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ABSTRACT. We describe some analogy between optimal transport and the Schrédinger
problem where the transport cost is replaced by an entropic cost with a reference path
measure. A dual Kantorovich type formulation and a Benamou-Brenier type repre-
sentation formula of the entropic cost are derived, as well as contraction inequalities
with respect to the entropic cost. This analogy is also illustrated with some numerical
examples where the reference path measure is given by the Brownian or the Ornstein-
Uhlenbeck process.

Our point of view is measure theoretical and the relative entropy with respect to path
measures plays a prominent role.
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In this article, some analogy between optimal transport and the Schrédinger problem is
investigated. A Kantorovich type dual equality, a Benamou-Brenier type representation of
the entropic cost and contraction inequalities with respect to the entropic cost are derived
when the transport cost is replaced by an entropic one. This analogy is also illustrated

with some numerical examples.
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Our point of view is measure theoretical rather than based on stochastic optimal control
as is done in the recent literature; the relative entropy with respect to path measures
plays a prominent role.

Before explaining the Schrodinger problem which is associated to an entropy minimiza-
tion, we first introduce the Wasserstein quadratic transport cost W3 and its main proper-
ties. For simplicity, our results are stated in R™ rather than in a general Polish space. Let
us note that properties of the quadratic transport cost can be found in the monumental
work by C. Villani [Vil03, Vil09|. In particular its square root Ws is a (pseudo-)distance
on the space of probability measures which is called Wasserstein distance. It has been in-
tensively studied and has many interesting applications. For instance it is an efficient tool
for proving convergence to equilibrium of evolution equations, concentration inequalities
for measures or stochastic processes and it allows to define curvature in metric measure
spaces.

The Wasserstein quadratic cost W} and the Monge-Kantorovich problem. Let
P(R™) be the set of all probability measures on R". We denote its subset of probability
measures with a second moment by P»(R") = {u € P(R"); [ ||* u(dx) < oco}. For any
o, 1 € Po(R™), the Wasserstein quadratic cost is

Wi(po, ) =inf [y~ af n(dody) (L)

R7xR™
where the infimum is running over all the couplings 7™ of py and pq, namely, all the
probability measures m on R™ x R™ with marginals py and p, that is for any bounded
measurable functions ¢ and ¥ on R",

| @+ v mtdndy) = [ odn+ [ v (12)
R" xR" n R"
In restriction to Py(R™), the pseudo-distance W5 becomes a genuine distance. The Monge-

Kantorovich problem with a quadratic cost function, consists in finding the optimal cou-
plings 7 that minimize (1.1).

The entropic cost A® and the Schrodinger problem. Let fix some reference non-
negative measure R on the path space Q@ = C([0,1],R") and denote Ry; the measure on
R™ x R™. It describes the joint law of the initial position X, and the final position X; of
a random process on R™ whose law is R. This means that

Ry = (Xo, X1)#R

is the push-forward of R by the mapping (Xg, X7). Recall that the push-forward of a
measure « on the space A by the measurable mapping f : A — B is defined by

fua(db) = a(f*(db)), db C B,

in other words, for any positive function H,

[ Hatgsa) = [ H(7)de
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For any probability measures po and y; on R”, the entropic cost A% (ug, p11) of (o, 1) is
defined by

A (po, 1) = inf H (7| Ror)

where H(7|Ry1) = fRann log(dm/dRo;) dr is the relative entropy of m with respect to Ry
and 7w runs through all the couplings of o and py. The Schrodinger problem consists in
finding the unique optimal entropic plan 7 that minimizes the above infimum.

In this article, we choose R as the reversible Kolmogorov continuous Markov process
specified by the generator %(A — VV - V) and the initial reversing measure e~"® dz.

Aim of the paper. Below in this introductory section, we are going to focus onto four
main features of the quadratic transport cost 3. Namely:

e the Kantorovich dual formulation of W;

e the Benamou-Brenier dynamical formulation of W;

e the displacement interpolations, that is the Wj-geodesics in Py (R™);
e the contraction of the heat equation with respect to W3.

The goal of this article is to recover analogous properties for A® instead of W2, by
replacing the Monge-Kantorovich problem with the Schrodinger problem.

Several aspects of the quadratic Wasserstein cost. Let us provide some detail
about these four properties.

Kantorovich dual formulation of W3. The following duality result was proved by Kan-
torovich in [Kan42|. For any pug, p; € P2(R"),

sz(ﬂmﬂl) = Sip { Yduy — - QY dﬂo} ) (1.3)

Rn

where the infimum runs over all bounded continuous function ¢ and

Q(x) = sup {¢(y) — [z —y[’}, zeR"

yeR’n
It is often expressed in the equivalent form,

W%(uo,ul)zsup{ @s@dm—/ soduo}, (1.4)
R’ﬂ n

®p

where the infimum runs over all bounded continuous function ¢ and
Qe(y) = inf {p(z)+|y—=[*}, yeR"

The map Qv is called the sup-convolution of ¢ and its defining identity is sometimes
referred to as the Hopf-Lax formula.
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Benamou-Brenier formulation of W3. The Wasserstein cost admits a dynamical formula-
tion: the so-called Benamou-Brenier formulation which was proposed in [BB00]. It states
that for any pg, 11 € P2(R™),

W3 (o, 1) = inf / lv|? du, dt, (1.5)
() J[0,1] xR"

where the infimum runs over all paths (v, v¢)c0,1) Where v, € P(R") and v; € R" are

such that v is absolutely continuous with respect to time in the sense of [AGS08, Ch. 1]

forall 0 <t <1, vy = o, 1 = py and

8tVt+V‘<Vt’Ut):0, 0§t§1

In this equation which is understood in a weak sense, V- stands for the standard diver-
gence of a vector field in R™ and v is identified with its density with respect to Lebesgue
measure. This general result is proved in [AGS08, Ch.8|. A proof under the additional
requirement that pg, u; have compact supports is available in [Vil03, Thm. 8.1].

Displacement interpolations. The metric space (Py(R™), Ws) is geodesic. This means that
for any probability measure jig, 11 € Po(R"), there exists a path (u)icp,1] in P2(R™) such
that for any s,t € [0, 1],

Walps, i) = [t = s[Wa(po, pa).
Such a path is a constant speed geodesic in (Pa(R™), Ws), see [AGS08, Ch.7]. Moreover

when v is absolutely continuous with respect to the Lebesgue measure, there exists a
convex function ¢ on R™ such that for any t € [0, 1], the geodesic is given by

pe = ((1 = t)Id + tVe))upuo. (1.6)

This interpolation is called the McCann displacement interpolation in (Po(R™), W),
see [Vil03, Ch. 5.

