, one can invert infx and
supn . This gives us ϕc(y) = supn infx fn(x) = supn infx{cn(x, y) − ϕ(x)} = limn ϕ

cn(y).
But cn is continuous, so that ϕcn is upper semicontinuous and a fortiori measurable. This
completes the proof of the measurability of ϕc. �

During the proof of Lemma 4.16 we have used the following result.

Lemma 4.17. Let (fn) be an increasing sequence of lower semicontinuous functions on
a compact Hausdorff space X , then: infx∈X supn≥1 fn(x) = supn≥1 infx∈X fn(x).

Proof. As fn is lower semicontinuous, by Proposition 2.11, we have for all x, fn(x) =
supV ∈N (x) infy∈V fn(y). It follows that

sup
n
fn(x) = sup

V ∈N (x)

sup
n

inf
y∈V

fn(y), x ∈ X . (4.18)

By Theorem 2.12, for all n there exists zn ∈ X such that infy∈X fn(y) = fn(zn). Let (zn(k))
be a convergent subsequence with limk zn(k) = z ∈ X . For any V ∈ N (z) and all large
enough k, we have zn(k) ∈ V and

inf
y∈V

fn(k)(y) = inf
y∈X

fn(k)(y).

As (fn) is an increasing sequence, this also gives us

sup
n

inf
y∈V

fn(y) = sup
k

inf
y∈V

fn(k)(y) = sup
k

inf
y∈X

fn(k)(y) = sup
n

inf
y∈X

fn(y).

Taking the supremum over all V ∈ N (z), and making use of (4.18), one obtains

sup
n
fn(z) = sup

V ∈N (z)

sup
n

inf
y∈V

fn(y) = sup
n

inf
y∈X

fn(y).

It follows that infx∈X supn fn(x) ≤ supn infx∈X fn(x).
As the converse inequality holds trivially, this completes the proof of the lemma. �

To illustrate the importance of the assumption of lower semicontinuity in Lemma 4.17, we
give an example. Let X = [0, 1], (qn) be an enumeration of the rational numbers in [0, 1]

and fn(x) =

{
0, if x = qk for some k ≥ n
1, otherwise.

. Then, (fn) is an increasing sequence which

converges pointwise to 1. It follows that, 1 = infx∈X supn≥1 fn(x) > supn≥1 infx∈X fn(x) =
0. But, for all n the lower semicontinuous envelope of fn is identically 0. This gives
infx∈X supn≥1 ls fn(x) = supn≥1 infx∈X ls fn(x) = 0, in accordance with the lemma.

Lemma 4.19. Let us assume that there exist two [0,∞)-valued measurable functions cX
on X and cY on Y such that c ≤ cX ⊕ cY ,

∫
X cX dµ <∞ and

∫
Y cY dν <∞.

(a) For all (ϕ, ψ) in Φc ∩ Cb such that J(ϕ, ψ) > −∞, there exists (ϕ̄, ψ̄) in Φc such
that J(ϕ̄, ψ̄) ≥ J(ϕ, ψ), ϕ̄ ≤ cX and ψ̄ ≤ cY .

(b) If in addition c is continuous, for all (ϕ, ψ) in Φc such that J(ϕ, ψ) > −∞, there
exists (ϕ̄, ψ̄) in Φc such that J(ϕ̄, ψ̄) ≥ J(ϕ, ψ), ϕ̄ ≤ cX and ψ̄ ≤ cY .

In both cases, we can choose ϕ̄c = ψ̄.
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Proof. Let us first prove (a). As J(ϕ, ψ) > −∞, there exists xo such that ϕ(xo) > −∞.
We have ϕc(y) ≤ c(xo, y)− ϕ(xo), for all y. Consequently,

A := sup
y
{ϕc(y)− cY(y)}

≤ sup
y
{cX (xo) + cY(y)− ϕ(xo)− cY(y)}

= cX (xo)− ϕ(xo)

< +∞.

We choose (ϕ̄, ψ̄) = (ϕ+ A,ϕc − A). Clearly:

• J(ϕ̄, ψ̄) = J(ϕ, ϕc) ≥ J(ϕ, ψ), by Lemma 4.15
• ϕ̄c = ψ̄ so that ϕ̄⊕ ψ̄ ≤ c.
• By construction, we also have ψ̄ ≤ cY .

