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Abstract. In the limit ε → 0 we analyze the generators Hε of families of reversible jump processes

in Rd associated with a class of symmetric non-local Dirichlet-forms and show exponential decay of the
eigenfunctions. The exponential rate function is a Finsler distance, given as solution of a certain eikonal

equation. Fine results are sensitive to the rate function being C 2 or just Lipschitz. Our estimates are
analog to the semiclassical Agmon estimates for differential operators of second order. They generalize

and strengthen previous results on the lattice εZd.

1. Introduction

We derive exponential decay results on eigenfunctions of a family of self adjoint generators Hε, ε ∈
(0, ε0], of (substochastic) jump processes in Rd in the limit ε → 0. The jump processes are associated
with non-local Dirichlet forms on the real Hilbert space L2(Rd):

Hypothesis 1.1 Let Eε, ε ∈ (0, ε0], be a family of bilinear forms on L2(Rd, dx) with domains D(Eε) given
by

Eε(u, v) :=
1

2

∫
Rd
dx

∫
Rd\{0}

(u(x)− u(x+ εγ))(v(x)− v(x+ εγ))Kε(x, dγ) +

∫
Rd
Vε(x)u(x)v(x) dx (1.1)

D(Eε) = {u ∈ L2(Rd, dx) | Eε(u, u) <∞} ,

where for all ε ∈ (0, ε0]

(a) Vε(x) dx is a positive Radon measure on Rd
(b) for x ∈ Rd, Kε(x, . ) is a positive Radon measure on the Borel sets B(Rd \ {0}) satisfying

(i) Kε(x,E) <∞ for all E ∈ B(Rd \ {0}) with dist(E, 0) ≥ δ > 0
(ii)

∫
|γ|≤1

|γ|2Kε(x, dγ) ≤ C locally uniformly in x ∈ Rd

(iii) Kε(x, dγ) dx is a reversible measure on Y := Rd × Rd \ {0} in the sense that for all non-
negative φ, ψ ∈ C0(Rd)∫

Y

φ(x+ εγ)ψ(x)Kε(x, dγ) dx =

∫
Y

φ(x)ψ(x+ εγ)Kε(x, dγ) dx . (1.2)

We shall formally denote the reversibility condition (1.2) as

Kε(x, dγ) dx = Kε(x+ εγ, −dγ) dx , (1.3)

where the right hand side denotes the Radon measure on Y given by∫
Y

f(x, γ)Kε(x+ εγ,−dγ) dx :=

∫
Y

f(x,−γ)Kε(x+ εγ, dγ) dx :=

∫
Y

f(x− εγ,−γ)Kε(x, dγ) dx ,

and (abusing notation) we shall even cancel dx on both sides of (1.3).

Assuming Hypothesis 1.1, Eε is a Dirichlet form (i.e. closed, symmetric and Markovian) and C∞0 (Rd) ⊂
D(Eε) for all ε ∈ (0, ε0] (see Fukushima-Oshima-Takeda [6]).

The general theory of Dirichlet forms E analyzed in [6] covers the case, where (Rd, dx) is replaced by
(X,m) if X is a locally compact separable metric space and m is a positive Radon measure on X with
suppm = X, provided that D(E) is dense in L2(X,m).

In particular, this is true for X = (εZ)d and m being the counting measure on X. In this situation,
we proved similar decay results in[10] and [14], with Kε(x,m(dγ)) = −aεγ(x; ε)m(d(εγ)) as a measure
on Zd \ {0} (in fact, we treated a slightly more general case where the form Eε instead of being positive
is only semibounded, Eε(u, u) ≥ −Cε for some C > 0 and ε ∈ (0, ε0]).
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In this paper, we focus on the complementary and much more singular case X = Rd. We remark that,
combining the results of [10] with this paper, one could treat the case where X is an arbitrary abelian
subgroup of (Rd,+) and m is Haar measure on X. Since our methods depend on some elements of Fourier
analysis, this is a natural framework for our results.

The basic idea behind our estimates is due to Agmon [1]: The positivity of the quadratic form associ-
ated with a certain (weighted) operator H (on wavefunctions with support in a specific region) is related
to decay of solutions of Hu = f in that region in weighted L2−sense, and the (optimal) rate function
admits a geometric interpretation as a geodesic distance (which is Riemannian if H is a strongly elliptic
differential operator of second order). A semiclassical version of the Agmon estimate (for the Schrödinger
operator) was developed in [7] by Helffer and Sjöstrand who also applied such arguments in their analysis
of Harper’s equation [8] to a specific difference equation. In [10] a semiclassical Agmon estimate was
proved for a classs of difference operators on the lattice εZd, identifying the rate function as a Finsler
distance. We recall from [7] (for the Schrödinger operator) and from [11, 12, 13] that such estimates are
an important first step to analyze the tunneling problem for a general multiwell problem. It is our main
goal to develop this analysis in the context of jump processes as considered in this paper. Our motivation
comes from previous work on metastability (see [2, 3]).

To control the limit ε→ 0, we shall impose stronger conditions on Kε and Vε.

Hypothesis 1.2 (a) The measure Kε(x, . ) satisfies

Kε(x, . ) = K(0)(x, . ) +R(1)
ε (x, . ) (x ∈ Rd) , (1.4)

where
(i) for any c > 0 there exists C > 0 such that uniformly with respect to x ∈ (εZ)d and ε ∈ (0, ε0]∫

|γ|≥1

ec|γ|K(0)(x, dγ) ≤ C and

∫
|γ|≥1

ec|γ|
∣∣R(1)

ε (x, dγ)
∣∣ ≤ Cε (1.5)∫

|γ|≤1

|γ|2K(0)(x, dγ) ≤ C and

∫
|γ|≤1

|γ|2
∣∣R(1)

ε (x, dγ)
∣∣ ≤ Cε (1.6)

(ii) for all x ∈ Rd there exists cx > 0 such that for all v ∈ Rd∫
Rd\{0}

(γ · v)2K(0)(x, dγ) ≥ cx‖v‖2 . (1.7)

(b) (i) The potential energy Vε ∈ C 2(Rd,R) satisfies

Vε(x) = V0(x) +R1(x; ε) ,

where V0 ∈ C 2(Rd), R1 ∈ C 2(Rd × (0, ε0]) and for any compact set K ⊂ Rd there exists a
constant CK such that supx∈K |R1(x; ε)| ≤ CKε.