Contractions in Wasserstein distance. Contraction in Wasserstein distance is a way to
define the curvature of the underlying space or of the reference Markov operator. In
its general formulation, the von Renesse-Sturm theorem tells that the heat equation in
a smooth, complete and connected Riemannian manifold satisfies a contraction property
with respect to the Wasserstein distance if and only if the Ricci curvature is bounded from
below, see [vRS05]. In the context of the present article where Kolmogorov semigroups
on R™ are considered, two main contraction results will be explained with more details in
Section 6.

Organization of the paper. The setting of the present work and notation are in-
troduced in Section 2. The entropic cost Af is defined with more detail in Section 3
together with the related notion of entropic interpolation, an analogue of the displace-
ment interpolation. A dual Kantorovich type formulation and a Benamou-Brenier type
formulation of the entropic cost are derived respectively at Sections 4 and 5. Section 6 is
dedicated to the contraction properties of the heat flow with respect to the entropic cost.
In the last Section 7, we give some examples of entropic interpolations between Gaussian
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distributions when the reference path measure is given by the Brownian motion or the
Ornstein-Uhlenbeck process.

Literature. The Benamou-Brenier formulation of the entropic cost which is stated at
Corollary 5.8 was proved recently by Chen, Georgiou and Pavon in [CGP] (in a slightly less
general setting) without any mention to optimal transport (in this respect Corollary 5.13
relating the entropic and Wasserstein costs is new). Although our proof of Corollary 5.8 is
close to their proof, we think it is worth including it in the present article to emphasize the
analogies between displacement and entropic interpolations. In addition, we also provide
a time asymmetric version of this formulation at Theorem 5.1.

Both [MT06] and [CGP]| share the same stochastic optimal control viewpoint. This differs
from the entropic approach of the present paper.

Let us notice that, contraction inequalities with respect to the entropic cost which is stated
at Theorem 6.6 is a new result. Moreover, examples and comparison proposed at the end
of the paper, with respect two different kernels (Gaussian and Ornstein-Uhlenbeck) are
new.

2. THE REFERENCE PATH MEASURE

We make precise the reference path measure R to which the entropic cost A® is asso-
ciated. Although more general reversible path measures R would be all rigtht to define a
well-suited entropic cost, we prefer to consider the specific class of Kolmogorov Markov
measures. This choice is motivated by the fact that, as presented in [Léol12a], the Monge
Kantorovich problem is the limit of a sequence of entropy minimization problems, when a
proper fluctuation parameter tends to zero. The Kolmogorov Markov measures, as refer-
ence measures in the Schrodinger problem, admit as a limit case the Monge Kantorovich
problem with quadratic cost function, namely the Wasserstein distance.

Notation. For any measurable set Y, we denote respectively by P(Y) and M(Y) the
set of all the probability measures and all positive o-finite measures on Y. The relative
entropy of a probability measure p € P(Y) with respect to a positive measure r € M(Y)
is loosely defined by

H( ’7”) - fy 10g(dp/d7’)dp € (—O0,00], lfp < r,
P - 0, otherwise.

For some assumptions on the reference measure r that guarantee the above integral to
be meaningful and bounded from below, see after the regularity hypothesis (Reg2) at
page 8. For a rigorous definition and some properties of the relative entropy with respect
to an unbounded measure see [Léol4al. The state space R™ is equipped with its Borel
o-field and the path space €2 with the canonical o-field o(X;;0 < ¢ < 1) generated by the
canonical process

Xt(w) =Wy € Rn, W = (ws)ogsgl < Q, 0 S t S 1.
For any path measure @) € M(Q2) and any 0 <t < 1, we denote
Qi) = Q(X; € ) = (Xi)4Q € M(R"),
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the push-forward of () by X;. When @ is a probability measure, ); is the law of the
random location X; at time ¢t when the law of the whole trajectory is Q.

The Kolmogorov Markov measure R and its semigroup. Most of our results can
be stated in the general setting of a Polish state space. For the sake of simplicity, the
setting of the present paper is particularized. The state space is R™ and the reference
path measure R is the Markov path measure associated with the generator

1

SA-VV.V) (2.1)

and the corresponding reversible measure
m =e " Leb

as its initial measure, where Leb is the Lebesgue measure. It is assumed that the po-
tential V is a C? function on R™ such that the martingale problem associated with the
generator (2.1) on the domain C? and the initial measure m admits a unique solution
R € M(Q). This is the case for instance when the following hypothesis are satisfied.

Ezistence hypothesis (Exi). There exists some constant ¢ > 0 such that one of the following
assumptions holds true:

(1) limy—eo U(z) = 400 and inf{|VU|* — AU/2} > —o0, or
(ii) —z - VV(x) < c(1+ |z]?), for all z € R™.

See [Roy99, Thm. 2.2.19] for the existence result under the assumptions (i) or (ii). For
any initial condition Xy = z € R", the path measure R, := R(- | Xo = z) € P(Q) is the
law of the weak solution of the stochastic differential equation

dX, = —VV(X,)/2 dt + dW,(t), 0<t<1 (2.2)

where W, is an R,-Brownian motion. The Kolmogorov Markov measure is
RO = [ Re()m(da) € M@).

Recall that m = e~V Leb is not necessary a probability measure. The Markov semigroup
associated to R is defined for any bounded measurable function f : R™ +— R and any
t >0, by

Tif(x) = Egr, f(X;), z€R™

It is reversible with reversing measure m as defined in [BGL14].
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Regularity hypothesis (Reg1). We also assume, for simplicity, that (7}):>o admits a density
kernel with respect to m, that is a probability density p;(x,y) such that

Tif(z) = - f)pe(x,y) m(dy). (2.3)

For instance, when V (z) = |z|?/2, then R is the path measure associated to the Ornstein-
Uhlenbeck process with the Gaussian measure as its reversing measure. When V =
0, we recover the Brownian motion with Lebesgue measure as its reversing measure.
Examples of Kolmogorov semigroups admitting a density kernel can be found for instance
in [BBGM12, Cor. 4.2|. This semigroup is fixed once for all.

Properties of the path measure R. The measure R is our reference path measure and

it satisfies the following properties.

