
MINIMIZING RELATIVE ENTROPY OF PATH MEASURES UNDER
MARGINAL CONSTRAINTS

AYMERIC BARADAT AND CHRISTIAN LÉONARD

Abstract. We study generalizations of the Schrödinger problem in statistical mechanics
in two directions: when the density is constrained at more than two times, and when
the joint law of the initial and final positions for the particles is prescribed. This is done
in agreement with the so-called Brödinger problem recently introduced to regularize
Brenier’s variational model for incompressible fluids.

We recover generalizations of the standard factorization result for the Radon-Nikodym
derivative of the solution P with respect to the reference measure R: this density can be
written in terms of an additive functional on the set of constrained times.

The specificity of this work is that we place ourselves in the case when R is Markov (or
reciprocal), and that we use Markovian methods rather than classical convex analysis
arguments. In this setting, it appears that a natural assumption to be made on the
reference measure R is of irreducibility type.
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1. Introduction

In this paper, we are interested in the structure of the solutions to a class of entropy
minimization problems among path measures: i.e. measures on a path space. More specif-
ically, for any path measures P � R, the relative entropy of P with respect to R is defined
by the formula:

H(P |R) := EP

[
log

dP

dR

]
,

(a precise definition is given at Section 4, in particular when R is unbounded) and we
minimize H( r|R) under various marginal constraints, when the reference path measure
R is Markov, or sometimes reciprocal. The definition of a reciprocal path measure and
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2 BARADAT AND LÉONARD

its basic properties are recalled at Definition 3.1; in particular, any Markov measure is
reciprocal.

Schrödinger problem. The most classical of these problems is unquestionably the
Schrödinger problem and dates back to the 30’s with the original articles [24, 25] by
Schrödinger himself. This problem can be informally stated in the following way. Take a
population of independent particles uniformly distributed in a box at the initial time, and
evolving along Brownian paths. Then at any positive time, one still expects the density
of particles to be approximately uniform. But suppose that a very rare event occurs, and
that one measures at time t = 0 and T > 0 a density of particles far from being uniform
(in all this text, we will set without loss of generality T = 1). Conditionally on this rare
event, what is the most likely statistical behavior of the particles of the system? The
theory of large deviations gives the following answer. If one calls R the law of the Brown-
ian motion starting from the Lebesgue measure, n the number of particles, Y1, . . . , Yn the
path of each particle and µ, ν the observed densities at times 0 and 1, then the empirical
measure

1

n

n∑
i=1

δYi

must be close to the (unique if exists) minimizer P of the entropy H( r|R) under the
constraints that the initial marginal of P is µ, and its final marginal is ν. The Schödinger
problem consists in finding P as a function of µ and ν. For a precise statement of this
problem in a more general setting, see (24). We refer to the survey [18] for both a historical
presentation and a precise statement of most of the known results about the Schrödinger
problem.

There has been renewed interest in this problem since we understood its link with the
theory of optimal transport. In fact, the Schrödinger problem can be seen as a regularized
version of the classical quadratic optimal transport (see [21, 20, 18]) and it is now used
to compute numerically the solutions to transport problems [10, 5] using the Sinkhorn
algorithm [26, 27].

One of the main results of this theory, which is crucial in the applications as it allows
the use of the Sinkhorn algorithm, is the factorization property of P : there exist f and g
two measurable functions such that if (Xt)t∈[0,1] denotes the canonical process on the set
of continuous paths,

P = f(X0)g(X1)R. (1)
This property is classically derived by means of various analytic techniques, sometimes
coupled with geometric analogies [6, 9, 14, 7, 22, 23, 16], but we prefer to understand it
via a different approach: through Markovian considerations, in the spirit of [19]. More
precisely, if R is Markov, then P needs to be Markov (see Lemma 4.1), and the density of
P with respect to R needs to be a function of X0 and X1 (see Theorem 4.5). But under
additional irreducibility assumptions on R that will be detailed at Section 3, the only way
to satisfy these two properties is to be factorized.

Aim of this paper. The goal of this article is to study how far these arguments can
go when further constraints are added. The typical kinds of constraints we want to deal
with are
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(i) marginal constraints, prescribing the law of Xt under P for all times t in a given set
T ⊂ [0, 1];

(ii) endpoint constraints, prescribing the joint law of (X0, X1) under P .
Our main motivation is the understanding of the so-called Brödinger problem, which is

a mixture of the Schrödinger problem just described and the Brenier problem for perfect
fluids, presented and studied for the first time in [8]. It consists in finding the minimizer
P of relative entropy with respect to the reversible Brownian motion (say on the flat
torus Td) when the law of Xt under P is prescribed to be the Lebesgue measure at all
times t (this is incompressibility), and an endpoint constraint is added. The reader can
find information on the Brödinger problem in the recent papers [1, 3, 4].

By adding the constraints (i) and (ii), the factorization property (1) translates formally
into

dP

dR
= exp

(
η(X0, X1) + A([0, 1])

)
, (2)

where η is measurable and comes from the endpoint constraint, and A is what we call
an additive functional only charging T and comes from the density constraints. We will
be more specific in Definition 2.6 below, but A is essentially a random finitely additive
measure (or content) which only charges T and such that for all interval I, A(I) only
depends on the values of the canonical process Xt for t ∈ I. An important observation is
that in the case of endpoint constraints (leading to η 6= 0), P is not Markov, even when
R is Markov. This leads to additional difficulties. However, it inherits a more general
property, namely the reciprocity, which is still tractable in some cases.

We could not reach formula (2) in full generality; see Remark 5.5. However the main
results of this paper are two particular cases. In Theorem 4.5, we treat the case when
there is no endpoint constraint (and hence η = 0). In Theorem 5.4, we solve the case
when there is an endpoint constraint, but T is finite.

As a consequence, we do not get a fully satisfactory description of the solutions of the
Brödinger problem, but rather of a discrete version of it where only finitely many time
marginals are prescribed.

Notation. In the whole paper, X denotes a Polish space, and the path space Ω is the
set of all continuous curves from [0, 1] to X . For all t ∈ [0, 1], Xt (called the canonical
process at time t) is the evaluation map at time t, that is for all ω ∈ Ω, Xt(ω) = ω(t).
If Z is a measurable space, M(Z) and P(Z) will be the sets of measures and probability
measures on Z respectively. We recall that when endowed with the topology of uniform
convergence, Ω is a Polish space and its Borel σ-field is the natural σ-field σ(Xt; 0 ≤ t ≤ 1)
generated by the canonical process (Xt)0≤t≤1. In that case, M(Ω) and P(Ω) stand for the
set of Borel measures on Ω (that we call path measures) and the set of Borel probability
measures on Ω.

If T is a subset of [0, 1], we denote XT := (Xt)t∈T . If R ∈ M(Ω) is conditionable
in the sense given in Definition 2.1 and t1, . . . , tp ∈ [0, 1], Rt1,...,tp stands for the law of
(Xt1 , . . . , Xtp) under R and RT stands for the law of XT under R.
More generally, if Z1 and Z2 are two measurable spaces, if r ∈ M(Z1) and if X : Z1 → Z2

is measurable, then the law of A under r is denoted by X#r. If Z1 is Polish and X#r is σ-
finite, according to the disintegration theorem, then for X#r-almost all x, the conditional
probability r( r|X = x) exists. It will be called rx, and rX : Z1 → P(Z1) will be the
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random variable with measure values almost everywhere defined by

r-a.e. X = x ⇒ rX = rx.

Outline of the paper. Let R ∈ M(Ω) be a fixed reference path measure and P be any
path probability measure P ∈ P(Ω) dominated by R, i.e. P is absolutely continuous with
respect to R: P � R.

At Section 2, we derive characterizations in terms of additive functionals of the Radon-
Nikodym density dP/ dR in the case when both P and R are Markov. This result is
stated at Theorem 2.10: dP/ dR = exp(A([0, 1])) for some additive functional A.

In Section 3, we ask the following question. Let us assume that for some times 0 ≤ s <
u < t ≤ 1 and some measurable functions a, b and c, we have:

f(Xs, Xt) = a(X[s,u]) + b(X[u,t]), R-a.e.

In which cases is it true that there are two measurable functions fs and ft such that:

f(Xs, Xt) = fs(Xs) + ft(Xt), R-a.e.?

This is where the irreducibility of R will come into play, as we will prove in Lemma 3.4
that a sufficient condition is to ask R to be reciprocal (see Definition 3.1) and irreducible
(see Assumption 3.3). We also provide counterexamples when one of these two conditions
fails to be satisfied.

Then, we explore at Section 4 some consequences for multimarginal entropic minimiza-
tion problems. In the Schrödinger case, when R is Markov, then P is Markov. If in
addition, R is irreducible, the result of Section 3 let us build from the additive functional
A given by Theorem 2.10 another additive functional that only charges T and which
coincide with A on the full interval [0, 1]. This is stated at Theorem 4.5.

In Section 5, we apply Theorem 4.5 to get a description of the solution of the Schrödinger
problem when there is a finite number of density constraints (Theorem 5.1). We also
get (2) in the Brödinger case (i.e. when adding an endpoint constraint), still when there
is a finite number of density constraints (Theorem 5.4). In this case, we can even assume
that R is only reciprocal. Theorem 5.4 is a consequence of Theorem 5.1 once noticing
that any reciprocal process can be transformed into a Markov process by enlarging the
space of states and by "folding" the trajectories; see Lemma 5.3. As far as we know, this
argument is new.

In Appendix A, we show how a regularity result by Bakry [2] for two indices martingales
let us get for free a regularity property for the quantity A([s, t]) with respect to s and t
where A is the additive functional given by Theorem 2.10. This regularity is very mild (it
is nothing but a generalization of the càdlàg property for classical martingales), but it is
sufficient to characterize A by its value on a countable amount of intervals. This is often
useful to prove that a property which is true ∀t, a.e. is also true a.e., ∀t.

Finally in Appendix B, we state and prove a standard result in measure theory that
shows the relationship between disintegration and absolute continuity of measures. These
results are used several times along the proofs.