(ii) V0(x) ≥ 0 and it takes the value 0 only at a finite number of non-degenerate minima xj , i.e.
D2V0|xj > 0, j ∈ C = {1, . . . , r}, which we call potential wells.

We remark that combining the positivity of the measure Kε(x, . ) with Hypothesis 1.2(a), it follows

that K(0)(x, . ) is positive while R
(1)
ε (x, . ) is possibly signed.

It is well known (see e.g. [6]) that Eε uniquely determines a self adjoint operator Hε in L2(Rd). To
introduce Dirichlet boundary conditions for Hε on some open set Σ ⊂ Rd, one considers the form

ẼΣ
ε (u, v) = Eε(u, v) with domain D(ẼΣ

ε ) = C∞0 (Σ) . (1.8)

Then ẼΣ
ε is Markovian (see [6], ex. 1.2.1) and closable. In fact, if we consider L2(Σ) as a subset of L2(Rd)

(extend f ∈ L2(Σ) to Rd by zero), the form

ÊΣ
ε (u, v) = Eε(u, v) with domain D(ÊΣ

ε ) = {u ∈ L2(Σ) | ÊΣ
ε (u, u) <∞} (1.9)

- corresponding to Neumann boundary conditions - is a closed (Markovian) extension of ẼΣ
ε (see [6], ex.

1.2.4), giving closability of ẼΣ
ε .

Definition 1.3 We denote by EΣ
ε the closure of ẼΣ

ε given in (1.8). The operator HΣ
ε with Dirichlet

boundary conditions on Σ is the unique self adjoint operator associated to EΣ
ε . The unique self adjoint

operator ĤΣ
ε associated to ÊΣ

ε defined in (1.9) represents Neumann boundary conditions on Σ.
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By [6], Thm. 3.1.1, EΣ
ε is Markovian (as the closure of a Markovian form) and thus a Dirichlet form.

In particular, since EΣ
ε is a restriction of ÊΣ

ε , we have for u, v ∈ D(EΣ
ε ),

EΣ
ε (u, v) = T Σ

ε (u, v) + VΣ
ε (u, v) with (1.10)

T Σ
ε (u, v) :=

1

2

∫
Σ

dx

∫
Σ′(x)

(u(x)− u(x+ εγ))(v(x)− v(x+ εγ))Kε(x, dγ) and (1.11)

VΣ
ε (u, v) :=

∫
Σ

Vε(x)u(x)v(x) dx (1.12)

where Σ′(x) := {γ ∈ Rd \ {0} |x+ εγ ∈ Σ}. (1.13)

Similarly, ÊΣ
ε = T̂ Σ

ε + V̂Σ
ε . We remark that T Σ

ε , VΣ
ε . T̂ Σ

ε and V̂Σ
ε are again Dirichlet forms, in particular

they are positive.
We will use the notation q[u] := q(u, u) for the quadratic form associated to any bilinear form q.

Concerning the operator Hε associated to Eε we remark that, even assuming Hypothesis 1.2 in addition
to Hypothesis 1.1, it is far from trivial to characterize the domains D(Hε) and D(HΣ

ε ). Without additional
assumptions, Hε =: Tε + Vε (or HΣ

ε ) is not even defined on C∞0 (Rd) (or C∞0 (Σ) resp.). However, there
are some cases for which we can give formulae for Tεu on subsets of its domain.

(a) If the measure Kε(x, . ) is finite uniformly with respect to x ∈ Rd, one has

Tεu(x) =

∫
Rd\{0}

(u(x)− u(x+ εγ))Kε(x, dγ)

and Tε is bounded on L2(Rd).
(b) If Kε(x, dγ) = kε(x, γ) dγ, where kε ∈ C (Rd × Rd \ {0}) is Lipschitz in x ∈ Rd, locally uniformly

with respect to γ ∈ Rd \ {0}, then C 2
0 (Rd) ⊂ D(Hε) and, for u ∈ C 2

0 (Rd),

Tεu(x) =

∫
Rd\{0}

(
2u(x)− u(x+ εγ)− u(x− εγ)

)
kε(x, γ) dγ

+

∫
Rd\{0}

(
u(x)− u(x− εγ)

)(
kε(x− εγ, γ)− kε(x, γ)

)
dγ . (1.14)

(c) If Kε(x, dγ) = Kε(x,−dγ), then C 2
0 (Rd) ⊂ D(Hε) and for u ∈ C 2

0 (Rd) one even has the simpler
form

Tεu(x) =

∫
Rd\{0}

(
u(x)− u(x+ εγ)− εγ∇u(x)

)
Kε(x, dγ) . (1.15)

(d) In the case of a Levy-process, i.e. if Kε(x, dγ) = Kε(dγ) (which by reversibility, see (1.3), implies
Kε(dγ) = Kε(−dγ)) one has both the representation (1.15) and (since the second term on the rhs
of (1.14) formally vanishes)

Tεu(x) =

∫
Rd\{0}

(
2u(x)− u(x+ εγ)− u(x− εγ)

)
Kε(dγ) .

Similar formulae hold for the operators with Dirichlet (and Neumann) boundary conditions. In this pa-
per, we shall need none of them, since we shall directly work with the Dirichlet form (1.1).