(a) It is Markov, that is for any ¢ € [0,1], R(Xp1 € | Xpg) = R(Xp1y € | Xy).
See |Léol4a] for the definition of the conditional law for unbounded measures since R
is not necessary a probability measure.

(b) It is reversible. This means that for all 0 < 7" < 1, the restriction Rjg7] of R to

the sigma-field o(Xjo 1) generated by Xy = (Xi)o<i<r, is invariant with respect to
time-reversal, that is [(X7—¢)o<i<r]#Rjo1) = Rjo1)-
Any reversible measure R is stationary, i.e. Ry = m, for all 0 < ¢ < 1 for some
m € M(R™). This measure m is called the reversing measure of R and is often
interpreted as an equilibrium of the dynamics specified by the kernel (R,;x € R").
One says for short that R is m-reversible.

3. ENTROPIC COST AND ENTROPIC INTERPOLATIONS

We define the Schrodinger problem, the entropic cost and the entropic interpolation
which are respectively the analogues of the Monge-Kantorovich problem, the Wasserstein
cost and the displacement interpolation that were briefly described in the introduction.

Let us state the definition of the entropic cost associated with R.

Definition 3.1 (Entropic cost). Consider the projection
Ro1 := (Xo, X1),R € M(R" x R")
of R onto the endpoint space R™ x R™. For any po, i1 € P(R"),
AR (1o, 1) = inf{H(7|Ro1); m € P(R" x R™) : g = pto, 71 = p11 } € (—00, ]
is the R-entropic cost of (po, ft1)-

This definition is related to a static Schrodinger problem. It also admits a dynamical
formulation.

Definition 3.2 (Dynamical formulation of the Schrédinger problem). The Schrodinger
problem associated to R, o and py consists in finding the minimizer P of the relative
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entropy H(-|R) among all the probability path measures P € P(S)) with prescribed initial
and final marginals Py = po and Py = pq,

H(P|R) = min{H(P|R), P € P(Q), Py = o, P = pi1 }. (3.3)
It is easily seen that its minimal value is the entropic cost,
AR (o, py) = inf{H(P|R); P € P(Q): Py = puo, P, = j1} € (—00,00],  (3.4)

see for instance |Léol4b, Lemma 2.4].
In the rest of this work, the entropic cost will always be associated with the fixed
reference measure R € M(£2), therefore without ambiguity we drop the index and denote

Al = A

Remarks 3.5. (1) First of all, when R is not a probability measure, the relative entropy
might take some negative values and even the value —oo. However, because of the
decrease of information by push-forward mappings, we have from [Léol4a, Thm. 2.4,

H(P|R) > max(H (po|m), H (| m)).

Hence H(P|R) is well defined in (—o0, 0o] whenever H (uo|m) > —oo or H(ui|m) >
—o00. This will always be assumed.

(2) Even the nonnegative quantity A(uo, p1) —max(H (uo|m), H(p1|m)) > 0 cannot be the
square of a distance such as the Wasserstein cost W3. As a matter of fact, considering
the special situation where pg = p; = u, we have A(u, u) > H(pu|m) > 0 as soon as
p differs from m. This is a consequence of Theorem 5.1 below.

(3) A good news about A is that since R is reversible, it is symmetric: A(p, v) = A(v, p).
To see this, let us denote X; = X;_4,0 <t <1, and Q" := (X*) @ the time reversal
of any @ € M(Q2). As X* is one-one, we have H(P|R) = H(P*|R*) and since we
assume that R* = R, we see that

H(P|R) = H(P*|R), VP € P(Q). (3.6)

Hence, if P solves (3.3) with (uo, p1) = (p, v), then X* 4 P solves (3.3) with (p0, p1) =
(v, 1) and these Schrodinger problems share the same value.

Existence of a minimizer. Entropic interpolation. We recall some general results
from [Léol4b, Thm. 2.12] about the solution of the dynamical Schrédinger problem (3.3).
Let us denote by p(z,y) the probability density introduced at (2.3), at time ¢ = 1, so that

Roi(dzdy) = m(dz)p(x,y)m(dy).

In order for (3.3) to admit a unique solution, it is enough that it satisfies the following
hypothesis:

Regularity hypothesis (Reg?2).
(i) p(z,y) > e 4@~4W) for some nonnegative measurable function A on R™;
(il) Jfanpgn € 2@ BWp(z,y) m(dz)m(dy) < oo for some nonnegative measurable func-
tion B on R";
(iil) [ (A + B)dpo, [pn(A+ B)dpuy < oo where A appears at (i);
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(iv) —oo < H(po|m), H(p|m) < oo;

Assumptions (ii)-(iii) are useful to define rigorously H(ug|m) and H(u1|m). Under these
assumptions the entropic cost A(f, i11) is finite and the minimizer P of the Schrodinger
problem (3.3) is characterized, in addition to the marginal constraints Py = g, P, = p1,
by the product formula

P = fo(Xo0)g1(X1) R (3.7)

for some measurable functions fy and g; on R™. The uniqueness of the solution is a direct
consequence of the fact that (3.3) is a strictly convex minimization problem.

Definition 3.8 (Entropic interpolation). The R-entropic interpolation between pg and puy
is defined as the marginal flow of the minimizer P of (3.3), that is u; :== P, € P(R"),0 <
t<1.

Proposition 3.9. Under the hypotheses (Exi), (Regl) and (Reg2), the R-entropic inter-
polation between g and py s characterized by

e =e?rm, 0<t <1, (3.10)
where
oy =logTifo, y=logTi g1, 0<t<1, (3.11)
and the measurable functions fqy, g1 solve the following system
dpo dpn
— = foT — =q 11 fo. 3.12
dm JoT1g1, dm a1y fo ( )

The system (3.12) is often called the Schrodinger system. It simply expresses the
marginal constraints. Its solutions (fy, g1) are precisely the functions that appear in the
identity (3.7).

In our setting where R is the Kolmogorov path measure defined at (2.1), the entropic
interpolation p; admits a density p(z) := du/dz with respect to the Lebesgue measure.
It is important to notice that, contrary to the McCann interpolation, the (¢, x) — pu; is
smooth on (¢,z) €]0,1[xR and solves the transport equation

EMLt + V- (/,Lt ’Ucu(t, /,Lt)) =0 (313)

with the initial condition py and where v (¢, i, z) = Vi (2) — VV(2)/2 4+ Vlog p(2) /2
refers to the current velocity introduced by Nelson in [Nel67, Chap. 11] (this will be recalled
at Section 5). The current velocity is a smooth function and the ordinary differential
equation

Ty (z) = v (t,x(x)), x0=12
admits a unique solution for any initial position x, the solution of the continuity equa-
tion (3.13) admits the following push-forward expression:

pe = (Te)gpo, 0 <t <1, (3.14)

in analogy with the displacement interpolation given at (1.6).