As ϕ̄ ≤ ϕ̄cc = ψ̄c, we have for all x ∈ X ,

ϕ̄(x)− cX (x) ≤ ψ̄c(x)− cX (x)

= inf
y
{c(x, y)− ψ̄(y)− cX (x)}

≤ inf
y
{cY(y)− ψ̄(y)}

= − sup
y
{ψ̄(y)− cY(y)}

= 0,

that is ϕ̄ ≤ cX .
It remains to prove that ϕ̄ ∈ L1(µ) and ψ̄ ∈ L1(ν). This is clear for ϕ̄, since it is continuous
and bounded.
Let us show that ψ̄ ∈ L1(ν). Thanks to Lemma 4.16, it is measurable. Let us consider the
nonpositive function ψ̄ − cY so that the integral

∫
Y(ψ̄ − cY) dν is meaningful in [−∞, 0]

As cX and cY are integrable and J(ϕ, ψ) > −∞, we have∫
X
(ϕ̄− cX ) dµ+

∫
Y
(ψ̄ − cY) dν = J(ϕ̄, ψ̄)−

∫
X
cX dµ−

∫
Y
cY dν

≥ J(ϕ, ψ)−
∫
X
cX dµ−

∫
Y
cY dν

> −∞

so that ψ̄ − cY is integrable and ψ̄ ∈ L1(ν).
The proof of (b) follows exactly the same line. The only difference is that thanks to
Lemma 4.16, for any ϕ, ϕc is measurable since c is assumed to be continuous. �

We are now ready to prove that a dual attainment result holds.

Theorem 4.20 (Dual attainment). We assume that X and Y are Polish spaces and that
the cost function c is [0,+∞)-valued and lower semicontinuous. Let us take µ ∈ P(X )
and ν ∈ P(Y) and suppose that there exist two [0,∞)-valued measurable functions cX on
X and cY on Y such that c ≤ cX ⊕ cY ,

∫
X cX dµ <∞ and

∫
Y cY dν <∞.

Then, the extended dual problem (MK-D) admits a solution (ϕ∗, ψ∗) in Φc.

Before giving the proof of this theorem, we derive the characterization of the optimal
plans as an easy corollary.



42 CHRISTIAN LÉONARD

Theorem 4.21 (Characterization of the optimal plans). Under the asumptions of Theo-
rem 4.20, the primal and dual problems (MK-P) and (MK-D) both admit solutions.
More, π∗ is a solution of (MK-P) and (ϕ∗, ψ∗) is a solution of (MK-D) if and only if

π∗ ∈ P (µ, ν),
∫
X×Y c dπ∗ <∞,

ϕ∗ ⊕ ψ∗ ≤ c, everywhere and
ϕ∗ ⊕ ψ∗ = c, π∗-almost everywhere.

(4.22)

This means that any optimal plan π∗ is supported by {ϕ∗ ⊕ ψ∗ = c} ⊂ X × Y , where
(ϕ∗, ψ∗) is any solution of (MK-D).

Proof of Theorem 4.21. The first statement is restatement of Theorem 4.2 and Theorem
4.20 which we admit for a while.
Let π∗ and (ϕ∗, ψ∗) be solutions of (MK-P) and (MK-D). By Proposition 4.14, we have
the dual equality:

∫
X ϕ∗ dµ+

∫
Y ψ∗ dν =

∫
X×Y c dπ∗. Therefore, 0 =

∫
X×Y(c−ϕ∗⊕ψ∗) dπ∗.

As c− ϕ∗ ⊕ ψ∗ ≥ 0, it follows that c = ϕ∗ ⊕ ψ∗, π∗-almost everywhere.
Conversely, let π∗ and (ϕ∗, ψ∗) satisfy (4.22). Clearly,∫

X
ϕ∗ dµ+

∫
Y
ψ∗ dν =

∫
X×Y

c dπ∗. (4.23)

As
∫
X ϕdµ +

∫
Y ψ dν ≤

∫
X×Y c dπ for all (ϕ, ψ) ∈ Φc and all π ∈ P (µ, ν), the equality

(4.23) implies that π∗ and (ϕ∗, ψ∗) respectively solve (MK-P) and (MK-D). �

Proof of Theorem 4.20. We need compactness. By means of a truncature procedure, we
are going to be allowed to invoke Banach-Alaoglu theorem (see Theorem 2.40) in L∞ : a
bounded set in L∞ is relatively σ(L∞, L1)-compact.
Let (ϕn, ψn)n≥1 be a maximizing sequence. By Proposition 4.14 one can take it in Φc∩Cb :
For all n, (ϕn, ψn) ∈ Φc ∩ Cb and limn J(ϕn, ψn) = sup(ϕ,ψ)∈Φc