We define t0 : R2d → R as

t0(x, ξ) :=

∫
Rd\{0}

(
1− cos

(
η · ξ

))
K(0)(x, dγ) , (1.16)

which in view of Hypothesis 1.2(a),(ii) extends to an entire function in ξ ∈ Cd, and we set

t̃0(x, ξ) := −t0(x, iξ) =

∫
Rd\{0}

(
cosh

(
η · ξ

)
− 1
)
K(0)(x, dγ) , (x, ξ ∈ Rd) . (1.17)

We remark that t0 formally is the principal symbol σp(Tε) - the leading order term in ε of the symbol
- associated to the operator Tε under semiclassical quantization (with ε as small parameter). Recall that
for a symbol b ∈ C∞(R2d × (0, ε0)), the corresponding operator is (formally) given by

Opε(b) v(x) := (ε2π)−d
∫
R2d

e
i
ε (y−x)ξ b(x, ξ; ε)v(y) dy dξ , v ∈ S (Rd) ,
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(for details on pseudo-differential operators see e.g. Dimassi-Sjöstrand [4]).
In particular, the translation operator τ±εγ acting as τ±εγu(x) = u(x ± εγ), has the ε-symbol e∓iγξ.

Thus, writing Tε formally as

1

2

∫
Rd\{0}

(
1− τ−εγ

)
Kε(x, dγ)

(
1− τεγ

)
and using σp(A ◦ B) = σp(A)σp(B) for the principal symbols of operators A,B, immediately gives
t0 = σp(Tε) given in (1.16).

We emphasize, however, that under the weak regularity assumptions given in Hypotheses 1.1 and 1.2,
Tε is not an honest pseudo-differential operator (i.e. one with a C∞-symbol, for which the symbolic
calculus holds), but only a quantization of a singular symbol, giving a map S (Rd)→ S ′(Rd) (see [4]).

We shall now assume

Hypothesis 1.4 Given Hypotheses 1.1 and 1.2, Σ ⊂ Rd is an open bounded set with xj ∈ Σ for exactly

one j ∈ C and xk /∈ Σ for k ∈ C, k 6= j. Moreover there is an open set Ω ⊂ Σ containing xj and a

Lipschitz-function d : Σ→ [0,∞)) satisfying, for t̃0 defined in (1.16),

(a) d(xj) = 0 and d(x) 6= 0 for x 6= xj.

(b) d ∈ C 2(Ω).
(c) the (generalized) eikonal equation holds in some neighborhood U ⊂ Ω of xj, i.e.

t̃0(x,∇d(x)) = V0(x) for all x ∈ U . (1.18)

(d) the (generalized) eikonal inequality holds in Σ, i.e.

t̃0(x,∇d(x))− V0(x) ≤ 0 for all x ∈ Σ . (1.19)

We remark that in a more regular setting, i.e. if h̃0 := t̃0 − V0 ∈ C∞(R2d), such a function d may

be constructed as a distance in a certain Finsler metric associated with h̃0 (see [10]), if Σ avoids the
cut locus. We shall discuss the Finsler distance d in the case of low regularity and its relation to large
deviation results for jump processes (see e.g. [9]) in a future publication.

Our central results are the following theorems on the decay of eigenfunctions of HΣ
ε and ĤΣ

ε .

Theorem 1.5 Assume Hypotheses 1.1, 1.2 and 1.4 with Σ = Ω. Let HΣ
ε and ĤΣ

ε be the operators with
Dirichlet and Neumann boundary conditions from Definition 1.3.

Fix R0 > 0 and let E ∈ [0, εR0]. Then there exist constants ε0, B,C > 0 such that for all ε ∈ (0, ε0]
and real u ∈ D(HΣ

ε )∥∥∥(1 + d
ε

)−B
e
d
ε u
∥∥∥
L2(Σ)

≤ C
[
ε−1

∥∥∥(1 + d
ε

)−B
e
d
ε

(
HΣ
ε − E

)
u
∥∥∥
L2(Σ)

+ ‖u‖L2(Σ)

]
. (1.20)

In particular, let u ∈ D(HΣ
ε ) be a normalized eigenfunction of HΣ

ε with respect to the eigenvalue E ∈
[0, εR0]. Then there exist constants B,C > 0 such that for all ε ∈ (0, ε0]∥∥∥(1 + d

ε

)−B
e
d
ε u
∥∥∥
L2(Σ)

≤ C . (1.21)

The constants ε0, B,C are uniform with respect to E ∈ [0, εR0] and u with ‖u‖L2(Σ) ≤ 1.

Analog results hold for u ∈ D(ĤΣ
ε ) and u a normalized eigenfunction of ĤΣ

ε respectively.

The following theorem gives a weaker result in the case that d is only Lipschitz outside some small
ball around xj . Then we have to assume more regularity of K(0) with respect to x.

Theorem 1.6 Assume Hypotheses 1.1, 1.2 and 1.4 and let HΣ
ε and ĤΣ

ε be the operators with Dirichlet
and Neumann boundary conditions from Definition 1.3. Moreover assume that K(0)( . , dγ) is continuous
in the sense that for all c > 0∫

γ∈Rd\{0}
|γ|2ec|γ|

(
K(0)(x+ h, dγ)−K(0)(x, dγ)

)
= o(1) (|h| → 0) (1.22)

locally uniformly in x ∈ Rd. Fix R0 > 0 and a constant D > 0 such that the ball K := {x ∈ Rd | d(x) ≤ D}
is contained in Ω, and let E ∈ [0, εR0]. Then there exist constants C,B > 0 such that

(a) for any fixed α ∈ (0, 1] there exists εα such that for all ε ∈ (0, εα] and real u ∈ D(HΣ
ε )∥∥∥e (1−α)d

ε u
∥∥∥
L2(Σ)