10 IVAN GENTIL, CHRISTIAN LEONARD, AND LUIGIA RIPANI

Remark 3.15 (From the entropic cost to the Wasserstein cost). The Wasserstein distance is
a limit case of the entropic cost. We shall use this result to compare contraction properties
in Section 6 and also to illustrate the examples in Section 7.

Let us consider the following dilatation in time with ratio € > 0 of the reference path
measure R: R := (X) xR where X(¢) := Xq4, 0 <t < 1. It is shown in [Léol2a] that
some renormalization of the entropic cost A% converges to the Wasserstein distance when
€ goes to 0. Namely,

lim e A™ (1o, n) = W5 (10, p12) /2. (3.16)

Even better, when 19 and py are absolutely continuous, the entropic interpolation (pf)o<;<1
between py and py converges as € tends to zero towards the McCann displacement inter-
polation (p)o<t<1, see (1.6).

4. KANTOROVICH DUAL EQUALITY FOR THE ENTROPIC COST

We derive the analogue of the Kantorovich dual equality (1.3) when the Wasserstein
cost is replaced by the entropic cost.

Theorem 4.1 (Kantorovich dual equality for the entropic cost). Let V, o and pq be such
that the hypothesis (Ezi), (Regl) and (Reg2) stated in Section 3 are satisfied. We have

A(uo,ul>:H<uo|m>+sup{ b — QRwduo;weobw)}

Rn R™
where for every v € Cy(R™), QF)(z) := log Egee?X) =log T\ (e¥)(x), x € R™.

This result was obtained by Mikami and Thieullen in [MTO06| with an alternate state-
ment and a different proof. The present proof is based on an abstract dual equality which
is stated below at Lemma 4.2. Let us first describe the setting of this lemma.

Let U be a vector space and ¢ : U — (—o0, 00| be an extended real valued function on
U. Its convex conjugate ®* on the algebraic dual space U* of U is defined by

O*(() := ilélg {(é, U)o iy — @(u)} € [—o0, 0], e U

We consider a linear map A : U* — V* defined on U* with values in the algebraic dual
space V* of some vector space V.

Lemma 4.2 (Abstract dual equality). We assume that:

(a) @ is a convex lower o(U, U*)-semicontinuous function and there is some £, € U* such
that for all uw € U, ®(u) > ®(0) + (b, ).y 5
(b) ®* has o(U*, U)-compact level sets: {¢ € U*: d*(¢) < a}, a € R;
(c) The algebraic adjoint AT of A satisfies ATV C U.
Then, the dual equality
inf {®*(¢); ¢ € U*, Al = v"} = sup {(v,v*)vv* - (I)(ATU)} € (—o0, 00] (4.3)
veV ’
holds true for any v* € V*.
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Proof of Lemma 4.2. In the special case where ®(0) = 0 and ¢, = 0, this result is [Léo01b,
Thm. 2.3]. Considering ¥(u) := ®(u) — [®(0) + ({, u)], u € U, we see that inf ¥ = ¥(0) =
0, ¥ is a convex lower o (U, U*)-semicontinuous function and W*(¢) = &*(¢, + ¢) + ®(0),
¢ € U*, has o(U*,U)-compact level sets. As U* satisfies the assumptions of [Léo01b,
Thm. 2.3], we have the dual equality
inf {¥*(¢); ¢ € U, Al =v* — Al,} = sup {(v, V" — Aly)y e — \I/(ATU)} € [0, o0]
veV

which is (4.3). O

Proof of Theorem 4.1. Let us denote

Ryo(") == / Rul() i) € PO,

Of course, Ry, 0 = po and R, = R. As R, () = %(XO) R, we see that for any P € P(Q2)
such that Py = o,
H(P|R) = H(po|m) + H(P|Ry,). (4.4)
Consequently, the minimizer of (3.3) is also the minimizer of
H(P|R,,) = min; PeP(Q):FPy=po,Pr=m (4.5)
and
A(po, 1) = H(polm) + inf{H(P|R,,), P € P(Q) : Py = po, P = i1 }. (4.6)

Therefore, all we have to prove is

inf{H(P‘RM0)7 P e P(Q) : PO = :uoapl = ﬂl} =

sup { Yduy — Q™ dpg, 1 € Ob(Rn)} .
Rr R®
This is an application of Lemma 4.2 with U = C(Q2), V = C,(R") and

O(u) = /nlog (", R®) po(dx), u e Cy(Q),

ATy = (X)) € Gu(Q), ¥ e G(R).

Let Cy(£2)" be the topological dual space of (Cy(2), | - ||) equipped with the uniform norm
|u|| := supg, |ul]. It is shown at [Léol2a, Lemma 4.2| that for any ¢ € Cy (),

(1) = { H((|R,,), if £ € P(Q) and (Xo)xl = po

~+00, otherwise
But according to [LéoOla, Lemma 2.1], the effective domain {¢ € C,(Q)* : &*(¢) < 0o} of
®* is a subset of Cp(Q2)'. Hence, for any ¢ in the algebraic dual Cy(Q2)* of Cy(2), ®*(¢) is
given by (4.7).
The assumption (c) of Lemma 4.2 on Al is obviously satisfied. Let us show that ® and
®* satisfy the assumptions (a) and (b).

(4.7)
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Let us start with (a). It is a standard result of the large deviation theory that u +—
log (e*, R*) is convex (a consequence of Holder’s inequality). It follows that @ is also
convex. As @ is upper bounded on a neighborhood of 0 in (Cy(2), || - ||) :

sup P(u) <1< o0 (4.8)
u€Ch(Q),[Jul|<1
and its effective domain is the whole space U = C}(€2), it is || - ||-continuous everywhere.
Since ® is convex, it is also lower o(Cy(§2), Cp(£2)')-semicontinuous and a fortiori lower
a(Cy(82), Cp(2)*)-semicontinuous. Finally, a direct calculation shows that ¢, = R, is a
subgradient of ® at 0. This completes the verification of (a).