J(ϕ, ψ).
As c is nonnegative, the dual equality stated at Proposition 4.14 implies that sup(ϕ,ψ)∈Φc

J(ϕ, ψ) ≥
0. It follows that one can take J(ϕn, ψn) > −∞ for all n.
By Lemma 4.19, one can choose (ϕn, ψn) such that ϕn and ψn are measurable functions
such that ϕn ≤ cX and ψn ≤ cY for all n.
For all integer k ≥ 1, let us put

fkn(x) = max(ϕn(x)− cX (x),−k), x ∈ X
gkn(y) = max(ψn(y)− cY(y),−k), y ∈ Y

This implies that

fkn(x) + gkn(y) ≤ max(c(x, y)− cX (x)− cY(y),−k), x ∈ X , y ∈ Y . (4.24)

We also have for all n and k{
−k ≤ fkn ≤ 0
−k ≤ gkn ≤ 0

,

{
f 1
n ≥ f 2

n ≥ · · · ≥ fkn ≥ · · ·
g1
n ≥ g2

n ≥ · · · ≥ gkn ≥ · · · , J(fkn , g
k
n) ≥ J(ϕn, ψn)− J(cX , cY).

(4.25)
For k fixed, the sequence (fkn , g

k
n)n is bounded in L∞(µ)×L∞(ν). Therefore, one can extract

from it a σ(L∞(µ) × L∞(ν), L1(µ) × L1(ν))-convergent subsequence. By the diagonal
subsequence trick, there exist two subsequences still denoted (fkn)n and (gkn)n such that
limn f

k
n = fk and limn g

k
n = gk for all k.

As the σ(L∞, L1)-convergence of a sequence implies its σ(L1, L∞)-convergence (remember
that µ and ν are bounded nonnegative measures so that L∞ ⊂ L1), we also have limn f

k
n =

fk and limn g
k
n = gk for σ(L1, L∞), for all k. But by Theorem ??, for all k there exists

a sequence (f̆kn , ğ
k
n) of convex combinations of (fkn , g

k
n) such that limn(f̆

k
n , ğ

k
n) = (fk, gk)
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where the limit is taken with respect to the strong topology of L1. Once again extracting
a subsequence, this limit also holds almost everywhere. The inequalities (4.24) and (4.25)
are preserved by convex combinations (note that J is a concave function for the last

inequality in (4.25)), so that they hold with (f̆kn , ğ
k
n) instead of (fkn , g

k
n).

Writing (fkn , g
k
n) instead of (f̆kn , ğ

k
n) not too overload notations, we have obtained the

existence of (fkn , g
k
n) such that limn f

k
n = fk and limn g

k
n = gk strongly in L1 and almost

everywhere, for all k and such that (4.24) and (4.25) hold.
As pointwise convergence preserves the order, we also have{

f 1 ≥ f 2 ≥ · · · ≥ fk ≥ · · ·
g1 ≥ g2 ≥ · · · ≥ gk ≥ · · ·

(µ, ν)-almost everywhere.
Denoting the a.e-pointwise limits f∗ = limk f

k = infk f
k and g∗ = limk g

k = infk g
k and

doing limk limn in (4.24), we obtain

f∗(x) + g∗(y) ≤ c(x, y)− cX (x)− cY(y), (4.26)

(µ, ν)-almost everywhere.
As J is continuous on L1, it follows with (4.25) that for all k,

J(fk, gk) = lim
n
J(fkn , g

k
n)

≥ lim sup
n

J(ϕn, ψn)− J(cX , cY) = sup
(ϕ,ψ)∈Φc

J(ϕ, ψ)− J(cX , cY) > −∞. (4.27)

Therefore, infk
∫
X f

k dµ > −∞ and infk
∫
Y g

k dν > −∞ and by monotone convergence,

we have
∫
X f∗ dµ = infk

∫
X f

k dµ > −∞ and
∫
Y g∗ dν = infk

∫
Y g

k dν > −∞. As f∗ and g∗
are nonpositive, this proves that f∗ is in L1(µ) and g∗ is in L1(ν).
Let us take ϕ∗ = f∗+cX and ψ∗ = g∗+cY . As cX and cY are integrable, ϕ∗ is in L1(µ) and
ψ∗ is in L1(ν). Noting that (4.26) is equivalent to ϕ∗ ⊕ ψ∗ ≤ c, (µ, ν)-almost everywhere,
we have just proved that (ϕ∗, ψ∗) ∈ Φc.
Finally, doing limk in (4.27), by monotone convergence, we have

J(ϕ∗, ψ∗) = J(f∗, g∗) + J(cX , cY) ≥ sup
(ϕ,ψ)∈Φc

J(ϕ, ψ).