≤ C
[
ε−1

∥∥∥e dε (HΣ
ε − E

)
u
∥∥∥
L2(Σ)

+ ‖u‖L2(Σ)

]
. (1.23)
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(b) there exists a constant α0 > 0 such that for any fixed α ∈ (0, α0] there exists Φα ∈ C 2(Σ) and
εα > 0 such that for all ε ∈ (0, εα] and real u ∈ D(HΣ

ε )∥∥∥eΦα
ε u
∥∥∥
L2(Σ)

≤ C
[
ε−1

∥∥∥eΦα
ε

(
HΣ
ε − E

)
u
∥∥∥
L2(Σ)

+ ‖u‖L2(Σ)

]
, (1.24)

where for some C ′ > 0 and for any fixed α ∈ (0, 1]

e
d(x)
ε

1

C ′

(
1 + d(x)

ε

)−B2 ≤ eΦα(x)
ε ≤ e

d(x)
ε C ′

(
1 + d(x)

ε

)−B2
for x ∈ K and (1.25)

e
(1−α)d(x)

ε ≤ e
Φα(x)
ε ≤ e

d(x)
ε for x ∈ Σ \K . (1.26)

(c) for any fixed α ∈ (0, 1] there exists εα > 0 such that for any ε ∈ (0, εα] and real u ∈ D(HΣ
ε )

1

C ′

∥∥∥(1 + d
ε

)−B2 e dε u∥∥∥2

L2(K)
+
∥∥∥e (1−α)d(x)

ε u
∥∥∥2

L2(Σ\K)
≤
∥∥∥eΦα

ε u
∥∥∥2

L2(Σ)
(1.27)

and if u is a normalized eigenfunction of HΣ
ε with respect to the eigenvalue E ∈ [0, εR0], then∥∥∥eΦα

ε u
∥∥∥
L2(Σ)

≤ C . (1.28)

The constants α0, εα, B, C are uniform with respect to E ∈ [0, εR0] and u with ‖u‖L2(Σ) ≤ 1.

Analog results hold for ĤΣ
ε and for real u ∈ D(ĤΣ

ε ) respectively.

Remark 1.7 All assertions of Theorem 1.5 and 1.6 remain true if Eε is not necessarily positive, but
only satisfies Eε(x) ≥ −Cε or, more special, Eε ≥ 0 but Vε ≥ −Cε. In a stochastic context, such a

situation could arise if e.g. one starts with a Dirichlet form Ẽε on L2(mε) associated with a pure jump

process (with Vε = 0), given by a kernel K̃ε(x, dγ), which is integrable with respect to γ ∈ Rd \ {0},
i.e. satisfies

∫
K̃ε(x, dγ) < ∞, and reversible with respect to mε(dx) = e−

F (x)
ε dx. If Kε(x, dγ) :=

e
F (x+εγ)−F (x)

2ε K̃ε(x, dγ) is integrable with respect to γ ∈ Rd \ {0}, then

Eε(u, v) := Ẽε
(
e
F
2εu, e

F
2ε v
)

=

∫
Rd

∫
Rd\{0}

(u(x+ εγ)− u(x))(v(x+ εγ)− v(x))Kε(x, dγ) dx+ 〈u , Vεv〉L2 ,

is a Dirichlet form on L2(dx), where

Vε(x) =

∫
Rd\{0}

(
e−

F (x+εγ)−F (x)
2ε − 1

)
Kε(x, dγ) =

∫
Rd\{0}

(K̃ε −Kε)(x, dγ) .

If F is smooth and Kε and K̃ε have an expansion as in Hypothesis 1.2(a), then one verifies that
K(0)(x, dγ) = K(0)(x,−dγ) and Vε ≥ −Cε for some constant C > 0. If the integrability conditions

for Kε and K̃ε are not satisfied, the above transformation is more delicate and requires regularity of
Kε(x, dγ) in x.

We emphasize that the eigenvalue E in Theorem 1.5 and 1.6 need not be discrete (a priori, it could be
of infinite multiplicity or be imbedded into the continuous (or essential) spectrum of Hε). In this paper,
Hε need not have a spectral gap. However, to develop tunneling theory in analogy to [10, 11, 12, 13], one
needs to impose further conditions on the jump kernel Kε.

2. Preliminary Results

This section contains preparations for the proof of Theorem 1.5 and 1.6. Lemmata 2.1 - 2.3 contain
our abstract approach to Agmon type estimates, while Lemmata 2.4 - 2.7 contain more specific estimates
on t̃0(x, ξ), d(x) and the phasefunctions used in the proof of Theorem 1.5 and 1.6.

Lemma 2.1 Assume Hypotheses 1.1 and 1.2 and, for Σ ⊂ Rd open, let EΣ
ε and ÊΣ

ε denote the associated
Dirichlet forms given in Definition 1.3 and (1.9) respectively. Let ϕ : Rd → R be Lipschitz and bounded.

Then for any real valued v with e±
ϕ
ε v ∈ D(EΣ

ε ) (or D(ÊΣ
ε ) resp.)

EΣ
ε

(
e−

ϕ
ε v, e

ϕ
ε v
)

=
〈(
Vε + V ϕε,Σ

)
v , v

〉
L2(Σ)

+
1

2

∫
Σ

dx

∫
Σ′(x)

Kε(x, dγ) cosh
(

1
ε

(
ϕ(x)− ϕ(x+ εγ)

))(
v(x)− v(x+ εγ)

)2
, (2.1)
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where Σ′(x) is defined in (1.13) and

V ϕε,Σ(x) :=

∫
Σ′(x)

[
1− cosh

(
1
ε

(
ϕ(x)− ϕ(x+ εγ)

))]
Kε(x, dγ) , (2.2)

which ist bounded uniformly in ε. An analog result holds for ÊΣ
ε .