2. Dominated Markov measures

Basic definitions. Let us begin with the symmetric definition of the Markov property.
First of all, we need to make precise what a conditionable path measure is.
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Definition 2.1 (Conditionable path measure). The path measure Q ∈ M(Ω) is said to be
conditionable if for all t ∈ [0, 1], Qt is a σ-finite measure on X .

It is shown in [17] that for any conditionable path measure Q ∈ M(Ω), the condi-
tional expectation EQ[ r|XT ] is well-defined for any T ⊂ [0, 1]. This is the reason for this
definition.

Definition 2.2 (Markov measure). A path measure Q on Ω is said to be Markov if it is
conditionable and if for any t ∈ [0, 1] and for any events A ∈ σ(X[0,t]), B ∈ σ(X[t,1])

Q(A ∩B|Xt) = Q(A|Xt)Q(B|Xt), Q-a.e. (3)

This means that, knowing the present state Xt, the future and past informations
σ(X[t,1]) and σ(X[0,t]), are Q-independent.

We will represent the Radon-Nikodym derivatives between laws of Markov processes
with the help of contents (see [15]). Contents can be understood as "finitely additive
measures".

Definition 2.3 (Content). Denote by I the subset of 2[0,1] composed by every finite unions
of intervals of [0, 1]. The set I is clearly closed under finite unions and intersections and
under complements of individual elements (such a set is sometimes called a field of sets).
We say that a function µ from I to [−∞,+∞) is a content and we write µ ∈ C([0, 1]) if:

• µ(∅) = 0,
• for all I1, I2 ∈ I, µ(I1 ∪ I2) = µ(I1) + µ(I2) whenever I1 ∩ I2 = ∅.

Remark 2.4. It is a simple exercise to show that if ν is a function from the set of all
intervals of the form [s, t] with s ≤ t in [0, 1] such that for all s ≤ u ≤ v ≤ t in [0, 1],

if ν([u, v]) = −∞, then ν([s, v]) = ν([u, t]) = ν([s, t]) = −∞,
else, ν([s, t]) = ν([s, v]) + ν([u, t])− ν([u, v]),

then there is a unique content µ extending ν. For example, for all s < t in [0, 1],
µ((s, t)) = ν([s, t])− ν({s})− ν({t}).

A typical structure of the contents we will get is the following inner or outer regularity
property:

Definition 2.5 (Regular content). We say that a content µ ∈ C([0, 1]) is regular and we
write µ ∈ Cr([0, 1]) if one of the two equivalent following properties is satisfied:

•


∀ 0 ≤ s ≤ t ≤ 1, (s, t) 6= (0, 1), lim(σ,τ)→(s,t)

σ≤s, τ≥t
µ([σ, τ ]) = µ([s, t]),

∀ 0 ≤ s < t ≤ 1, lim(σ,τ)→(s,t)
σ>s, τ<t

µ([σ, τ ]) exists,

•


∀ 0 ≤ s < t ≤ 1, lim(σ,τ)→(s,t)

σ≥s, τ≤t
µ
(
(σ, τ)

)
= µ

(
(s, t)

)
,

∀ 0 ≤ s ≤ t ≤ 1, (s, t) 6= (0, 1), lim(σ,τ)→(s,t)
σ<s, τ>t

µ
(
(σ, τ)

)
exists,

Definition 2.6 (Additive functional). A mapping A : Ω → C([0, 1]) is said to be an
additive functional if it is measurable in the sense that for every I ∈ I, the function A(I)
is σ(Xt, t ∈ I)-measurable.
We say in addition that A is regular if its values are regular.
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The proof of Theorem 2.10, the main result of the present section, relies on the following
preliminary Lemma 2.9.

A general lemma. Lemma 2.9 gives the structure of the Radon-Nikodym derivative
with respect to r of a measure p� r sharing some independence properties with r. The
context if the following:

Assumptions 2.7 (Framework for Lemma 2.9). Consider Z, ZA, ZB and ZC four
measurable spaces and three measurable mappings A : Z → ZA, B : Z → ZB and
C : Z → ZC. We suppose that the σ-algebra on Z is generated by A, B and C. Take
r ∈ M(Z) satisfying:

• the push-forward C#r is σ-finite (in particular, r is σ-finite),
• under r, the mappings A and B are independent conditionally on C, i.e. for all
measurable and nonnegative functions u and v,

Er[u(A)v(B)|C] = Er[u(A)|C] Er[v(B)|C], r-a.e.

Remark 2.8. In this setting, it can be shown that for all measurable and nonnegative
functions U : ZA ×ZC → R+ and V : ZB ×ZC → R+, we have r-almost everywhere

Er[U(A,C)V (B,C)|C] = Er[U(A,C)|C] Er[V (B,C)|C].

The following Lemma 2.9 will be used during the proof of Theorem 2.10. It is a
straightforward extension of [19, Thm. 1.5].

Lemma 2.9. In the framework of Assumption 2.7, consider p ∈ P(Z) such that p� r.
• If under p, the measurable mappings A : Z → ZA and B : Z → ZB are indepen-
dent conditionally on C : Z → ZC, then there are three nonnegative measurable
functions α : ZA × ZC → R+, β : ZB × ZC → R+ and γ : ZC → R+ such that
r-almost everywhere,

dp

dr
= α(A,C)β(B,C)γ(C), (4)

r-a.e., γ(C) 6= 0⇒ Er[α(A,C)|C] = Er[β(B,C)|C] = 1. (5)

In that case, 

γ =
dC#p

dC#r
,

α× γ =
d(A,C)#p

d(A,C)#r
,

β × γ =
d(B,C)#p

d(B,C)#r
.

(6)

• Conversely, if there are two nonnegative function α and β such that

dp

dr
= α(A,C)β(B,C), (7)

then under p, A and B are independent conditionally on C.
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Proof. For the first point, let

D :=
dp

dr
.

Because C#r is σ-finite, so are (A,C)#r and (B,C)#r. As a consequence, the following
functions are well defined r-almost everywhere:

γ(C) := Er[D|C],

α(A,C) :=


Er[D|A,C]

γ(C)
if γ(C) 6= 0,

0 else,

β(B,C) :=


Er[D|B,C]

γ(C)
if γ(C) 6= 0,

0 else.

On {γ(C) 6= 0}, it is easily shown that r-almost everywhere,

Er[α(A,C)|C] = Er[β(B,C)|C] = 1.

Moreover r-almost everywhere on {γ(C) = 0}, D = 0, so the identities

Er[D|A,C] = α(A,C)γ(C),

Er[D|B,C] = β(B,C)γ(C)

hold r-almost everywhere.
It remains to show

D = α(A,C)β(B,C)γ(C). (8)
Let u be a nonnegative measurable function. Let us compute Ep[u(A)|C]. For all

measurable and nonnegative function w, we have on the one hand:

Ep[u(A)w(C)] = Ep[Ep[u(A)|C]w(C)]

= Er[DEp[u(A)|C]w(C)]

= Er[Er[D|C] Ep[u(A)|C]w(C)]

= Er[γ(C)Ep[u(A)|C]w(C)],

and on the other hand:

Ep[u(A)w(C)] = Er[Du(A)w(C)]

= Er[Er[Du(A)|C]w(C)]

= Er[Er[Er[D|A,C]u(A)|C]w(C)]

= Er[α(A,C)u(A)|C]γ(C)w(C)]

So we have r-almost everywhere:

γ(C)Ep[u(A)|C] = γ(C)Er[α(A,C)u(A)|C],

and p-almost everywhere:

Ep[u(A)|C] = Er[α(A,C)u(A)|C].

In the same way, for all measurable and nonnegative function v, p-almost everywhere:

Ep[v(B)|C] = Er[β(B,C)v(B)|C].
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Using the fact that the σ-algebra on Z is σ(A,B,C), to get (8), it suffices to show that
for all u, v and w measurable and nonnegative:

Ep[u(A)v(B)w(C)] = Er[α(A,C)β(B,C)γ(C)u(A)v(B)w(C)].

So let us take u, v and w such functions. Because of the independence assumption,

Ep[u(A)v(B)w(C)] = Ep[Ep[u(A)v(B)|C]w(C)]

= Ep[Ep[u(A)|C] Ep[v(B)|C]w(C)].

And using the formulas computed just before,

Ep[u(A)v(B)w(C)] = Ep[Er[α(A,C)u(A)|C] Er[β(B,C)v(B)|C]w(C)].

Now, because of Remark 2.8,

Ep[u(A)v(B)w(C)] = Ep[Er[α(A,C)u(A)β(B,C)v(B)|C]w(C)]

= Er[DEr[α(A,C)u(A)β(B,C)v(B)|C]w(C)]

= Er[γ(C)Er[α(A,C)u(A)β(B,C)v(B)|C]w(C)]

= Er[α(A,C)β(B,C)γ(C)u(A)v(B)w(C)],

and the result follows.
The fact that (4) and (5) imply (6) follows from conditioning (4) with respect to C,

(A,C) and (B,C) respectively, and from using the independence property of r.
For the second point, we suppose that there are α and β such that (7) holds, and we

want to show that for all u and v measurable and nonnegative, we have

Ep[u(A)v(B)|C] = Ep[u(A)|C] Ep[v(B)|C], p-a.e.

This follows from the following, obtained using the same kind of computations as before:

p-a.e., Er[α(A,C)|C] > 0 and Er[β(B,C)|C],

Ep[u(A)v(B)|C] =
Er[u(A)α(A,C)|C]Er[v(B)β(B,C)|C]

Er[α(A,C)|C]Er[β(B,C)|C]
.

It remains to apply this formula first for v = 1, then for u = 1, and finally for general u
and v. �

Density of a Markov process. We are now ready to give the main result on the form
of the Radon-Nikodym derivative between two laws of Markov processes.

Theorem 2.10. Let R be a reference Markov measure and let P � R a probability
measure dominated by R with finite entropy. The three following assertions are equivalent.

(1) The measure P is Markov;
(2) There is an additive functional A such that

dP

dR
= exp

(
A
(
[0, 1]

))
;

(3) There is a regular additive functional A such that

dP

dR
= exp

(
A
(
[0, 1]

))
.
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Proof. We show (3) ⇒ (2) ⇒ (1) ⇒ (3).
• The implication (3) ⇒ (2) is obvious.
• For (2) ⇒ (1), take t ∈ [0, 1]. Then

dP

dR
= exp

(
A
(
[0, t]

))
exp

(
A
(
(t, 1]

))
.