As (ϕ∗, ψ∗) ∈ Φc, this implies that J(ϕ∗, ψ∗) = sup(ϕ,ψ)∈Φc
J(ϕ, ψ) and completes the proof

of the theorem. �

4.5. Quadratic transport. The quadratic transport corresponds to X = Y = Rd and
the quadratic cost function

c(x, y) = |x− y|2/2
where |x| is the usual Euclidean norm. It is assumed that the marginal measures µ and
ν satisfy the following integrability condition∫

Rd

|x|2 µ(dx) <∞ and

∫
Rd

|y|2 ν(dy) <∞. (4.28)

Take any couple (ϕ, ψ) in Φc. Then, for all x, y in Rd, ϕ(x) + ψ(y) ≤ |x − y|2/2 =
|x|2/2 + |y|2/2− 〈x, y〉, that is

〈x, y〉 ≤ f(x) + g(y)

where {
f(x) = |x|2/2− ϕ(x)
g(y) = |y|2/2− ψ(y)
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As J(ϕ, ψ) =
∫

Rd |x|2/2µ(dx) +
∫

Rd |y|2/2 ν(dy) − J(f, g), the dual problem in terms of
(f, g) turns out to be

minimize J(f, g) subject to 〈x, y〉 ≤ f(x) + g(y),∀x, y

and it is easily seen that the improvement J(ϕ, ψ) ≤ J(ϕcc, ϕc) corresponds to

J(f ∗∗, f∗) ≤ J(f, g)

for all (f, g) in Φ̃ := {(f, g); f ∈ L1(µ), g ∈ L1(ν) : 〈x, y〉 ≤ f(x) + g(y),∀x, y, (µ, ν)-a.e.},
where f ∗ and f ∗∗ are the convex conjugate and biconjugate of f.

Theorem 4.29 (Characterization of the optimal plans for the quadratic transport). The
probability measure π∗ on Rd ×Rd is an optimal plan for the quadratic transport problem
with marginals µ and ν satisfying (4.28) if and only if π∗ ∈ P (µ, ν) and there exists a
closed convex function θ on Rd such that

y ∈ ∂θ(x) for π∗-almost every (x, y).

Proof. By Theorem 4.20, there exists (fo, go) in Φ̃ which solves the dual problem: J(fo, go) =
inf(f,g)∈eΦ J(f, g). With assumption (4.28), one can apply Lemma 4.19-b to assert that

(f ∗∗o , f
∗
o ) also solves the dual problem and is still in Φ̃. As a direct consequence of The-

orem 4.21 we obtain with θ = f ∗∗o that π∗ ∈ P (µ, ν) is an optimal plan if and only if
〈x, y〉 ≤ θ(x) + θ∗(y) everywhere and 〈x, y〉 = θ(x) + θ∗(y) π∗-a.e. But the inequality is
always true (Young’s inequality) and the (Young’s) equality is equivalent to y ∈ ∂θ(x). �

Remark 4.30. Clearly, this result still holds true when (X , | · |) is an Hilbert space.

One says that the closed convex function θ of Theorem 4.29 is a Kantorovich potential for
the quadratic transport of µ on ν.
Consider the reverse transport problem of ν on µ. Denoting R(x, y) = (y, x), x, y ∈ Rd,
as the quadratic cost is symmetric: c = c ◦R, it is immediate to see that π∗ is an optimal
plan for the direct problem if and only if π∗ �R is an optimal plan for the reverse problem.
As y ∈ ∂θ(x) is equivalent to x ∈ ∂θ∗(y) (see Proposition 1.36), one sees that x ∈ ∂θ∗(y)
for π∗-almost every (x, y) or equivalently

y ∈ ∂θ∗(x) for π∗ �R-almost every (x, y).