Proof. We have by (1.10)

EΣ
ε

(
e−

ϕ
ε v, e

ϕ
ε v
)
− 〈Vεv , v〉L2(Σ)

=
1

2

∫
Σ

dx

∫
Σ′(x)

(
v(x)2 − 2 cosh

(
1
ε (ϕ(x+ εγ)− ϕ(x))

)
v(x)v(x+ εγ) + v(x+ εγ)2

)
Kε(x, dγ)

=
1

2

∫
Σ

dx

∫
Σ′(x)

(
v(x)2 + v(x+ εγ)2

)(
1− cosh

(
1
ε (ϕ(x+ εγ)− ϕ(x))

))
Kε(x, dγ)

+
1

2

∫
Σ

dx

∫
Σ′(x)

cosh
(

1
ε (ϕ(x+ εγ)− ϕ(x))

)(
v(x)− v(x+ εγ)

)2
Kε(x, dγ) . (2.3)

Since cosh ξ is even with respect to ξ and by the reversibility (1.2) of Kε(x, dγ)

1

2

∫
Σ

dx

∫
Σ′(x)

(
v(x)2 + v(x+ εγ)2

)(
1− cosh

(
1
ε (ϕ(x+ εγ)− ϕ(x))

))
Kε(x, dγ)

=

∫
Σ

dx

∫
Σ′(x)

v(x)2
(

1− cosh
(

1
ε (ϕ(x+ εγ)− ϕ(x))

))
Kε(x, dγ) . (2.4)

Thus inserting (2.4) into (2.3) and using the definition of V ϕε,Σ gives (2.1).

To show boundedness of the integral on the right hand side of (2.2), one observes that cosh t − 1 ≤
|t| sinh |t| for all t ∈ R. Choosing t = 1

ε (ϕ(x) − ϕ(x + εγ)) and using that ϕ is Lipschitz with Lipschitz
constant L > 0 gives

cosh
(

1
ε

(
ϕ(x)− ϕ(x+ εγ)

))
− 1 ≤ L2|γ|2 sinh(L|γ|)

L|γ|
. (2.5)

Inserting (2.5) into (2.2) proves the assertion, according to Hypothesis 1.2,(a),(i).

Since the formula (1.10) also holds for ÊΣ
ε , the same arguments give the analog result.

2

Lemma 2.2 Assume Hypotheses 1.1 and 1.2 and for Σ ⊂ Rd open, let EΣ
ε , ÊΣ

ε and ϕ be as in Lemma
2.1. Then

v ∈ D(EΣ
ε ) or D(ÊΣ

ε ) resp. ⇒ e
ϕ
ε v ∈ D(EΣ

ε ) or D(ÊΣ
ε ) resp. .

Proof. We will use the notation (see (1.10))

tΣε [u] := ÊΣ
ε [u] + ‖u‖2L2(Σ) = T̂ Σ

ε [u] + V̂Σ
ε [u] + ‖u‖2L2(Σ) . (2.6)

We recall that a function f ∈ D(ÊΣ
ε ) is in D(EΣ

ε ), if and only if there is a sequence (fn)n∈N in D(ẼΣ
ε )

such that tΣε [fn − f ]→ 0 as n→∞.
We notice that for some C,L > 0

‖ϕ‖∞ ≤ C and |ϕ(x)− ϕ(y)| ≤ L|x− y| , x, y ∈ Rd . (2.7)

Step 1:

Let v ∈ D(ÊΣ
ε ), then we shall show that for some C̃ > 0 uniformly with respect to ε ∈ (0, ε0]

tΣε [e
ϕ
ε v] ≤ e C̃ε tΣε [v] . (2.8)

By (1.9), this implies e
ϕ
ε v ∈ D(ÊΣ

ε ).
From (2.7) it follows at once that

‖e
ϕ
ε v‖2L2(Σ) ≤ e

2C
ε ‖v‖2L2(Σ) . (2.9)

Using the definition (1.12) of V̂Σ
ε , we have by (2.7)

V̂Σ
ε [e

ϕ
ε v] ≤ e 2C

ε V̂Σ
ε [v] . (2.10)
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It remains to analyze

T̂ Σ
ε [e

ϕ
ε v] =

1

2

∫
Σ

dx

∫
Σ′(x)

(
e
ϕ(x+εγ)

ε v(x+ εγ)− e
ϕ(x)
ε v(x)

)2

Kε(x, dγ) . (2.11)

Adding f − f for f = e
ϕ(x+εγ)

ε v(x) inside the brackets on rhs(2.11) and then using (a+ b)2 ≤ 2(a2 + b2),
we get

rhs(2.11) ≤ A[v] +B[v] where (2.12)

A[v] :=

∫
Σ

dx

∫
Σ′(x)

e2
ϕ(x+εγ)

ε

(
v(x+ εγ)− v(x)

)2
Kε(x, dγ)

B[v] :=

∫
Σ

dx

∫
Σ′(x)

v(x)2
(
e
ϕ(x+εγ)

ε − e
ϕ(x)
ε

)2
Kε(x, dγ) . (2.13)

By (2.7) we have

A[v] ≤ e 2C
ε T̂ Σ

ε [v] . (2.14)

To estimate B[v], observe that

|1− et| ≤ e|t| − 1 , (t ∈ R) , (2.15)

which by (2.7) leads to∣∣∣eϕ(x+εγ)
ε − e

ϕ(x)
ε

∣∣∣ ≤ eϕ(x+εγ)
ε

(
e

1
ε |ϕ(x)−ϕ(x+εγ)| − 1

)
≤ eCε L|γ|eL|γ| . (2.16)

Substituting (2.16) into (2.13) gives by Hypothesis 1.2(a)(i)

B[v] ≤ e 2C
ε L2

∫
Σ

dx|v(x)|2
∫

Σ′(x)

|γ|2e2L|γ|Kε(x, dγ) ≤ e C̃ε ‖v‖2L2(Σ) , (2.17)

where C̃ is uniform with respect to ε ∈ (0, ε0]. Inserting (2.17) and (2.14) into (2.12) and the result in
(2.11), and combining (2.11), (2.10) and (2.9) proves (2.8).