The assumption (b) is also satisfied because the upper bound (4.8) implies that the level
sets of ®* are o(Cy(2)*, Cp(2))-compact, see |Léo0la, Cor.2.2|. So far, we have shown
that the assumptions of Lemma 4.2 are satisfied.

It remains to show that A¢ = v* corresponds to the final marginal constraint. Since
{®* < oo} consists of probability measures, it is enough to specify the action of A on the
vector subspace M, () C Cy(Q)* of all bounded measures on Q. For any @ € M,;(Q)
and any ¢ € Cp(Q2), we have

(¥, AQ) ¢, ), w1y = <AT¢7Q>Cb(Q),Cb(Q)* - /QMXI) Q= Rn Q.

This means that for any @ € M,(2), AQ = Q1 € My(R™).
With these considerations, choosing v* = p; € P(R") in (4.3) leads us to

inf {H(QI Ry )i Q € PQ) s Qo = 10, Q1 = jun}
= sup { U dpy — / log () R™) uo(dl’)}
y UURrn Rn

YECH(R™
which is the desired identity. ([l

Remark 4.9. Alternatively, considering RY := R (- | X; = y), for m-almost all x € R”
and

()= [ R mdy) € PO
we would obtain a formulation analogous to (1.4).

Remark 4.10. We didn’t use any specific property of the Kolmogorov semigroup. The dual
equality can be generalized, without changing its proof, to any reference path measure
R € P(2) on any Polish state space X.

5. BENAMOU-BRENIER FORMULATION OF THE ENTROPIC COST

We derive some analogue of the Benamou-Brenier formulation (1.5) for the entropic
cost.
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Theorem 5.1 (Benamou-Brenier formulation of the entropic cost). Let V, g and py be
such that hypothesis (Exi), (Regl) and (Reg2) stated in Section 3 are satisfied. We have

2

. vz
Al ) = HGpolon) + . [ ey, (5.2

o) Joaxre 2
where the infimum is taken over all (vy,v)o<i<1 such that, v (dz) is identified with its
density with respect to Lebesgue measure v(t,z) = dv/dz, satisfying vo = po, V1 = 1

and the following continuity equation

v+ V- (vv—V(V+logr)/2]) =0, (5.3)

18 satisfied in a weak sense.
Moreover, these results still hold true when the infimum in (5.2) is taken among all (v,v)
satisfying (5.3) and such that v is a gradient vector field, that is

u(z) =Vi(z), 0<t<1l,zeR"

for some function 1 € C>([0,1) x R™).

Remarks 5.4.

(1) The continuity equation (5.3) is the linear Fokker-Planck equation
ow+V.-(vjv—-—VV/2]) - Av/2 =0.

Its solution (v)o<t<1, with v considered as a known parameter, is the time marginal
flow 1, = P, of a weak solution P € P(Q2) (if it exists) of the stochastic differential
equation
dX; = [v(Xy) — VV(Xy) /2] dt + dW,
where W is a Brownian motion and Fy = py.
(2) Clearly, one can restrict the infimum in the identity (5.2) to (v,v) such that

/[01] )Pt < . (5.5)

Proof. Because of (3.4) and (4.6), all we have to show is

2
inf{H(P|R,,); P € P(Q): Py = o, P = pus} = inf / Pl azyat,
o) Joxrn 2

where (v, v) satisfies (5.3), vy = po and v; = p1. As R, is Markov, by [Léol4b, Prop. 2.10]
we can restrict the infimum to the set of all Markov measures P € P() such that
Py = po, o = 1 and H(P|R,,) < oo. For each such Markov measure P, Girsanov’s
theorem (see for instance [Léo12b, Thm.2.1] for a proof related to the present setting)
states that there exists a measurable vector field 3/ (z) such that

dX, = [BF'(X,) — VV(X,)/2]dt + dW[}, P-as., (5.6)
where W7 is a P-Brownian motion. Moreover, 37 satisfies Ep fol |BP12(X;)dt < oo and
1

H(P|R,,) = 5/[01]an 1BF12(2) P(dz)dt. (5.7)
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For any P with Py = po, H(po|m) < oo and H(P|R,,,) < oo, we have P, < R, = m < Leb
for all t. Taking v = (P)o<i<1 and v = 7, the stochastic differential equation (5.6)
gives (5.3) and optimizing the left hand side of (5.7) leads us to

2
inf{H(P|R,,); P €P(Q): Py=po, P = puu} < (inf)/ e a2yt
»,v) J10,1] xR

On the other hand, it is proved in [Zam86, Léo14b| that the solution P of the Schrédinger
problem (4.5) is such that (5.6) is satisfied with 87 (z) = Vi);(2) where 1 is given in (3.11).
This completes the proof of the theorem. 0J

Corollary 5.8. Let V', po and py be such that the hypotheses stated in Section 3 are
satisfied. We have

Alpio, ) = 5[ H olm)-+ H (s m)] (59)
. 1 9 1 2
+nt /[ . (imw + 1V og () )pt<z>m<dz>dt,

where the infimum is taken over all (pg, vi)o<i<1 such that pom = po, prm = py and the
following continuity equation

Op+e"V-(eVpv)=0 (5.10)

18 satisfied in a weak sense.
Moreover, these results still hold true when the infimum in (5.9) is taken among all (v,v)
satisfying (5.10) and such that v is a gradient vector field, that is

vi(2) = Vli(z), 0<t<1,z2€R",
for some function 6 € C*>([0,1) x R™).

Remark 5.11. The density p in the statement of the corollary must be understood as
a density p = dv/dm with respect to the reversing measure m. Indeed, with v(t,z) =
dv;/dz, we see that v = e Vp and the evolution equation (5.10) writes as the current
equation O + V - (vv) = 0.

This result was proved recently by Chen, Georgiou and Pavon in [CGP] in the case
where V' = 0 without any mention to gradient type vector fields. The present proof is
essentially the same as in [CGP|: we take advantage of the time reversal invariance of the
relative entropy H(-|R) with respect to the reversible path measure R.