In other words, θ is a Kantorovich potential for the direct quadratic transport problem if
and only if its convex conjugate θ∗ is a Kantorovich potential for the reverse problem.

4.6. Kantorovich-Rubinstein theorem. Let X = Y be a Polish space. The cost
function to be considered is c(x, y) = d(x, y) : a lower semicontinuous metric on X which
may differ from the metric which turns X into a Polish space.
We denote ϕd and ϕdd the d-conjugate and d-biconjugate of ϕ.
In the sequel, the Lipschitz functions are to be considered with respect to the metric cost
d and not with respect to the underlying metric on the Polish space X . One writes that
ϕ is d-Lipschitz(1) to specify that |ϕ(x)− ϕ(y)| ≤ d(x, y) for all x, y ∈ X .

Lemma 4.31. For any function ϕ on X ,
(a) ϕd is d-Lipschitz(1)
(b) ϕdd = −ϕd.
(c) If ϕ is continuous, then ϕd is measurable
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Proof. (a) Since y 7→ d(x, y) is d-Lipschitz(1), by Lemma 4.7, y 7→ ϕd(y) = infx{d(x, y)−
ϕ(x)} is also d-Lipschitz(1).
(b) Hence for all x, y, ϕd(y)−ϕd(x) ≤ d(x, y). But this implies that for all y, −ϕd(x) ≤
d(x, y)− ϕd(y). Optimizing in y leads to −ϕd(x) ≤ ϕdd(x).
On the other hand, ϕdd(x) = infy{d(x, y)− ϕd(y)} ≤ −ϕd(x) where the last inequality is
obtained by taking y = x.
(c) is Lemma 4.16. �

Denote Pd := {µ ∈ PX ;
∫
X d(xo, x)µ(dx)} where xo is any fixed element in X .

Let us denote

‖ϕ‖Lip = sup
x 6=y

|ϕ(y)− ϕ(x)|
d(x, y)

.

It is the usual Lipschitz seminorm. Its dual norm gives for all µ, ν in Pd

‖µ− ν‖∗Lip = sup

{∫
X
ϕ(x) (µ− ν)(dx);ϕ measurable, ‖ϕ‖Lip ≤ 1

}
.

As it is assumed that µ, ν ∈ Pd, note that any measurable d-Lipschitz function is integrable
with respect to µ and ν.
We also introduce a standard notation for the value of the transport problem

W1(µ, ν) := inf

{∫
X 2

d(x, y)π(dxdy);π ∈ P (µ, ν)

}
, µ, ν ∈ Pd.

We are now ready to prove the main result of this section.

Theorem 4.32 (Kantorovich-Rubinstein). Let d be a lower semicontinuous metric on X .
Then, for all µ, ν ∈ Pd

W1(µ, ν) = sup

{∫
X
ϕ(x) (µ− ν)(dx);ϕ measurable bounded, ‖ϕ‖Lip ≤ 1

}
= ‖µ− ν‖∗Lip.

Proof. For all measurable d-Lipschitz(1) function ϕ and all π in P (µ, ν),
∫
X ϕ(x) (µ −

ν)(dx) =
∫
X 2(ϕ(x) − ϕ(y))π(dxdy) ≤

∫
X 2 d(x, y)π(dxdy). Optimizing in ϕ and π one

obtains ‖µ− ν‖∗Lip ≤ W1(µ, ν).

With Kantorovich duality: W1(µ, ν) = sup
{∫

X ϕdµ+
∫
X ψ dν; (ϕ, ψ) ∈ Φd ∩ Cb

}
, and

Lemma 4.31 we obtain that

W1(µ, ν) ≤ sup

{∫
X
ϕdd dµ+

∫
X
ϕd dν;ϕ continuous bounded

}
≤ sup

{∫
X
ϕd(µ− ν);ϕ measurable, ‖ϕ‖Lip ≤ 1

}
= ‖µ− ν‖∗Lip.

This completes the proof of W1(µ, ν) = ‖µ − ν‖∗Lip. It remains to see that for any
measurable d-Lipschitz(1) function ϕ and any n ≥ 1, ϕn := (−n) ∨ ϕ ∧ n is bounded
measurable d-Lipschitz(1) (see Lemma 4.7) and by the dominated convergence theorem:
limn

∫
X ϕn d(µ− ν) =

∫
X ϕd(µ− ν). �



46 CHRISTIAN LÉONARD
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