Step 2:
We prove

e
ϕ
ε v ∈ D(EΣ

ε ) for v ∈ C∞0 (Σ) ⊂ D(EΣ
ε ) . (2.18)

Let j ∈ C∞0 (Rd) be non-negative with
∫
Rd j(x) dx = 1. For δ > 0 we set jδ(x) := δ−dj(xδ ) and

ϕδ := ϕ ∗ jδ, then ϕδ ∈ C∞(Rd) and e
ϕδ
ε v ∈ C∞0 (Σ) ⊂ D(EΣ

ε ). Moreover

‖ϕδ‖∞ ≤ ‖ϕ‖∞ ≤ C ,
∥∥ϕδ − ϕ∥∥ −→ 0 as δ → 0 (2.19)

and ϕδ has the same Lipschitz constant L as ϕ (see (2.7)), since

|ϕδ(x)− ϕδ(y)| =
∣∣∣∫

Rd

(
ϕ(x− z)− ϕ(y − z)

)
jδ(z) dz

∣∣∣ ≤ L|x− y| . (2.20)

Assume v ∈ C∞0 (Σ), then by Step 1, e
ϕ
ε v ∈ D(ÊΣ

ε ). Thus it suffices to show that

tΣε

[(
e
ϕδ
ε − e

ϕ
ε

)
v
]
−→ 0 as δ → 0 . (2.21)

By dominated convergence, using (2.19),∥∥∥(eϕδε − eϕε )v∥∥∥
L2(Σ)

−→ 0 and V̂Σ
ε

[(
e
ϕδ
ε − e

ϕ
ε

)
v
]
−→ 0 , (δ → 0) . (2.22)

To analyze T̂ Σ
ε , we set Φδ := e

ϕδ
ε − e

ϕ
ε , then

T̂ Σ
ε

[(
e
ϕδ
ε − e

ϕ
ε

)
v
]

= A′[v] +B′[v] , where (2.23)

A′[v] :=

∫
Σ

dx

∫
Σ′(x)

Φ2
δ(x+ εγ)

(
v(x+ εγ)− v(x)

)2
Kε(x, dγ)

B′[v] :=

∫
Σ

dx

∫
Σ′(x)

v(x)2
(
Φδ(x+ εγ)− Φδ(x)

)2
Kε(x, dγ) .
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Since ‖Φδ‖∞ ≤ e
C′
ε by (2.19) uniformly with respect to δ > 0, e

2C′
ε (v(x + εγ) − v(x))2 is a dominating

function for the integrand of A′[v], which is in L1(dµ) for the measure dµ = Kε(x, dγ)dx in Σ×Rd \ {0}.
Thus by the dominated convergence theorem

A′[v]→ 0 , (δ → 0) (2.24)

because ‖Φδ‖∞ → 0 as δ → 0, by (2.19). Similarly,

B′[v]→ 0 , (δ → 0) (2.25)

by the dominated convergence theorem (observe that using (2.16) for ϕ and ϕδ, uniformly with respect
to δ in view of (2.19) and (2.20) one finds

|Φδ(x+ εγ)− Φδ(x)| ≤
∣∣∣eϕδ(x+εγ)

ε − e
ϕδ(x)

ε

∣∣∣+
∣∣∣eϕ(x+εγ)

ε − e
ϕ(x)
ε

∣∣∣ ≤ 2e
C
ε +L|γ|L|γ| ,

which gives a dominating function for the integrand of B′[v], which in view of Hypothesis 1.2(a) is inte-
grable with respect to dµ). Inserting (2.25) and (2.24) into (2.23) and combining the result with (2.22)
proves (2.21) and (2.18).

Step 3:
Assume v ∈ D(EΣ

ε ), then by Definition 1.3, there are vn ∈ C∞0 (Σ) with tΣε [vn − v]→ 0 as n→∞. By

Step 2, for all n ∈ N, e
ϕ
ε vn ∈ D(EΣ

ε ), and

tΣε
[
e
ϕ
ε (vn − v)

]
→ 0 , (n→∞)

by (2.8), proving e
ϕ
ε v ∈ D(EΣ

ε ).
2

We will use Lemma 2.1 and Lemma 2.2 to prove the following norm estimate, which is a main ingre-
dient in the proof of Theorem 1.5.

Lemma 2.3 Assume Hypotheses 1.1, 1.2 and, for Σ ⊂ Rd open, let HΣ
ε (ĤΣ

ε ) denote the operator with
Dirichlet (Neumann) boundary conditions introduced in Definition 1.3. Let ϕ : Σ → R be Lipschitz and
bounded. For E ≥ 0 fixed, let F± : Σ→ [0,∞) be a pair of functions such that F (x) := F+(x)+F−(x) > 0
and

F 2
+(x)− F 2

−(x) = Vε(x) + V ϕε,Σ(x)− E , x ∈ Σ , (2.26)

where V ϕε,Σ(x) is given in (2.2). Then for u ∈ D(HΣ
ε ) (or D(ĤΣ

ε )) real-valued with Fe
ϕ
ε u ∈ L2(Σ), we

have for some C > 0

‖Fe
ϕ
ε u‖2L2(Σ) ≤ 4

∥∥∥ 1
F e

ϕ
ε (HΣ

ε − E)u
∥∥∥2

L2(Σ)
+ 8‖F−e

ϕ
ε u‖2L2(Σ) . (2.27)

Proof. First observe that for v := e
ϕ
ε u

‖Fv‖2L2(Σ) ≤ 2
(
‖F+v‖2L2(Σ) + ‖F−v‖2L2(Σ)