Because of the measurability property of an additive functional, exp
(
A
(
[0, t]

))
is a func-

tion of X[0,t] and exp
(
A
(
(t, 1]

))
is a function of X[t,1]. We can use the second point of

Lemma 2.9 with A = X[0,t], B = X[t,1] and C = Xt to deduce that under P , X[0,t] and
X[t,1] are independent conditionally on Xt. Because this is true for every t, P is Markov.
• To prove (1) ⇒ (3), set for every s ≤ t in [0, 1]

Ds,t := ER

[
dP

dR

∣∣∣∣X[s,t]

]
,

which are obviously σ(X[s,t])-measurable. In Appendix A, we show how a result from [2]
can be used to show that up to a modification,

∀ 0 ≤ s ≤ t ≤ 1, (s, t) 6= (0, 1), lim
(σ,τ)→(s,t)
σ≤s, τ≥t

Dσ,τ = Ds,t,

∀ 0 ≤ s < t ≤ 1, lim
(σ,τ)→(s,t)
σ>s, τ<t

Dσ,τ exists,

see Figure 4.
We now define for all 0 ≤ s ≤ t ≤ 1

A([s, t]) := logDs,t ∈ [−∞,+∞).

It is well defined for all ω and all 0 ≤ s ≤ t ≤ 1, and it has the two regularity properties

∀ 0 ≤ s ≤ t ≤ 1, (s, t) 6= (0, 1), lim
(σ,τ)→(s,t)
σ≤s, τ≥t

A([σ, τ ]) = A([s, t]),

∀ 0 ≤ s < t ≤ 1, lim
(σ,τ)→(s,t)
σ>s, τ<t

A([σ, τ ]) exists.

Let us follow Remark 2.4. Let s ≤ u ≤ v ≤ t in [0, 1] and apply the first point of
Lemma 2.9 with r = R[s,t], p = P[s,t] (these measures are still Markov), A = X[s,v],
B = X[u,t] and C = X[u,v]. We end up with three nonnegative measurable functions α, β
and γ such that R-almost everywhere,

exp
(
A
(
[s, t]

))
=

dP[s,t]

dR[s,t]

= α(X[s,v])× β(X[u,t])× γ(X[u,v]),

exp
(
A
(
[s, v]

))
=

dP[s,v]

dR[s,v]

= α(X[s,v])× γ(X[u,v]),

exp
(
A
(
[u, t]

))
=

dP[u,t]

dR[u,t]

= β(X[u,t])× γ(X[u,v]),

exp
(
A
(
[u, v]

))
=

dP[u,v]

dR[u,v]

= γ(X[u,v]).



10 BARADAT AND LÉONARD

We easily conclude that R-almost everywhere:

A
(
[u, v]

)
= −∞ ⇒ A

(
[s, t]

)
= A

(
[s, v]

)
= A

(
[u, t]

)
= −∞,

and that if it is not the case:

A
(
[s, t]

)
= A

(
[s, v]

)
+ A

(
[u, t]

)
− A

(
[u, v]

)
.

The measurability property for the intervals that are not of the form [s, t] comes from the
fact that σ(X[s,t]) = σ(X(s,t)), so that for example, A

(
(s, t)

)
= A([s, t])−A({s})−A({t})

is σ(X[s,t])-measurable and so σ(X(s,t))-measurable. Finally, the measurability property
for all sets of I is obtained by the additivity property of A.
The only remaining thing to show is that this additivity property is valid R-almost ev-
erywhere for all 0 ≤ s ≤ u ≤ v ≤ t ≤ 1, and not only for all 0 ≤ s ≤ u ≤ v ≤ t ≤ 1,
R-almost everywhere. But it is true R-almost everywhere for all s ≤ u ≤ v ≤ t in a
countable dense subset of [0, 1] and it is easy to pass to the limit thanks to the regularity
property of A. We set A ≡ 0 on the ω’s for which the additivity does not hold for all
0 ≤ s ≤ u ≤ v ≤ t ≤ 1, so that the property is satisfied for all ω. �

Remark 2.11. This decomposition is far from being unique. To illustrate this, take
(ϕt)t∈[0,1] and (ψt)t∈[0,1] two families of measurable functions, such that ϕ1 = ψ0 = 0
and such that R-almost everywhere, t 7→ ϕt(Xt) is right continuous, left limited and
s 7→ ψs(Xs) is left continuous, right limited. Then, if A is an additive functional one can
define B on the closed intervals of [0, 1] by:

B([s, t]) = A([s, t]) + ϕt(Xt) + ψs(Xs).

It is easy to check with the help of Remark 2.4 that B can be extended in a regular
additive functional, with:

A([0, 1]) = B([0, 1]).

3. Writing a function as a sum

In this section, we give a framework in which a function of two variables f = f(x, y)
can be decomposed as a sum f(x, y) = α(x) + β(y). We also provide counter-examples
when only a part of the assumptions is satisfied.

The general framework is the following. Suppose that for a path measure R ∈ M(Ω),
the following holds:

f(Xs, Xt) = a(X[s,u]) + b(X[u,t]), R-a.e. (9)
where 0 ≤ s < u < t ≤ 1 and f , a and b are [−∞,∞)-valued measurable functions. This
means that a function only depending on the position of the canonical process at times s
and t can be decomposed as a sum of a function only depending on the beginning of the
trajectory and a function only depending on the end of the trajectory. The question is to
know if it is possible to find two measurable functions fs and ft such that:

f(Xs, Xt) = fs(Xs) + ft(Xt), R-a.e. (10)

We will provide counter-examples to show that it is not always the case: it is necessary
to make some assumptions on R to be able to conclude. As it will be revealed by the
counter-examples, two types of assumptions are needed.
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1. The first assumption is of irreducibility type: there is a non-negligible set of positions
y ∈ X such that:

R((Xs, Xt) ∈ r)� R((Xs, Xt) ∈ r|Xu = y), (11)

where 0 ≤ s ≤ u ≤ t ≤ 1. Roughly speaking, for such y, if some trajectories of the
process go from Xs = x to Xt = z, then there are also trajectories such that Xs = x
and Xt = z with the additional property that Xu = y.

2. The second assumption concerns the independence properties of R at time u: for the
positions y satisfying the first assumption it is possible to find for each x ∈ X a
trajectory αx on the set of times [s, u] joining x to y, and for each z ∈ X a trajectory
βz on the set of times [u, t] joining y to z, such that:1

R(X[s,u] ∈ r|Xu = y)� R(X[s,u] ∈ r|X[u,t] = βXt) R-a.e.

R(X[u,t] ∈ r|Xu = y)� R(X[u,t] ∈ r|X[s,u] = αXs) R-a.e.

In other terms, any beginning of trajectory followed by the process can be extended
by the ends of trajectory β, and any end of trajectories followed by the process can be
extended by the beginnings of trajectories α

Under these two assumptions, it suffices to choose:

fs(Xs) := a(αXs) and ft(Xt) := b(βXt),

in (10). However, the difficulty is in general to find situations where the trajectories αx
and βz can be built as measurable functions of x and z respectively, and to deal with the
negligible sets. It is possible to state very general assumptions under which a measurable
selection theorem [28] allows us to achieve these goals (this implies using the axiom of
choice). We shall rather follow another path by assuming that R is reciprocal (instead
of item 2.), and that it satisfies an additional irreducibility property (see Assumption 3.3
below, instead of item 1.) Under these requirements, assumptions 1. and 2. hold for any
0 ≤ s < u < t ≤ 1 and for any y ∈ X , and the axiom of choice is not necessary.

Counterexamples. Let us provide two counter-examples when assumptions 1. and 2.
above are not fulfilled.
(a) A path measure R not satisfying the assumption 2. We consider the simple setting

depicted at Figure 1, where only four paths are allowed: the path measure R is
uniform on {α1β2, α̂β1, α2β1, α2β2} with obvious notation, and it is assumed that
x1 6= x2, z1 6= z2 and α̂ 6= α1. Clearly the assumption 2 is not satisfied. In particular
R fails to be Markov or reciprocal. We exhibit a function f satisfying (9) but not
(10).
The function f(X0, X1) is specified by:

f(x1, z1) = 1 and f(x1, z2) = f(x2, z1) = f(x2, z2) = 0,

while the functions a and b are given by:

a(α̂) = 1, a(α1) = a(α2) = 0, and b(β1) = b(β2) = 0.

1Here and in the following, if r is a measure on a Polish space and X,Y are random variables defined
on this Polish space, we denote by r(X ∈ •|Y = y) the law of X knowing Y = y under r, when it is well
defined.
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Figure 1. A counter-example when assumption 2. is dropped

Obviously, we have: f(X0, X1) = a(X[0,1/2]) + b(X[1/2,1]), R-a.e., but f fails to satisfy

f(X0, X1) = f0(X0) + f1(X1), R-a.e.

for some functions f0, f1 since this would imply that

f(x1, z1) = f0(x1) + f1(z1) = f(x1, z2)− f1(z2) + f(x2, z1)− f0(x2)

= f(x1, z2) + f(x2, z1)− f(x2, z2) = 0,

a contradiction.
(b) A Markov measure R not satisfying the assumption 1. We consider the simple setting

depicted at Figure 2 where all the drawn paths from left to right are allowed. Note
that R can be chosen as a Markov measure. For instance with R(αiβj) = piqj where
p1 = p2 = p3 = p4 = 1/4, q1 = 1 and q2 = q3 = 1/2. It is assumed that all the states
x1, . . . , z3 are distinct. Clearly the assumption 1 is not satisfied. Again, we exhibit a
function f satisfying (9) but not (10).
The function f(X0, X1) is specified by f(xi, zj) = fij with

f11 = 2, f12 = 2, f13 = 3, f21 = 2, f22 = 3, f23 = 4.

We see that f(αiβj) = a(αi) + b(βj) where the functions a and b are given by:

a(α1) = 1, a(α2) = 0, a(α3) = 1, a(α4) = 1, and b(β1) = 1, b(β2) = 2, b(β3) = 3.