Proof. The proof follows almost the same line as Theorem 5.1’s one. The additional
ingredient is the time-reversal invariance (3.6): H(P|R) = H(P*|R). Let P € P(Q) be
the solution of (3.3). We have already noted that P* is the solution of the Schrédinger
problem where the marginal constraints pg and p; are inverted. We obtain

dX, = vl (X,)dt +dW},  P-as.

dX, = o (X)) dt + dW]”, P*as.
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where W¥ and W™ are respectively Brownian motions with respect to P and P* and

1 1
H(PIR) = Hiuwlm) + Epy [ |37 (0P di
1 n . 1 bope
HPIR) = HGalm)+ 58 [ 1 (X0)P e = Hulm) + 5B [ 187,50 a

with v = —=VV/2 + g7 and v = —VV/2 + 8. Taking the half sum of the above
equations, the identity H(P|R) = H(P*|R) implies that

1
HUPLR) = 5 H(polm) + Huim)] + 3 Ep [ (877 + 180" d

Let us introduce the current velocities of P and P* defined by
cu, 1 1
o () = o (2) — S Vlogr{ (2) = B(2) — 5V logpl(2)

cu, * 1 * * 1 *
o (@) = ol (2) — 5V Ioguf (2) = B () — 5V log ol (2)

where for any 0 <t <1,z € R",
dP, dP, . dP; . dP;
57 ptP(Z> = %(Z) and VtP (Z> = d_Zt7 pf (Z) = :
The naming current velocity is justified by the current equations

ol + V- Wy =0 and 9p" +e"V- (e Vp v) =0,

ol + V- (W)Y =0 and 0" +eVV - (e7Vp v ) = 0.
To see that the first equation dy¥ + V - (vFvf) = 0 is valid, remark that v¥ satisfies
the Fokker-Planck equation (5.3) with v replaced by B¥. The equation for p follows
immediately and the equations for v and p”" are derived similarly.

The very definition of P* implies that p; = p;_; and the time reversal invariance R* = R
implies that

vP(2) =

v () = =P (2), 0<t<1,zeR™
Therefore, 57, = —v;"" + ;Vlogp{" and L1672 + [B{7,1%) = o™ + §|VIog pf >
This completes the proof of the first statement of the corollary.
For the second statement about v = V6, remark that as in Theorem 5.1’s proof, the

solution P of the Schrédinger problem is such that 7 = Vi for some smooth function
1. One concludes with v = gF — %Vlog p¥', by taking 0 = 1) — log \/p". OJ

Remarks 5.12.

(1) The current velocity v of a diffusion path measure P has been introduced by
Nelson in [Nel67] together with its osmotic velocity v°*" := +V log p”

(2) Up to a multiplicative factor, [, [V log p(2)|* pi(2) (dz) is the entropy production or
Fischer information. The average osmotic action is A% (P f[o 1JxR" 3 Lwes P12 dP,dt =

f[o xR £|Vlog p|>pdmadt is directly connected to a Varlatlon of entropy. It’s worth

cu,P
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to remark that by considering the dilatation in time of the reference path measure as
introduced in Remark 3.15, the osmotic action vanishes in the limit for £ — 0. Let us
define now the osmotic cost

[Os(uo,/jl) = mf{Aos(P), P € P(Q) . PO = Mo, P1 = Iul}

and the current cost I°(po, 1) := inf(,, f[o 1 xRn $|vi(2)|? pi(2) m(dz)dt where this
infimum runs through all the (p,v) satisfying (5.10). The standard Benamou-Brenier
formula precisely states that I°(ug, 1) = W2(uo, p1)/2. Therefore, Corollary 5.8

implies that

1 1
Alo, ) = S[H (polm) + H (pa|m)] + §W22(#07#1) + 1% (po, 1)

In particular, by the positivity of the entropic cost I°° we obtain the following relation
between entropic cost and Wasserstein cost:

Corollary 5.13. Let V g and py be such that the hypotheses stated in Section 3 are
satisfied. We have

[H(polm) + H )] + 513110, ).

DN | —

A(po, pr1) >

6. CONTRACTION WITH RESPECT TO THE ENTROPIC COST

The analogy between optimal transport and minimal entropy can also be observed in
the context of contractions.

As explained in the introduction, contraction in Wasserstein distance depends on the
curvature. Even if there are actually many contraction inequalities in Wasserstein dis-
tance, we focus here on two main results. The first one depends on the curvature and
the second one includes the dimension. These results can be written for more general
semigroups satisfying the curvature-dimension condition as defined in the Bakry-Emery
theory.

In the context of the Kolmogorov semigroup of Section 2 with a generator given by (2.1)
in R™, the two main contraction inequalities can be formulated as follows.

o Let assume that for some real A, we have Hess(V') > Ald in the sense of symmetric
matrices. Then for any f, g probability densities with respect to the measure m
and any t > 0,

Wo (T, f m, Trgm) < e’%tWQ(fm,gm). (6.1)

Let us recall that this result was proved in [vRS05] in the general context of
Riemannian manifold. Although in the context of Kolmogorov semigroups the
proof is easy, its generalization for the entropic cost to a Riemannian setting is
not trivial.
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e When L = A/2 that is V = 0, the heat equation in R" satifies the following
dimension dependent contraction property:

W2(T,f Leb, T,g Leb) < W2(f Leb, g Leb) + n(vVt — v/s)?, (6.2)

for any s,t > 0 and any f, g probability densities with respect to the Lebesgue
measure Leb. This contraction was proved in a more general context in [BGL15,
Kuwl5].

The two inequalities (6.1) and (6.2) can be proved in terms of entropic cost. Let us
choose the reference path measure R associated with the potential V' and take e,u > 0
and pg, 1 € P(R™). In order to extend for each u,e > 0 the dual formulation for the
entropic cost of Theorem 4.1, consider the semigroup (7.,:)+>0 and the corresponding path
measure R: time is dilated by the factor (eu)™!. Theorem 4.1 implies that

A (po, pa) = H (po|m) + SUP{ Y dpn — / log Tou(€?) dpo, 1 € Cb(R”)} :
]Rn n

Now by changing 1 by 1 /e we see that

e AR (g, p11) = eH (p1o|m) + sup { Wduy — Q- wdpy, P e Cb(R”)} (6.3)

Rn R
where for any ¢ € C,(R"),
Q¢ 1p = elog Tey(e?/). (6.4)
For simplicity, we denote e A" = A5 and A = A°.
As explained in Remark 3.15, we have
lim AC (110, 1) = W3 (o, 1) /2u. (6.5)

The entropic cost associated to the Kolmogorov semigroup has the following properties.