)
= 2

(
‖F+v‖2L2(Σ) − ‖F−v‖

2
L2(Σ)

)
+ 4‖F−v‖2L2(Σ) . (2.28)

By (2.26) one has

‖F+v‖2L2(Σ) − ‖F−v‖
2
L2(Σ) =

〈
(Vε + V ϕε,Σ − E)v , v

〉
L2(Σ)

. (2.29)

Since v ∈ D(EΣ
ε ) (or D(ÊΣ

ε )) by Lemma 2.2, it follows at once from Lemma 2.1 that〈
(Vε + V ϕε,Σ − E)v , v

〉
L2(Σ)

≤ EΣ
ε

(
e−

ϕ
ε v, e

ϕ
ε v
)
− E‖v‖2L2(Σ) . (2.30)

(2.29) and (2.30) yield by use of the Cauchy-Schwarz inequality, since u ∈ D(HΣ
ε ),

2
(
‖F+v‖2L2(Σ) − ‖F−v‖

2
L2(Σ)

)
≤ 2

〈(
e
ϕ
ε (HΣ

ε − E)
)
u , v

〉
L2(Σ)

(2.31)

≤ 2
√

2
∥∥∥ 1
F

(
e
ϕ
ε (HΣ

ε − E)
)
u
∥∥∥
L2(Σ)

1√
2
‖Fv‖L2(Σ)

≤ 2
∥∥∥ 1
F

(
e
ϕ
ε (HΣ

ε − E)
)
u
∥∥∥2

L2(Σ)
+

1

2
‖Fv‖2L2(Σ) .
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Inserting (2.31) into (2.28) we get

‖Fv‖2L2(Σ) ≤ 2
∥∥∥ 1
F

(
e
ϕ
ε (HΣ

ε − E)
)
u
∥∥∥2

L2(Σ)
+

1

2
‖Fv‖2L2(Σ) + 4‖F−v‖2L2(Σ) ,

which by definition of v gives (2.27).
2

Lemma 2.4 Assume Hypotheses 1.1 and 1.2.

(a) For any x ∈ Rd, the function Lx : Rd 3 ξ 7→ t̃0(x, ξ) is even and hyperconvex, i.e. D2Lx|ξ0 ≥ α >
0, uniformly in ξ0.

(b) At ξ = 0, for fixed x ∈ Rd, the function t̃0 has an expansion

0 ≤ t̃0(x, ξ)− 〈ξ , B(x)ξ〉 = O
(
|ξ|4
)

as |ξ| → 0 , (2.32)

where B : Rd →M(d× d,R) is positive definite, symmetric and bounded.

Proof. (a): By Hypothesis 1.2(a)(ii) there exists cx > 0 such that for all ξ0, v ∈ Rd〈
v , D2Lx|ξ0v

〉
=

∫
Rd\{0}

(γ · v)2 cosh(γ · ξ0)K(0)(x, dγ) ≥
∫
Rd\{0}

(γ · v)2K(0)(x, dγ) ≥ cx‖v‖2 .

(b): Since by Taylor expansion at ξ = 0

cosh(γ · ξ)−
(
1 + 1

2 (γ · ξ)2
)
≤ (γ · ξ)4 sinh(γ · ξ)

(γ · ξ)
,

one gets from (1.17) and Hypotheses 1.1 and 1.2

0 ≤
∣∣t̃0(x, ξ)− 〈ξ , B(x)ξ〉

∣∣ ≤ ∫
Rd\{0}

(γ · ξ)4 sinh(γ · ξ)
(γ · ξ)

K(0)(x, dγ) = O
(
|ξ|4
)
,

as |ξ| → 0, where the symmetric d× d-matrix B = (Bµν) is given by

Bνµ(x) =
1

2

∫
Rd
γνγµK

(0)(x, dγ) for µ, ν ∈ {1, . . . , d} , x ∈ Rd .

By Hypothesis 1.2(a)(ii), B is strictly positive definite, by Hypothesis 1.2(a)(i), B is bounded.
2

Lemma 2.5 Assume Hypotheses 1.1, 1.2 and 1.4, then

(a) d(x) = 1
2

〈
x− xj , D2d|xj (x− xj)

〉
+ o(|x− xj |2) as |x− xj | → 0, and D2d|xj is positive definite.

(b) ∇d(x) = O(|x− xj |) as |x− xj | → 0.

Proof. (b): For |x− xj | sufficiently small, the eikonal equation (1.18) holds. Thus by Lemma 2.4 (b), we
have, with B(x) positive definite and bounded,

V0(x) = t̃(x,∇d(x)) = 〈∇d(x) , B(x)∇d(x)〉+O(|∇d(x)|4) (2.33)

≥ C|∇d(x)|2 . (2.34)

(2.34) proves (b), since V0(x) = O(|x− xj |2) (Hypothesis 1.2(b)).
(a): Since d ∈ C 2(Ω), d(xj) = 0 and ∇d(xj) = 0 (use (b)), Taylor expansion gives

d(x) =
1

2

〈
x− xj , D2d|xj (x− xj)

〉
+ o(|x− xj |2) as |x− xj | → 0 .

Since d(x) ≥ 0, the matrix D2d|xj is non-negative. We shall now assume that 0 is an eigenvalue of D2d|xj
with eigenspace N ⊂ Rd and derive a contradiction.

By the mean value theorem and the continuity of D2d|x

∇d(x) =

∫ 1

0

D2d|xj+t(x−xj)(x− xj) dt = D2d|xj (x− xj) + o(|x− xj |) (|x− xj | → 0).

Thus

∇d(x) = o(|x− xj |) (|x− xj | → 0, (x− xj) ∈ N ) .