Denote f0(x1) = p, f0(x2) = q, f1(z1) = r, f1(z2) = s, f1(z3) = t and suppose that (10)
holds, that is

p+ r = 2, q + r = 2, p+ s = 2, q + s = 3, p+ t = 3, q + t = 4.

The first two equations imply p = q. Plugging this into the third and fourth ones,
leads to 2 = 3.

The Assumptions 3.3 below are sufficient to prove that (9) implies (10). They require
the notion of reciprocal measure.
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Figure 2. Another counter-example when assumption 1. is dropped

Reciprocal path measures. Because of the nature of the minimization problems we
study, some of the processes are not Markov in general. Still, they satisfy some weaker
independence properties, as they are reciprocal in the sense of the following definition:

Definition 3.1 (Reciprocal measure). A path measure Q on Ω is called reciprocal if it
is conditionable and if it satisfies one of the two following equivalent assertions:

• For any times 0 < s < u < 1 and any events A ∈ σ(X[0,s], X[u,1]) and B ∈ σ(X[s,u]):

Q(A ∩B | Xs, Xu) = Q(A | Xs, Xu)Q(B | Xs, Xu) Q-a.e.. (12)

• For any times 0 < s < u < 1 and any events A ∈ σ(X[0,s]), B ∈ σ(X[s,u]), C ∈
σ(X[u,1]):

Q(A ∩B ∩ C | Xs, Xu) = Q(A ∩ C | Xs, Xu)Q(B | Xs, Xu) Q-a.e.. (13)

These properties state that under Q, given the knowledge of the canonical process at
both times s and u, the events inside [s, u] and those outside (s, u) are conditionally
independent. It is clearly time-symmetric.

Remarks 3.2. We recall basic relations between the Markov and reciprocal properties.
(a) Any Markov measure is reciprocal. Indeed, let Q be a Markov measure. Then, for any

s, u, A,B and C as in the second point of Definition 3.1,

Q(A ∩B ∩ C | Xs, Xu) = QXu(A ∩B ∩ C | Xs) = QXu(A | Xs)Q
Xu(B ∩ C | Xs)

= QXu(A | Xs)Q
Xs(B ∩ C | Xu) = QXu(A | Xs)Q

Xs(B | Xu)Q
Xs(C | Xu)

= QXu(A | Xs)Q
Xu(C | Xs)Q

Xs(B | Xu) = Q(A ∩ C | Xs, Xu)Q(B | Xs, Xu).

(b) Conditionally to the initial value or the final value or both of them, a reciprocal mea-
sure is Markov. Considering s = 0 and A = Ω in the definition of the reciprocal
property (13), we see that for all 0 ≤ u ≤ 1, B ∈ σ(X[0,u]) and C ∈ σ(X[u,1]),

Q(B ∩ C | X0, Xu) = Q(B | X0, Xu)Q(C | X0, Xu) Q-a.e.

This means that for any reciprocal measure Q, the conditional path measure QX0 :=
Q( r | X0) is Markov, Q-a.e. Similarly, with u = 1 and C = Ω in (13), we see that for
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all 0 ≤ s ≤ 1, A ∈ σ(X[0,s]) and B ∈ σ(X[s,1]),

Q(A ∩B | Xs, X1) = Q(A | Xs, X1)Q(B | Xs, X1) Q-a.e.

meaning that the conditional path measure QX1 := Q( r | X1) is Markov, Q-a.e.
Because a Markov measure conditioned to its final (or initial) position is still

Markov, one gets that if Q is reciprocal, QX0,X1 is Markov Q-a.e.

Irreducible reciprocal measure. We are ready to state our main assumption.

Assumption 3.3. Let R ∈ M(Ω) be reciprocal. We say it is irreducible if for all 0 ≤ s <
u < t ≤ 1, we have:

Rs ⊗Ru ⊗Rt � Rs,u,t � Rs ⊗Ru ⊗Rt. (14)
(Recall that Rt1,...,tk stands for the law of (Xt1 , . . . , Xtk) under R.) In other terms, the
laws Rs,u,t and Rs ⊗Ru ⊗Rt are equivalent in the sense of measure theory.

Let us prove that Assumption 3.3 is sufficient to pass from (9) to (10). We will then
discuss a little bit further Assumption 3.3: we will see how it can be stated when R is
Markov, and how (14) tensorizes.

Lemma 3.4. Let R ∈ M(Ω) be reciprocal and satisfy Assumption 3.3. Suppose (9) holds
for some 0 ≤ s < u < t ≤ 1, and measurable f , a and b. Then there exist measurable
maps fs and ft such that (10) holds.

Proof. Taking the conditional expectation in (9) with respect to (Xs, Xu, Xt) leads to:

f(Xs, Xt) = ER[f(Xs, Xt)|Xs, Xu, Xt]

= ER[a(X[s,u])|Xs, Xu, Xt] + ER[b(X[u,t])|Xs, Xu, Xt]

= ER[a(X[s,u])|Xs, Xu] + ER[b(X[u,t])|Xu, Xt], R-a.e. (15)

where we used the fact that R is reciprocal to deduce the last line.
Then, let us show that because of Assumption 3.3, formula (11) holds. For this, we use
classical results in measure theory stating the behaviour of absolute continuity of measures
with respect to conditioning. For the sake of completeness, these results are stated at
Proposition B.1 and Lemma B.2. Since Rs,u,t � Rs ⊗ Ru ⊗ Rt, by Proposition B.1, we
have:

Rs,t � Rs ⊗Rt.

In addition, by Lemma B.2, conditioning (14) on Xu leads to

Rs ⊗Rt � R((Xs, Xt) ∈ r|Xu), R-a.e.

Bringing together the two last formulas, we get:

Rs,t � R((Xs, Xt) ∈ r|Xu), R-a.e.,

which is (11). Hence, let us pick some y ∈ X such that:

Rs,t � R((Xs, Xt) ∈ r|Xu = y), (16)

such that x 7→ E[a(X[s,u])|Xs = x,Xu = y] and z 7→ E[b(X[u,t])|Xu = y,Xt = z] are well
defined Rs-a.e. and Rt-a.e. respectively, and such that (15) holds R( r|Xu = y)-a.e. (The
set of such y’s has a full mass with respect to Ru.) We call:

fs(x) := E[a(X[s,u])|Xs = x,Xu = y] and ft(z) := E[b(X[u,t])|Xu = y,Xt = z].
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With this choice, by (15):

f(x, z) = fs(x) + ft(z), R((Xs, Xt) ∈ r|Xu = y)-a.e.

Because of (16), it also holds Rs,t-a.e. and the result follows. �

The Markov case. In the case when R is Markov, we can restrict ourselves to take a
weaker assumption:

Assumption 3.5. Let R ∈ M(Ω) be Markov. We say it is irreducible if for all 0 ≤ s <
t ≤ 1, we have:

Rs ⊗Rt � Rs,t � Rs ⊗Rt. (17)

Indeed, we have:

Lemma 3.6. Let R ∈ M(Ω) be Markov and satisfy Assumption 3.5. Then it satisfies also
Assumption 3.3.

In particular, Lemma 3.4 holds for Markov processes satisfying only Assumption 5.3.

Proof. Let us take 0 ≤ s < u < t ≤ 1. First, conditioning Ru ⊗ Rt � Ru,t � Ru ⊗ Rt

with respect to Xu with the help of Lemma B.2 leads to:

Rt � R(Xt ∈ r|Xu)� Rt, R-a.e. (18)

Then, we use the disintegration theorem to get the decomposition:

Rs,u,t = Rs,u ⊗R(Xt ∈ r|Xs, Xu) = Rs,u ⊗R(Xt ∈ r|Xu),

where the second equality is obtained thanks to the Markov property of R. The result
follows from combining (18) and Rs ⊗Ru � Rs,u � Rs ⊗Ru. �

Next result shows that (17) is indeed an irreducibility requirement in the sense of
Markov processes theory. Let us split it into:

(H1) : Rst � Rs ⊗Rt, ∀0 ≤ s < t ≤ 1;

(H2) : Rs ⊗Rt � Rst, ∀0 ≤ s < t ≤ 1.

Proposition 3.7. Let R ∈ M(Ω) be Markov.
(a) Under the assumption (H1), for all 0 ≤ s < t ≤ 1, we have

R(Xt ∈ • | Xs = x) = r(s, x; t, •)Rt, ∀x ∈ X , Rs-a.e. (19)
R(Xs ∈ • | Xt = y) = r(s, •; t, y)Rs, ∀y ∈ X , Rt-a.e.,

where the transition density is given by r(s, x; t, y) :=
dRst

dRs ⊗Rt

(x, y).

(b) If in addition (H2) holds, i.e. (17) is satisfied, then r is positive in the sense that

r(s, x; t, y) > 0, ∀(x, y), Rs ⊗Rt-a.e., ∀0 ≤ s < t ≤ 1. (20)

(c) The property (17) is equivalent to the existence of a transition density r satisfying
(19) and (20).
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Proof. Apply Lemma B.2 to (H1). We see that R(Xs ∈ • | Xt = y) � Rs, for Rt-almost
all y and that R(Xt ∈ • | Xs = x) � Rt, for Rs-almost all x. This implies that for all
0 ≤ s < t ≤ 1, there are measurable functions −→r and ←−r such that

R(Xt ∈ • | Xs = x) = −→r (s, x; t, •)Rt, ∀x ∈ X , Rs-a.e.
R(Xs ∈ • | Xt = y) =←−r (s, •; t, y)Rs, ∀y ∈ X , Rt-a.e.

It happens that
−→r (s, x; t, y) =←−r (s, x; t, y) = r(s, x; t, y), ∀(x, y) ∈ X 2, Rs ⊗Rt-a.e.

with r(s, x; t, y) :=
dRst

dRs ⊗Rt

(x, y), (again, we invoke (H1)). To see this, note that the

joint measure Rst writes as

Rst = r(s, •; t, •)Rs ⊗Rt

= Rs ⊗R(Xt ∈ • | Xs = x) = −→r (s, •; t, •)Rs ⊗Rt

= Rt ⊗R(Xs ∈ • | Xt = y) = ←−r (s, •; t, •)Rs ⊗Rt.