Theorem 6.6 (Contraction in entropic cost). Let € > 0 be fized.
(a) If V satisfies Hess(V') > AId for some A € R, then for any t > 0,

Ay (T ) [, Trgm) < A7 ) (fm, gm) + e[H (T, ) frlm) — H(fm|m)], (6.7)
where f, g are probability densities with respect to m, and
u(b) =t + Llog (m) v(b) = —L log(1+ (e~ — 1)) (6.8)

where: if A <0, b€ (0,00) and if A > 0, b € (0, —L log(1 — ).
(b) If V=0 then for any t > 0,

n
A(Tifm, Tsgm) < A*(fm, gm) + 5(\/5 —V/s)? + e[H(T,fmm) — H(fm|m)].
The proof of this theorem relies on the following commutation property between the

Markov semigroup 7; and the semigroup Qf defined at (6.4). Let us notice that the second
statement of next lemma was proved in [BGL15, Section 5.

Lemma 6.9 (Commutation property). Let s,t > 0, ¢ > 0 and f : R" — R be any
bounded measurable function.
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(a) If Hess(V') > AId for some real A, then

Qi (Tif) < Tu)(Q3f) (6.10)

where for each t > 0 u(b), v¢(b) and b are given in (6.8).
Moreover, for e small enough and t > 0 fized, (6.10) is valid for all b positive.
(b) If V=0 then

Qi(Thf) < TW(Qif) + 5 (VI —V3)"

Proof. We only have to prove the first statement (a). Let us define for each s < ¢ the
function

A(s) = ToQ5(Th—sf)

with a @ [0,¢] — [0, 00) an increasing function such that «(0) =0, and g : [0,t] — [0, 00)
and we call G(t) = b. Setting g = exp(T;_sf/¢), using the chain rule for the diffusion
operator L we obtain

[ 1
N(s) =¢€T, |&'Llog T.5g9 + T_gngﬁ (ef'Lg — gLlog g)]

[, (LT.39 |VT.s9)? 1 Vgl|?
=T, | 5T _ T. 'Lg— Lg + —2
© _a (Tg@g 2(T.59)? +T€59 o\ Ly~ Lo+ 2g

(6.11)

Vg|2 IVT€59|2
=T, LT.3g(a +eB —1)+ 1T, (| o
| 289 ( 9l )+ T 2¢ 2759
I 1 1 V 2
> €Ta _Taﬂg (LT569<O/ —+ 8/6/ . 1) + 5 L5 <| 5' ) (1 _ e—)\eﬂal>>:|

where the last inequality is given by the commutation,
T 2 2
IVTg| < e N, <|V9| )
Tig g

which is implies by the condition Hess(V') > Ald (see for instance [BGL14, Section 3.2]).
If the following conditions on « and S hold

o +ef —1=0
{ 1_6—ﬁ>\aﬁal =0 (612)

we have A’(s) > 0 for each 0 < s < t. In particular A(0) < A(t) for each t > 0, that is
Qi (Tif) < Tur) (23 f)

where v:(b) = (0) and ut(b) = «(t). Finally solving system (6.12) together with the
conditions «(0) = 0, B(t) = b, we can compute the explicit formulas for v and u as in
statement (a). In particular, substituting «/ in the second equation of the system and
integrating from 0 to ¢ we obtain the following relation

e~ MO = 1 4 MmN 1), (6.13)
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Let assume for a while that the term on the right hand side is positive, then we obtain
1
5(0) =~ Tog(1+ (e ~ 1)
€

and

1 efs)\b
ty=t+ -1 .

Let us study now the sign of the right hand side in (6.13).

o If A <0, it is positive for each b € R;
e If A\ > 0 in order to be positive, we need the condition for b,

1
b< SY log(1 — ™) := by.

Finally let us consider the case when € > 0 is small. From (6.13) we obtain the
relation,

B(0) = be™ + o(e)
for each A € R and b positive.
This completes the proof of the lemma. OJ

Proof of Theorem 6.6. The proof is based on the dual formulation stated in Theorem 4.1.
Let ¢ € Cy(R™), by Lemma 6.9 under the condition Hess(V') > Ald and by time reversibil-

ity,

/ eTgdm— [ QT fdm= | Twgdm— | TuwQo fdm

Rn Rn Rn

< [ Twgdm~ [ Q5T sdn
n R"l
< A5, o) (fm, gm) — eH(fm|m).
Finally taking the supremum over ¢» € C,(R™) we obtain the desired inequality in (7).

The same argument can be used to prove the contraction property in (ii), applying the
second commutation inequality in Lemma 6.9. O

Remark 6.14. Let observe that if A < 0, the function S(s), for s € [0,¢], is decreasing,
while for A > 0 it is increasing and if A = 0 it is the constant function () = b. In
particular by choosing b =1 (6.10) writes as follows

QUTLf) < TH(Q1f)-

Remark 6.15. Lemma 6.9 can be proved in the general context of a Markov diffusion
operator under the Bakry-Emery curvature-dimension condition. Its application to more
general problem is actually a working paper of the third author.

Remarks 6.16. Let us point out two converse assertions.
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(1) The contraction in entropic cost in Theorem 6.6 implies back the contraction in
Wasserstein cost. Indeed, under the assumptions of Section 3, it can be easily checked
that for ¢ — 0, u(t) — t and v(t) — be*. Therefore, with (6.5) and (6.7), one re-
covers (6.1). Analogous arguments can be applied to recover the contraction of the
Wasserstein cost (6.2) when V' = 0.

(2) The commutation property in Lemma 6.9 implies back the convexity of the potential
V. This can be seen differentiating (6.10) with respect to b around 0. We believe also
that for ¢ > 0 fixed, inequality (6.7) implies back the convexity of the potential.

7. EXAMPLES

In this section we will compute explicitly the results discussed in the previous sec-
tions, between two given measures. We first compute the Wasserstein cost, its dual and
Benamou-Brenier formulations and the displacement interpolation, as exposed in the in-
troduction. Then, we’ll do the same for the entropic cost, taking in consideration two
different reference path measure R. In particular, we’ll compute (6.3), for u = 1 and
e > 0 and look at the behavior in the limit ¢ — 0 to recover the classical results of the
optimal transport. For abuse of notation we will denote p; both the interpolation and its
density with respect to the Lebesgue measure dz. We introduce for Gaussian measures
the following notation, for any m € R™ and v € R, the density with respect to Lebesgtue
measure of N'(m,v?) is given by

2
9rp2) /2 (_‘55_7”‘)
(2mv) exp 52 )

As marginal measures we consider for xg, x; € R”
po(z) := N(xp, 1), pa(x) :=N(x1,1). (7.1)
Wasserstein cost. The Wasserstein cost x between pyg, p1, as in (7.1), is
W5 (o, 1) = d(zo, 21)?