(When there are two •, the first one refers to the first variable, and the second one to the
second variable.). Finally, under (H1) the additional hypothesis (H2) is equivalent to (20)
and statements (b) and (c) are obvious. �

The functions −→r and ←−r are the forward and backward transition densities. By the
first the statement of the proposition, it is correct to call r the transition density without
mentioning any direction of time.

Tensorization of irreducibility. Here we prove:

Lemma 3.8. Let R ∈ M(Ω) be a reciprocal process satisfying Assumption 3.3. Then for
all 0 ≤ t1 < t2 < · · · < tk ≤ 1, we have:

Rt1 ⊗ · · · ⊗Rtk � Rt1,...,tk � Rt1 ⊗ · · · ⊗Rtk . (21)

Proof. Let us prove this by induction. We suppose that (21) holds for all 0 ≤ t1 < t2 <
· · · < tk ≤ 1 for all 3 ≤ k ≤ p. Then, we choose 0 ≤ t1 < t2 < · · · < tp+1 ≤ 1. We use
once again Lemma B.2 to do the conditioning of

Rt1 ⊗Rtp ⊗Rtp+1 � Rt1,tp,tp+1 � Rt1 ⊗Rtp ⊗Rtp+1

with respect to (Xt1 , Xtp). We get

Rt1 ⊗Rtp+1 � R(Xtp+1 ∈ r|Xt1 , Xtp)� Rt1 ⊗Rtp+1 , R-a.e. (22)

Then, we use the disintegration theorem to get the decomposition:

Rt1,...,tp+1 = Rt1,...,tp ⊗R(Xtp+1 ∈ r|Xt1 , . . . , Xtp) = Rt1,...,tp ⊗R(Xtp+1 ∈ r|Xt1 , Xtp),

where the second equality is obtained thanks to the reciprocity of R. The result follows
from combining (22) and the induction assumption. �
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4. Minimizing the relative entropy

The purpose of this section is to prove Theorem 4.5 below, where we prove formula (2)
for the solutions of the extended Schrödinger problem, that is in the case when there is no
endpoint constraint. Before stating and proving Theorem 4.5, let us define precisely the
relative entropy in the case when R is unbounded. Then, we will state two basic properties
of the relative entropy which will be useful in the proof of the theorem. Finally, we will
introduce the extended Schrödinger problem, and give the result.

The relative entropy with respect to the conditionable path measure R ∈ M(Ω) is
defined for all P ∈ P(Ω), by

H(P |R) := EP

[
log

dP

dR

]
∈ (∞,∞].

In fact, this definition is not completely rigorous when R is unbounded.

Relative entropy with respect to an unbounded measure. If R is unbounded, one
must restrict the definition of H( r|R) to some subset of P(Ω) as follows. As R is assumed
to be conditionable, it is a fortiori σ-finite and there exists some measurable function
W : Ω→ [0,∞) such that

zW :=

∫
Ω

e−W dR <∞. (23)

Define the probability measure RW := z−1
W e−W R so that log(dP/ dR) = log(dP/ dRW )−

W − log zW . It follows that for any P ∈ P(Ω) satisfying
∫

Ω
W dP <∞, the formula

H(P |R) := H(P |RW )−
∫

Ω

W dP − log zW ∈ (−∞,∞],

P ∈ PW (Ω) := {P ∈ P(Ω) : EP [W ] <∞}

is a meaningful definition of the relative entropy which is coherent in the following sense.
If
∫

Ω
W ′ dP < ∞ for another measurable function W ′ : Ω → [0,∞) such that zW ′ < ∞,

then H(P |RW )−
∫

Ω
W dP − log zW = H(P |RW ′)−

∫
Ω
W ′ dP − log zW ′ ∈ (−∞,∞].

Therefore, H(P |R) is well-defined for any P ∈ P(Ω) such that
∫

Ω
W dP < ∞ for some

measurable nonnegative function W verifying (23).

A basic lemma from statistical physics. We recall one fundamental easy result from
statistical physics. Let (Z1, r1) and (Z2, r2) be two measure spaces with r1 and r2 two
probability measures on Z1 and Z2 respectively. Let us call X1, X2 the projections on the
first and second variable respectively in the product space Z1 × Z2. For any probability
measure π ∈ P(Z1 × Z2) on the product space Z1 × Z2, we denote π1 := X1#π and
π2 := X2#π its marginals on Z1 and Z2 respectively.

Lemma 4.1. For any π ∈ P(Z1 ×Z2), we have:

H(π|r1 ⊗ r2) ≥ H(π1|r1) +H(π2|r2) = H(π1 ⊗ π2|r1 ⊗ r2).

The corresponding equality: H(π|r1⊗ r2) = H(π1|r1) +H(π2|r2), holds if and only if π is
a product measure, i.e. π = π1 ⊗ π2.
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Proof. With the disintegration π = π1⊗πz1 and the additive decomposition of the entropy,
we see that

H(π|r1 ⊗ r2) = H(π1|r1) +

∫
Z1

H(πz1 | r2) π1(dz1)

≥ H(π1|r1) +H
(∫
Z1

πz1 π1(dz1)
∣∣∣ r2

)
= H(π1|r1) +H(π2|r2) = H(π1 ⊗ π2|r1 ⊗ r2),

where the inequality is a consequence of the convexity of the relative entropy and Jensen’s
inequality. Tracking the equality in Jensen’s inequality, we see that π must satisfy πz1 = π2

for π1-almost all z1 ∈ Z1, i.e. π = π1 ⊗ π2. �

Let us recall the physical interpretation of this result. Consider two noninteracting
random particle systems 1 and 2 respectively governed by the measures r1 and r2. Be-
cause of the absence of interaction, the whole system 1+2 is governed by the product
measure r1 ⊗ r2. Suppose that one observes that the average configurations of 1 and 2
are respectively close to π1 and π2. Then, the most likely actual state π1+2 of the whole
system 1+2 is the product π1 ⊗ π2, meaning that no extra correlation should come into
the picture. This result is often quoted as the additivity of the entropy of noninteracting
systems, since H(π1+2|r1+2) = H(π1|r1) +H(π2|r2).

A basic lemma from theoretical statistics. Next result is well-known in theoretical
statistics where it gives rise to the notion of exhaustive statistics of a dominated statistical
model, see [11]. Let Z and S be two Polish spaces equipped with their Borel σ-fields and
S : Z → S a measurable mapping. Consider a positive σ-finite measure r and a probability
measure p on Z such that p � r. We denote rS := S#r and pS := S#p and we assume
that rS is also a σ-finite measure on S to be able to consider the conditional measure
r( r|S). Because of Proposition B.1, we have ps � rS.

Lemma 4.2. Let r,p and S as above. The two following assertions are equivalent:
(i) the following conditional laws coincide:

p( r|S) = r( r|S), p-a.e.

(ii) There is a measurable map fS → [0,∞) such that:
dp

dr
= f ◦ S, r-a.e.

In this case, we have f =
dpS
drS

.

Proof. • Proof of (i)⇒(ii). The statement: "p( r|S) = r( r|S), p-a.e." is equivalent to
p =

∫
S r(

r|S = s)pS(ds). Hence, for any bounded measurable function u : Z → R,

Ep[u] =

∫
S
Er[u|S = s]pS(ds) =

∫
S
Er[u|S = s]

dpS
drS

(s) rS(ds)

=

∫
S
Er

[dpS
drS

(s) u
∣∣∣S = s

]
rS(ds) =

∫
Z

dpS
drS

(S) u dr
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which means
dp

dr
=

dpS
drS

(S).

• Proof of (ii)⇒(i). For any bounded measurable function u : Z → R,

Ep[u] =

∫
Z
f(S) u dr =

∫
S
Er[u|S = s]f(s) rS(ds) =

∫
S
Er[u|S = s] (frS)(ds).

Choosing u = v◦S with v : S → R bounded and measurable leads to EpS
(v) =

∫
S v d(frS).

This means that f =
dpS
drS

. Finally, identifying Ep[u v(S)] =
∫
S Ep[u|S = s]v(s)pS(ds)

with Ep[u v(S)] =
∫
S Er[u|S = s]v(s)pS(ds) gives us p( r|S) = r( r|S), p-a.e. �

Statement of the extended Schrödinger problem. We are interested in the mar-
ginal constraint Pt = µt for all t ∈ T ⊂ [0, 1], where µt ∈ P(X ), t ∈ T . The entropy
minimization problem we consider is:

H(P |R)→ min; P ∈ P(Ω) : Pt = µt,∀t ∈ T . (24)

It is a generalization of the dynamical Schrödinger problem corresponding to T = {0, 1}.
The properties of the relative entropy lead to the following existence result stating that
a unique solution to this problem exists if and only if there is at least one competitor.
Results concerning the existence of such competitors can be found for instance in [12, 14],
but we do not wish to develop them here.

Proposition 4.3. Problem (24) admits a solution if and only if there exists some Q ∈
P(Ω) such that Qt = µt for all t ∈ T and H(Q|R) < ∞. In this case, the solution P is
unique.

Sketch of proof. This argument is standard. The conclusion follows from the three follow-
ing facts:
(i) As Ω is a Polish space, the relative entropy H( r|R) has compact sublevels on P(Ω)

with respect to the usual narrow topology σ(P(Ω),Cb(Ω)).
(ii) The constraint set {P ∈ P(Ω);Pt = µt, t ∈ T } is closed.
(iii) The existence of Q in our assumption implies that the compact set

{P ∈ P(Ω);Pt = µt, t ∈ T } ∩ {P ∈ P(Ω);H(P |R) ≤ H(Q|R)}

is not empty. Hence, it contains a solution.
(iv) Uniqueness follows from the strict convexity of the relative entropy, and from the

convexity of the constraint set.

Remark 4.4 (The closure of T ). For all P ∈ P(Ω), t 7→ Pt is continuous. For this reason,
the extended Schrödinger problem (24) only admits solution if t ∈ T 7→ µt can be extended
into a continuous map on [0, 1]. In particular, it must admit limits for t ∈ ∂T , and if so,
for all t ∈ ∂T , the property:

Pt = lim
s→t
s∈T

µs

holds automatically.
Hence, it is clear that we can suppose without loss of generality that T is closed. This

is systematically assumed in the following.
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Factorization result for the extended Schrödinger problem. We are now ready
to state the central result of this article: a solution to this type of extended Schrödinger
problems is Markov, and the additive functional given by Theorem 2.10 cancels outside
T . Even if in next Section 5 we only apply this result to the case when T is finite, we
think that this result is interesting in the general case.

Theorem 4.5. Suppose that R is Markov, and that problem (24) admits a (unique)
solution P . Then P is Markov. In particular, there exists a regular additive functional A
such that:

dP

dR
= exp

(
A
(
[0, 1]

))
. (25)

Moreover, A([0, 1]) is σ(XT )-measurable, and for any interval I ⊂ [0, 1] with inf I = s
and sup I = t, A(I) is σ(Xs, Xt, XI∩T )-measurable.

Besides, if T is closed, and if R satisfies the irreducibility Assumption 3.5, there exists
an additive functional A (which is not regular anymore; see Remark 4.6) with the following
additional property: for all interval I ⊂ [0, 1]:

I ∩ T = ∅ ⇒ A(I) = 0. (26)
In this case, for all interval I ⊂ [0, 1], A(I) is XI∩T -measurable.

If the complementary of T is a finite union of disjoint open intervals, then this additive
functional A is regular.

Remark 4.6. As we saw in the statement of Theorem 4.5, for a general T we do not know
how to access to a regular additive functional satisfying (26). However, the A we are going
to build is in some sense "regular up to a closed set of empty interior". More precisely if
one writes the complementary of T as a countable union of disjoint open intervals:

T c =
⊔
i∈Λ

(si, ti),

then regularity fails at the accumulation points of the endpoints {si, ti | i ∈ Λ}. In partic-
ular, if the union is finite, regularity is preserved, as stated in Theorem 4.5.

Proof. • The solution P is Markov. We denote for any 0 < s < 1, QXs := Q( r|Xs),
QXs
← := (X[0,s])#Q

Xs and QXs
→ := (X[s,1])#Q

Xs for any conditionable Q ∈ M(Ω). Let us
also define for any Q ∈ P(Ω),

Q̃s :=

∫
X

[QXs=x
← ⊗QXs=x

→ ]Qs(dx) ∈ P(Ω).

Referring to (3), we have to prove that for all 0 < s < 1, the solution P satisfies

PXs = PXs
← ⊗ PXs

→ , P -a.e.
or equivalently

P̃ s = P.

To this purpose, it is sufficient to show that
(i) for any Q ∈ P(Ω), we have

H(Q̃s|R) ≤ H(Q|R), ∀0 < s < 1

with equality if and only if Q = Q̃s,
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(ii) and also that

Q̃s
t = Qt ∈ P(X ), ∀0 ≤ t ≤ 1, 0 < s < 1.

Let us fix s and Q ∈ P(Ω) and start proving (i). By the additive decomposition of the
entropy,

H(Q|R) = H(Qs|Rs) +

∫
X
H(QXs=x |RXs=x)Qs(dx)

= H(Qs|Rs) +

∫
X
H(QXs=x |RXs=x

← ⊗RXs=x
→ )Qs(dx)

≥ H(Qs|Rs) +

∫
X
H(QXs=x

← ⊗QXs=x
→ |RXs=x

← ⊗RXs=x
→ )Qs(dx),

where at the second equality we use the assumed Markov property of R and at the last
inequality we apply Lemma 4.1 with r1 = RXs=x

← and r2 = RXs=x
→ . In addition, Lemma 4.1

tells us that if the identity:

QXs = QXs
← ⊗QXs

→ , Q-a.e.

fails, then the last inequality is strict. This proves (i).
It remains to prove (ii), i.e. the operation Q ; Q̃s does not alter the marginals. For

any bounded measurable function a : Z → R and any t ∈ [0, s],

EQ[a(Xt)] =

∫
X
EQXs=x

←
[a(Xt)]Qs(dx) =

∫
X
EQXs=x

← ⊗QXs=x
→

[a(Xt)]Qs(dx) = EQ̃s [a(Xt)]

and for any t ∈ [s, 1] a similar reasoning still works:

EQ[a(Xt)] =

∫
X
EQXs=x

→
[a(Xt)]Qs(dx) =

∫
X
EQXs=x

← ⊗QXs=x
→

[a(Xt)]Qs(dx) = EQ̃s [a(Xt)].

This proves (ii).
Therefore, the solution P is Markov and we know with Theorem 2.10 that this is equivalent
to:

dP

dR
= exp

(
A
(
[0, 1]

))
for some regular additive functional A.
• Measurability. To prove that A

(
[0, 1]

)
is σ(XT )-measurable, it is enough to show that

dP

dR
is XT -measurable. (27)

Using the additive decomposition of the entropy, we see that

H(P |R) = H(PT |RT ) +

∫
ZT

H(PXT =ζ |RXT =ζ)PT (dζ)

and it follows that
P̂ :=

∫
ZT

RXT =ζ PT (dζ) ∈ P(Ω)

satisfies

H(P̂ |R) = H(PT |RT ) ≤ H(P |R).
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We also have P̂T = PT , implying a fortiori that P̂t = Pt for all t ∈ T . As a consequence,
the solution P of the Schrödinger problem satisfies P = P̂ . In other words PXT = RXT ,
P -a.e. and we know with Lemma 4.2 that this is equivalent to (27).
The proof of the fact that for an interval I ⊂ [0, 1] with inf I = s and sup I = t, A(I) is
σ(Xs, Xt, XI∩T )-measurable follows the same lines by noticing that the restriction XI#P
of P to I is a solution of the extended Schrödinger problem (24) between the times s and
t:

H(Q|XI#R)→ min; P ∈ P
(
ΩI) : Qu = µu, ∀u ∈ I ∩ T , Qs = Ps, Qt = Pt,

where ΩI is the set of paths on the time interval I, with values in X .
• Construction of a version of A([0, 1]) canceling outside T . Now, in case R satisfies
the irreducibility Assumption 3.5, the goal is to build an additive functional Ã such that
Ã([0, 1]) = A([0, 1]) and such that (26) holds for Ã.

First, we can suppose without loss of generality that 0, 1 ∈ T . Indeed, if it is not
the case, by calling s := min T and t := max T , it suffices to prove the result for the
restriction P[s,t] and R[s,t] and then to extend the obtained additive functional by 0 on the
intervals included outside [s, t].

Here is the procedure to define Ã from A. Let us write the complementary set of T as
a countable union of disjoint open intervals:

T c =
⊔
i∈Λ

(si, ti).

For each i ∈ Λ, call ui := (si + ti)/2. We have:

A((si, ti)) = A((si, ui]) + A((ui, ti)).

but by the first part of the theorem, A((si, ti)) is σ(Xsi , Xti)-measurable, so that we are
in the framework of Lemma 3.4: there exist αi, βi such that R-a.e.,

A((si, ti)) = αi(Xsi) + βi(Xti).

Let us define Ã([s, t]) for s ≤ t ∈ [0, 1] in the following way. We call ϕ(s) := ti if
si ≤ s ≤ ti and ϕ(s) = s otherwise. Correspondingly, we call ψ(t) = si if si ≤ t ≤ ti and
ψ(t) = t otherwise. Then, we set:

Ã
(
[s, t]

)
:= 1{ϕ(s)≤ψ(t)}A

(
[ϕ(s), ψ(t)]

)
+
∑
i∈Λ

1{si<s≤ti≤t}βi(Xti) +
∑
j∈Λ

1{s≤sj≤t<tj}αj(Xsj).

(Note that for each sum, at most one term is nonzero so that this formula is well defined.)
Clearly Ã([0, 1]) = A([0, 1]), Ã([s, t]) is X[s,t]-measurable, and for any interval I ⊂ T c,
this formula leads to Ã(I) = 0.

Let us prove that Ã is an additive functional. Once again, we follow Remark 2.4. Let
us take 0 ≤ s ≤ u ≤ v ≤ t and suppose that Ã([u, v]) = −∞. We show that:

Ã([s, v]) = Ã([u, t]) = Ã([s, t]) = −∞. (28)

It means that ϕ(u) ≤ ψ(v) and that one of the following holds:
• A([ϕ(u), ψ(v)]) = −∞,
• there exists i ∈ Λ such that si < u ≤ ti ≤ v and βi(Xti) = −∞,
• there exists i ∈ Λ such that u ≤ si ≤ v < ti and αi(Xsi) = −∞.
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In the first case, as [ϕ(u), ψ(v)] is a subset of [ϕ(s), ψ(v)], [ϕ(u), ψ(t)] and [ϕ(s), ψ(t)],
Ã = −∞ on this three intervals, so that (28) holds.
In the second case, βi(Xti) also intervenes in the definition of Ã([u, t]), which is hence
infinite. Then, either si < s, and so βi(Xti) also intervenes in the definition of Ã([s, v]),
and Ã([s, t]) which let us conclude, or s ≤ si so that (si, ti) is a subset of both [ϕ(s), ψ(v)]
and [ϕ(s), ψ(t)]. In this last case, we conclude by using the fact that thanks to (28),
A((si, ti)) = −∞.
The third case is treated in the same way.

Now, we suppose that Ã([u, v]) is finite and we want to show:

Ã([s, t]) + Ã([u, v]) = Ã([s, v]) + Ã([u, t]). (29)

There are several cases to deal with, let us treat them one by one.
• If there is some i ∈ Λ such that [s, t] ⊂ (si, ti), then every term in (29) is zero.
• If s, u are in T \(∪i(si, ti]), and v, t are in T \(∪i[si, ti)) then (29) is a consequence
for the same formula with A instead of Ã.
• If for instance for some i ∈ Λ, si < s ≤ ti ≤ v, then βi(Xti) appears once on the
left-hand side of (29), in the definition of Ã([s, t]), and once on the right-hand
side, in the definition of Ã([s, v]). An analogous argument allows us to treat the
cases where u ≤ si ≤ t < ti, si < u ≤ ti ≤ v ≤ t and u ≤ si ≤ v < ti.
• If there is some i ∈ Λ such that [u, v] ⊂ (si, ti), s ≤ si and t ≥ ti. In that case,
Ã([u, v]) = 0, and

A([ϕ(s), ψ(t)]) = A([ϕ(s), si]) + A((si, ti)) + A([ti, ψ(t)])

= A([ϕ(s), si]) + αi(Xsi) + βi(Xti) + A([ti, ψ(t)]).