in it’s dual formulation, the supremum is reached by the function

U(x) = (21 — o)
and in the Benamou-Brenier formulation the minimizer vector field is

oMY =2, — 1z

The displacement or McCann interpolation is given by

pe'C () = N (1) (7.2)
where z; = (1 — t)xo + tzy. In other words using the push-forward notation 1.6,

pe' € () = (@) o
with 2M¢(z) := (1 — t)x + t(z + 7, — 30) a trajectory whose associated velocity field is

’UMC = X1 — Xp-

Schrodinger cost.
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Heat semigroup. As a first example we consider on the state space R™ the Heat (or Brow-
nian) semigroup, that corresponds to the case V' = 0 in our main example in Section 2,
whose infinitesimal generator is the laplacian L = A/2 and the invariant reference mea-
sure is the Lebesgue measure dx. Since we're interested in the e—entropic interpolation,
with € > 0, we take in consideration the Heat semigroup with a dilatation in time, whose
density kernel is given by

- z —yl?
(3 , — 2 St ’VL/Q _’
pi (7, y) = (2met) eXP( o

ie. pi(z,y) = N(y,et) for t >0, (z,y) € R* x R".
e The entropic interpolation (3.10) is
py () = Nz, D) (7.3)
where z; is like in (7.2) and D5 : [0,1] — R* is a polynomial function given by
D =at(1—t)+1

with af = §?/(1 + ) where § = (¢ — 2 + v/4 + £2) /2. We observe that D is such
that Dy = Dy = 1 with a maximum in ¢ = 1/2 for each ¢ > 0, (see Figure 1).
As remarked at (3.14), one can express the entropic interpolation through the
push-forward notation p = (7)xpo where

25 (x) = /D5 (x — xo) + 4.
Furthermore Z7 satisfies the differential equation
i = v () (7.4)
where v is the current velocity, and is given by

e

s = 2th (x —xy) + 21 — 0.
It can be finally verified then that he entropic interpolation (7.3) satisfies the PDE
i () = ¢ (7.5)

Remark 7.6. Let observe that if o = x;, y; is not constant in time, unlike the

McCann interpolation.

e Denoting P € P(Q2) the path measure whose flow is given by (7.3) and that
minimizes H(:|R), the entropic cost between p, 11 as in (7.2) is

A (o, pn) = H(P|R).

The easiest way to compute this quantity is to use the Benamou-Brenier formu-
lation in Section 5. The resulting formula has not a nice and interesting form,
therefore we don’t report it explicitly.
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e In the dual formulation proved in Section 3, the supremum is reached by the
function ¢ € Cy(R™) given, up to a constant term, by

Ui(x) = ! 0 ? 1 (7.7)

1
T2110(1—0" T 21+e(1-p)"
.

where § as in (7.3) and v = 2[zo(1 +9) — 2y
e In the Benamou-Brenier formulation in Theorem 5.1 the minimizer vector field is
v = V.

where 1)y is given by (7.7) and V1), represents the forward velocity. It can be easily
verified that the equation

He
is satisfied.
Ornstein-Uhlenbeck semigroup. As a second example, we consider on the state space R"
the Ornstein-Uhlenbeck semigroup, that corresponds to the case V = |z|?/2 for the Kol-
mogorov semigroup in Section 2, whose infinitesimal generator is given by L = (A—z-V) /2
and the invariant measure is the standard Gaussian in R™ . Here again we consider the

kernel representation with a dilatation in time, in other words, for € > 0, the kernel with
respect to the Lebesgue measure is given by

_ —et/2|2
—etyyn y — e
(@, y) = (2m(1 =) 2 exp (_yg(l_—et)‘)

ie. pi(x,y) = N(ve /21 — e5).
e The entropic interpolation (3.10) is given by
py (x) = N(my, D7) (7.9)
where m; = a,[(e=/? — e=0H2) gy + (e75(1-0/2 — =(140/2) 3 ] with
1+06—de®
(1—e=2)[6(1+0)(e~st + e=(171)) — 262¢~¢]
with § as in (7.11), and D5 : [0, 1] — R* defined as
D; =—-14+2(1—-¢°)a;

satisfying as in the case of the Heat semigroup, Dj = D = 1.
Furthermore, we have pf = (25)xpo where

% = \/Di(z — x0) + my.
It can be verified that equations (7.5) and (7.4) hold true also in the Ornstein
Uhlenbeck case, with the current velocity given by
. _Di
cu — 2D,

¢ =

v (x — x0) + 1y (7.10)
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e The entropic cost between p, i1 can be computed as in the Heat semigroup case
as

A (po, 1) = H(P|R)

where P is the path measure associated to the flow (7.9) which minimizes H(-|R).
e In the dual formulation at Section 3, the supremum is reached, up to a constant
term, by the function

—e(1—t) —e(1-t)/2
1 gde 24 S )x (7.11)

Ul = TS ey T T e e D

where § = (e — Ve 2 —e<+1)/(e® —1) and v = (ze /% — 21(1 + 0 —
de®)) /(1 —e~®).

e In the Benamou-Brenier formulation (Theorem 5.1) the minimizer vector field is
UOU == VQ/Jt

Remark 7.12. Let observe that both in the Heat and Ornstein-Uhlenbeck cases, if we take
the limit ¢ — 0 of the entropic interpolation, the velocities v, v°Y, and the function v
we recover the respective results for the Wasserstein cost, stated in 7.

In the following figures we refer to the McCann interpolation with a dotted line, the Heat
semigroup with a dashed line and the Ornstein Uhlenbeck semigroup with a continuous
line. We fix ¢ = 1 and consider marginal measures in one dimension. Figure 1 represents
the variance of the three interpolations, independent from the initial and final means
xo,r1. Figures 2 and 3 correspond to the mean in the three cases respectively with the
initial and final means symmetric w.r.t the origin, and for any means. It’s worth to
remark from these images that the McCann interpolation and the entropic interpolation
in the case of the heat semigroup, have the same mean. Finally figures 4 and 5 represent
the three interpolations at time ¢ = 0,1/2, 1 respectively with different marginal data, as
before.
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FIGURE 1. Variance, ¢ =1
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FIGURE 3. Mean zg = 1,2, =7,e =1
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FIGURE 4. Interpolations at time ¢t =0,1/2,1, zg = =3,z = 3,e =1
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