The result follows easily by taking into consideration the endpoint terms for s and
t thanks to the previous points.
The cases when [s, v] ⊂ (si, ti) or [u, t] ⊂ (si, ti) are similar and left to the reader.

Finally, for this choice of Ã, if I ⊂ [0, 1] is an interval with inf I = s and sup I = t,
then calling s̃ := inf I ∩ T , t̃ := sup I ∩ T and Ĩ := [s̃, t̃], then, as I\Ĩ is the union of at
most two intervals which do not intersect T :

Ã(I) = Ã(Ĩ) is XI∩T -measurable.

The regularity of Ã in the case when Λ is finite is a consequence of the fact that then,
for each i, s, t 7→ 1{s≤si≤t<ti}αi(Xsi) is right continuous and left limited, and for all i, t
s 7→ 1{si<s≤ti≤t}βi(Xti) is left continuous and right limited. �

5. Under finitely many marginal constraints

The Schrödinger case. Let us consider the easiest setting where there are finitely
many constraints, i.e. T = {t1, t2, . . . , tK} and R is Markov and irreducible in the sense
of Assumption 3.5. Applying Theorem 4.5, we obtain

Theorem 5.1. Suppose R is Markov, irreducible in the sense of Assumption 3.5 and that
T := {t1, . . . , tK} is finite. If the extended Schrödinger problem (24) admits a (unique)
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solution, then the corresponding additive functional A([0, 1]) given by Theorem 4.5 writes
as:

A
(
[0, 1]

)
=

K∑
i=1

fi(Xti)

for some measurable functions fi, 1 ≤ i ≤ K.

Proof. Let us decompose:

A
(
[0, 1]

)
= A

(
[0, t1)

)
+ A

(
(tK , 1]

)
+

K∑
i=1

A
(
{ti}

)
+

K−1∑
i=1

A
(
(ti, ti+1)

)
.

Each term of the form A([0, t1)), A((tK , 1]) or A((ti, ti+1)) cancels because of (26). Then,
each term of the form A({ti}) is Xti-measurable by the measurability property of an
additive functional, and hence of the form fi(Xti). �

The Brödinger case. We are now interested in adding another marginal constraint to
the Schrödinger problem (24). The Brödinger entropy minimization problem is

H(P |R)→ min; P ∈ P(Ω) : Pt = µt,∀t ∈ T , P01 = π (30)
where π ∈ P(X 2) is a prescribed endpoint marginal.

Proposition 5.2. Problem (30) admits a solution if and only if there exists some Q ∈
P(Ω) such that Qt = µt for all t ∈ T , Q01 = π and H(Q|R) < ∞. In this case, the
solution P is unique.

Proof. It follows the same line as the proof of Proposition 4.3. �

However, the solutions of this type of problems are not Markov in general, even when R
is Markov. Instead, they are reciprocal in the sense of Definition 3.1. Before proving this
and giving the analogue of Theorem 4.5 in this context, let us state and prove another
link between Markov and reciprocal measures which will permit us to apply Theorem 5.1
in the Brödinger case.

Lemma 5.3. Let Q ∈ M(Ω) be conditionable. For λ ∈ (0, 1), let us define Ψλ by:

Ψλ : C0([0, 1];X ) −→ C0([0, 1];X × X ),(
t 7→ ωt

)
7−→

(
t 7→ (ωλt, ω1−(1−λ)t)

)
.

(31)

Then Q is reciprocal if and only if for all λ ∈ (0, 1), Qλ := Ψλ#Q is Markov.

Proof. In this proof, we call Zt = (Z1
t , Z

2
t ) the canonical process on C0([0, 1];X × X )

at time t, and we keep on using the notation Xt to denote the canonical process on
C0([0, 1];X ) at time t. Of course, the Definition 2.2 of a Markov process needs to be
adapted to processes with values in X × X .

Let us suppose that Q is reciprocal, and let us take λ ∈ (0, 1). As Ψλ is injective, the
path measure Qλ is conditionable. Let us take t ∈ [0, 1], A ∈ σ(Z[0,t]) and B ∈ σ(Z[t,1]).
We have:

Qλ(A ∩B|Zt) = Q
(

Ψ−1
λ

(
A ∩B

)∣∣∣Xλt, X1−(1−λ)t

)
= Q

(
Ψ−1
λ (A) ∩Ψ−1

λ (B)
∣∣∣Xλt, X1−(1−λ)t

)
.
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But it is clear that Ψ−1
λ (A) is in σ(X[0,λt], X[1−(1−λ)t,1]) and Ψ−1

λ (B) is in σ(X[λt,1−(1−λ)t]),
so that as Q is reciprocal, by (12):

Qλ(A ∩B|Zt) = Q
(

Ψ−1
λ (A)

∣∣∣Xλt, X1−(1−λ)t

)
Q
(

Ψ−1
λ (B)

∣∣∣Xλt, X1−(1−λ)t

)
= Qλ(A|Zt)Qλ(B|Zt).

Hence, Qλ is Markov.
Now, let us suppose that for all λ ∈ (0, 1), Qλ is Markov. Let us fix 0 < s < u < 1,

A ∈ σ(X[0,s], X[u,1]) and B ∈ σ(X[s,u]). We choose λ := s/(1− (u− s)), so that for:

t̄ :=
s

λ
=

1− u
1− λ

= 1− (u− s),

we have both λt̄ = s and 1− (1− λ)t̄ = u. Then, as Ψλ is injective, we have:

Q(A ∩B|Xs, Xu) = Q
(

Ψ−1
λ

(
Ψλ(A)

)
∩Ψ−1

λ

(
Ψλ(B)

)∣∣∣Zt̄)
= Qλ

(
Ψλ(A) ∩Ψλ(B)

∣∣Zt̄).
Noticing that Ψλ(A) ∈ σ(Z[0,t̄]) and Ψλ(B) ∈ σ(Z[t̄,1]) and using the Markov property of
Qλ, we see that

Q(A ∩B|Xs, Xu) = Qλ

(
Ψλ(A)

∣∣Zt̄)Qλ

(
Ψλ(B)

∣∣Zt̄) = Q(A|Xs, Xu)Q(B|Xs, Xu),

completing the proof. �

We are now ready to state and prove the last result of this paper, namely an analogue
of Theorems 4.5 and 5.1 in the case of Brödinger. We do not know for the moment how to
get an analogue of formula (25) in this setting, but the case when T is finite is tractable.

Theorem 5.4. Suppose that R is reciprocal, and that problem (30) admits a (unique)
solution P . Then P is reciprocal.

In addition, if R is irreducible in the sense of Assumption 3.3, and if T := {t1, . . . , tK}
is finite, then there exist measurable functions η, f1, . . . , fK with values in [−∞,+∞) such
that

dP

dR
= exp

(
η(X0, X1) +

K∑
i=1

fi(Xti)

)
.

Remark 5.5 (Dominated reciprocal measures). By analogy with the Markov case and
as already said in the introduction, we could expect that whenever P is reciprocal and
absolutely continuous with respect to R reciprocal, then there exists a measurable function
η and a (regular) additive functional A such that:

dP

dR
= exp

(
η(X0, X1) + A([0, 1])

)
.

We do not know for the moment if this result is true or not, but at least Theorem 5.4 shows
that this is true when P is the solution of a discrete version of the Brödinger problem
with respect to R.

By calling f := exp(η), this formula writes:

P = f(X0, X1)× exp
(
A([0, 1])

)
R.
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In the case when R is Markov, then R′ := exp(A([0, 1]))R is also Markov. Hence P
is a mixing of the bridges of the Markov measure R′ which is absolutely continuous with
respect to R. This means that the only way to build reciprocal measures P from a Markov
measure R such that P � R is to pick a new Markov reference measure in the class of
Markov measures which are dominated by R, and then to mix its bridges.

We have a proof of this result in the situation where R is Markov and irreducible in the
sense of Assumption 3.5, under the important restriction that R � P . But we decided
not to reproduce it here.

Proof of Theorem 5.4. Let us take λ ∈ (0, 1), and let us call as before Pλ := Ψλ#P and
Rλ := Ψλ#R, Ψλ being defined in (31). As the relative entropy is invariant under push-
forwards by injective functions, that is for all Q ∈ P(Ω), H(Ψλ#Q|Ψλ#R) = H(P |R),
problem (30) can be reformulated in terms of Pλ and Rλ. For this, call:

T1 := {t ∈ [0, 1] s.t. λt ∈ T } and T2 := {t ∈ [0, 1] s.t. 1− (1− λ)t ∈ T }.
Then, calling as before (Zt = (Z1

t , Z
2
t )) the canonical process on C0([0, 1];X × X ), Pλ is

easily seen as the solution of the following problem (which is equivalent to (30)):

H(Q|Rλ)→ min; Q ∈ P(C0([0, 1];X × X )) :


Z1
t #Q = µλt, ∀t ∈ T1,

Z2
t #Q = µ1−(1−λ)t, ∀t ∈ T2,

Q0 = π.

In particular, it is also the solution of the more constrained problem:

H(Q|Rλ)→ min; Q ∈ P(C0([0, 1];X × X )) :

{
Zt#Q = (Pλ)t,∀t ∈ T1 ∪ T2,

Q0 = π.

But this one is exactly of Schrödinger type (24). By Lemma 5.3, Rλ is Markov, so that
by Theorem 4.5, Pλ is Markov, and as it is true for any λ ∈ (0, 1), by Lemma 5.3 again,
P is reciprocal.

Now we suppose that R is irreducible and that T = {t1, . . . , tK} is finite, and we
prove the second part of the statement. We suppose without loss of generality that
0 < t1 < · · · < tK . For any 0 < λ < 1 and all t ∈ [0, λ], we call ϕ(t) := 1− (1− λ)t/λ, so
that with the same notations as before, Zt/λ = (Xt, Xϕ(t)). Let us choose λ ∈ (tK , 1) so
that all the ϕ(ti)’s are greater than tK , implying ϕ(ti) 6= tj for any i, j.

We have seen that Pλ is the solution of a Schrödinger problem, constrained on the times
0, t1/λ, . . . , tK/λ. Moreover, we easily see that if R is reciprocal and irreducible in the
sense of Assumption 3.3, then Rλ is not only Markov, but also irreducible in the sense of
Assumption 3.5. As a consequence, by Theorem 5.1:

dPλ
dRλ

= exp
(
η(Z0) + g1(Zt1/λ) + · · ·+ gK(ZtK/λ)

)
.

for some measurable functions η, g1, . . . , gK . By the fact that Ψλ is injective, we easily
deduce that:

dP

dR
= exp

(
η(X0, X1) + g1(Xt1 , Xϕ(t1)) + · · ·+ gK(XtK , Xϕ(tK))

)
.

Hence, the only thing to prove is that each gi(Xti , Xϕ(ti)) can be replaced by a function
fi(Xti). To do so, remark that by the same argument as in the proof of Theorem 4.5,
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dP/ dR is σ(X0, Xt1 , . . . , XtK , X1) measurable. As a consequence, there is a measurable
function F (X0, Xt1 , . . . , XtK , X1) such that R-a.e.:

F (X0, Xt1 , . . . , XtK , X1) = η(X0, X1) + g1(Xt1 , Xϕ(t1)) + · · ·+ gK(XtK , Xϕ(tK)).

Disintegrating this expression with respect toXϕ(t1), . . . , Xϕ(tK) and using Proposition B.1,
we see that
for Rϕ(t1),...,ϕ(tK)-almost all (y1, · · · , yK),

F (X0, Xt1 , . . . , XtK , X1) = η(X0, X1) + g1(Xt1 , y1) + · · ·+ gK(XtK , yK),

R( r|Xϕ(t1) = y1, . . . , Xϕ(tK) = yK)-a.e.
(32)

On the other hand, we know with Lemma 3.8 that

R0,t1,...,tK ,1 � R0 ⊗Ki=1 Rti ⊗R1.

and
R0 ⊗Ki=1 Rti ⊗Ki=1 Rϕ(tK−i) ⊗R1 � R0,t1,...,tK ,ϕ(tK),...,ϕ(t1),1.

Disintegrating this last relation with respect to Xϕ(t1), . . . , Xϕ(tK) thanks to Lemma B.2
gives us

R0 ⊗Ki=1 Rti ⊗R1 � R((X0, Xt1 , . . . , XtK , X1) ∈ r|Xϕ(t1) = y1, . . . , Xϕ(tK) = yK),

and taking the first relation into account, we arrive at

R0,t1,...,tK ,1 � R((X0, Xt1 , . . . , XtK , X1) ∈ r|Xϕ(t1) = y1, . . . , Xϕ(tK) = yK),

for Rϕ(t1),...,ϕ(yK)-almost all (y1, · · · , yK).
With (32), this implies that one can choose y1, . . . , yK (in a set with full mass with respect
to Rϕ(t1),...,ϕ(tK)) such that

F (X0, Xt1 , . . . , XtK , X1) = η(X0, X1) + g1(Xt1 , y1)+ · · ·+ gK(XtK , yK), R-a.e.

The result follows by choosing fi(Xti) := gi(Xti , yi). �

Appendix A. Regularity of two indices martingales

In [2], Bakry generalizes the classical càdlàg regularity results for martingales in the
case two indices martingales. Let us present briefly his results and explain how it is used
in our context.

Take (Ω,G,P) a complete probability space and (G1
u)u∈R+ and (G2

v)v∈R+ two right con-
tinuous and complete filtrations. We introduce the two indices filtration (Gu,v)(u,v)∈R+×R+

defined for all (u, v) ∈ R+×R+ by Gu,v = G1
u∩G2

v . We assume the following independence
condition:

(H) for all (u, v) ∈ R+ × R+, G1
u and G2

v are independent conditionally on
Gu,v.

On R+ × R+ we define the binary relations

forall (u, v) and (µ, ν) ∈ R+ × R+, (u, v) � (µ, ν) ⇔ u ≤ µ and v ≤ ν,

forall (u, v) and (µ, ν) ∈ R+ × R+, (u, v) ≺ (µ, ν) ⇔ u < µ and v < ν.

The first one is a partial order and the second one is a strict partial order.
In this setting, a martingale is a process M = (Mu,v) such that fixing u (resp. v), M is

a (G1
u)-martingale (resp. (G2

v)-martingale). This is equivalent with the fact that
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• for all (u, v) ∈ R+ × R+, Mu,v belongs to L1(Ω) and is Gu,v-measurable,
• for all (u, v) � (µ, ν),

E[Mµ,ν |Gu,v] = Mu,v a.e.

Fixing ω, a trajectory is said to be right continuous if for all (u, v) � (0, 0),

lim
(µ,ν)→(u,v)
(µ,ν)�(u,v)

Mµ,ν = Mu,v.

It is said to be left limited if for all (u, v) � (0, 0),

lim
(µ,ν)→(u,v)
(µ,ν)≺(u,v)

Mµ,ν exists.

Remark that in the first case, we use � while in the second one, that is ≺ that comes into
play.

The main result we will use is the following.

Theorem A.1. Let M = (Mu,v) a two indices martingale with the following additional
property:

∀(u, v) ∈ R+ × R+, E
[
|Mu,v| log+

(
|Mu,v|

)]
<∞.

Then M admits a modification such that for every ω, M(ω) is right continuous and left
limited. In particular, Mu,v is well defined for all ω for all (u, v).

Let us explain now how to use this result in our setting. In the case of Theorem 2.10,
we want to show some regularity for a closed martingale of the following type:

Ds,t := ER[D|X[s,t]]

with
• D ≥ 0 and E[D logD] < +∞,
• (σ(X[0,t])t∈[0,1] and (σ(X[s,1])s∈[0,1] are respectively right and left continuous,
• R is Markov.

We define
• for all u ∈ R+ G1

u := σ(X[1−u∧1,1]) (which is right continuous),
• for all v ∈ R+, G2

v := σ(X[t∧1,1]) (which is right continuous),
• M = (Mu,v)(u,v)∈R+×R+ is defined from (Ds,t) by the change of variable (s, t) =

(1− u, v) as in Figure 3.
The assumption on the L logL integrability of M is trivial with Jensen inequality, so

we only need to check assumption (H). It is quite clear that it is equivalent to the fact
that for all s ≤ t in [0, 1], σ(X[s,1]) and σ(X[0,t]) are independent conditionally on σ(X[s,t]).
But this is a direct application of the Markov property of R. As a consequence, M has
a modification which is right continuous and left limited. In particular, as far as D is
concerned and as illustrated in Figure 4, we get up to a modification:

∀ 0 ≤ s ≤ t ≤ 1, (s, t) 6= (0, 1), lim
(σ,τ)→(s,t)
σ≤s, τ≥t

Dσ,τ = Ds,t,

∀0 ≤ s < t ≤ 1, lim
(σ,τ)→(s,t)
σ>s, τ<t

Dσ,τ exists.
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1

E[D]

D1−u,v
D0,v

D1−u,1 D0,1

Figure 3. Definition of M from D.
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(s, t)
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t

0 1

1
(s, t)

Figure 4. To the left, the set of definition of D. In the middle, the
continuity property of D. To the right, the "left limit" property of D.

This is the analogue of the regularity condition for contents stated in Definition 2.5.

Appendix B. Conditioning trick

Let us review a few elementary properties of conditioning and absolute continuity. Let
A and B be two Polish spaces equipped with the their Borel σ-fields, and let q and p
be respectively a nonnegative σ-finite measure and a probability measure on A. It is
assumed that A and B are Polish to ensure, for any measurable mapping φ : A → B, the
disintegration formula

q =

∫
B
qφ=b qφ(db),

where qφ := φ#q and qφ=b := q( r | φ = b) is uniquely well defined ∀b, qφ-a.e. We refer to
[13][III, 70] for this standard result.

Proposition B.1. For any measurable mapping φ : A → B, we have

p� q ⇐⇒
{

pφ � qφ,
pφ=b � qφ=b, ∀b, pφ-a.e.

Proof. To show that p � q implies pφ � qφ, it is enough to remark that 0 = qφ(B) :=
q(φ−1(B)), implies that pφ(B) := p(φ−1(B)) = 0.
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Let us show that ∀b, pφ-a.e., pφ=b � qφ=b. For this, let us call f := dp/ dq and
g := d (φ#p)/ d (φ#q). It is straightforward to check that

p̃b :=
f

g(b)
qφ=b

is well defined ∀b, pφ-a.e. and that it solves the problem of disintegrating p with respect
to φ. Hence, by uniqueness of the disintegration, ∀b, pφ-a.e., pφ=b = p̃b. The result
follows.
The converse part of the statement is an easy consequence of the disintegration formula.

�

Let X and Y be two Polish spaces equipped with their Borel σ-fields. Denoting (X, Y )
the identity on X × Y , qX ∈ M(X ),qY ∈ M(Y) are the marginal measures of q.

Lemma B.2 (Conditioning trick). Assume that q ∈ M(X × Y) satisfies

qX ⊗ qY � q� qX ⊗ qY .

Then, for qY -almost all y ∈ Y , we have qX � qY=y
X := qY=y(X ∈ r)� qX .

In particular, if some property holds qY=y
X -a.e., for any y in some Yo with qY (Yo) > 0,

then this property holds qX-a.e.

Proof. Applying previous proposition with A = X × Y , p = qX ⊗ qY and φ = Y , we
obtain qX � qY=y

X , ∀y,qY -a.e. We obtain the other inequality by reversing the roles of q
and qX⊗qY . Last statement is a consequence of the definition of the absolute continuity,
because: p� r =⇒ [r-a.e. implies p-a.e.]. �
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