By (2.33) this gives V0(x) = o(|x−xj |2) as x−xj → 0 in N , which contradicts D2V (xj) > 0 (Hypothesis
1.2(b)). Thus D2d|xj is positive definite. 2
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Lemma 2.6 Assume Hypotheses 1.1, 1.2 and 1.4 and let χ ∈ C∞(R+, [0, 1]) such that χ(r) = 0 for r ≤ 1
2

and χ(r) = 1 for r ≥ 1. In addition we assume that 0 ≤ χ′(r) ≤ 2
log 2 . For B > 0 we define g : Σ→ [0, 1]

by

g(x) := χ

(
d(x)

Bε

)
, x ∈ Σ (2.35)

and set

Φ(x) := d(x)− Bε

2
ln

(
B

2

)
− g(x)

Bε

2
ln

(
2d(x)

Bε

)
, x ∈ Σ . (2.36)

Then Φ ∈ C 2(Ω) and there exists a constant C > 0 such that for all ε ∈ (0, ε0]

|∂ν∂µΦ(x)| ≤ C , x ∈ Σ , µ, ν ∈ {1, . . . d} . (2.37)

Furthermore, for any B > 0 there is C ′ > 0 such that

e
d(x)
ε

1

C ′

(
1 +

d(x)

ε

)−B2
≤ e

Φ(x)
ε ≤ e

d(x)
ε C ′

(
1 +

d(x)

ε

)−B2
. (2.38)

Proof. Using the estimates of Lemma 2.5, the proof follows word by word the proof of Lemma 3.3 in [10].
2

Lemma 2.7 Let j ∈ C∞0 (Rd) be non-negative with
∫
Rd j(x) dx = 1 and supp j ⊂ B1(0) := {x ∈ Rd | |x| <

1}. For δ > 0 we introduce the Friedrichs mollifier jδ(x) := δ−dj(xδ ). Under the assumptions of Theorem

1.6, setting dδ := d ∗ jδ, we have, locally uniformly in x ∈ Rd,

V0(x) ≥ t̃0(x,∇dδ(x)) + o(1) (δ → 0) . (2.39)

We emphasize that ∇dδ does not converge to ∇d in ||.||∞. The estimate (2.39) compensates. This is
crucial to obtain the positivity needed in our Agmon estimate.

Proof. First observe that by (1.22), (1.5) and (1.6)

t̃0(x− y, ξ)− t̃0(x, ξ) =

∫
Rd\{0}

(
cosh γ · ξ − 1

)(
K(0)(x− y, dγ)−K(0)(x, dγ)

)
= o(1) (2.40)

as |y| → 0 locally uniformly in (x, ξ) ∈ R2d (since | cosh γ · ξ − 1| ≤ C|γ|2eC|γ|).
We remark that

∇dδ(x) =

∫
Rd
∇d(x− y)jδ(y) dy = Eδ

[
∇d(x− . )

]
, (2.41)

where Eδ denotes expectation with respect to the probability measure dµδ(y) = jδ(y) dy (supported in
the ball Bδ(0)). Recall the multidimensional Jensen inequality (see e.g. [5])

E
[
f(X)

]
≥ f

(
E[X]

)
(2.42)

for any convex function f : Rd → R and random variableX with values in Rd. ChoosingX( . ) = ∇d(x− . )
and using the convexity of t̃0(x, . ) (see Lemma 2.4), we get by (2.41) and (2.42)

t̃0(x,∇dδ(x)) ≤
∫
Rd
t̃0(x,∇d(x− y))dµδ(y)

=

∫
Rd
t̃0(x− y,∇d(x− y))dµδ(y) + o(1) (δ → 0) , (2.43)

where the last equality follows from (2.40) and supp jδ ⊂ Bδ(0). Thus, by (2.43) and the eikonal inequality
(1.19)

t̃0(x,∇dδ(x)) ≤
∫
Rd
V0(x− y)dµδ(y) + o(1) ≤ V0(x) + o(1) (δ → 0)

2
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3. Proof of Theorem 1.5 and 1.6

Proof of Theorem 1.6. We partly follow the ideas in the proof of Theorem 1.7 in [10].

Proof of (b):

For Σ′(x) given in (1.13), let

t̃Σ0 (x, ξ) :=

∫
Σ′(x)

(cosh (γ · ξ)− 1)K(0)(x, dγ), (x, ξ) ∈ Σ× Rd ,

then by the positivity of the integrand

t̃Σ0 (x, ξ) ≤ t̃0(x, ξ) . (3.1)

For any B > 0 we choose εB > 0 such that d−1([0, εBB)) ⊂ U , then by Hypothesis 1.4 for all ε < εB

V0(x)− t̃0(x,∇d(x)) = 0 , x ∈ Σ ∩ d−1([0, Bε)) . (3.2)

Let Φ be given in (2.36), then by (2.35)

∇Φ(x) = ∇d(x)(1− f1(x)− f2(x)) , (3.3)

where

f1(x) :=
Bε

2d(x)
χ

(
d(x)

Bε

)
and f2(x) :=

1

2
χ′
(
d(x)

Bε

)
log

(
2d(x)

Bε

)
.

Choose η > 0 such that K̃ := d−1([0, D + 2η]) ⊂ Ω and let χ̂, χ̃ ∈ C∞(R+, [0, 1]) be monotone with

χ̃(x) =

{
0 , x ≤ D + η

1 , x ≥ D + 2η
χ̂(x) =

{
0 , x ≤ D
1 , x ≥ D + η

.

Then we define

g̃(x) := χ̃(d(x)) and ĝ(x) := χ̂(d(x)) (3.4)

and we set for δ > 0

Φα,δ(x) = (1− ĝ(x))Φ(x) + ĝ(x)
(
1− α

2

)(
(1− g̃(x))d(x) + g̃(x)dδ(x)

)
,

where dδ = d ∗ jδ is defined in Lemma 2.7. Then Φα,δ ∈ C 2(Σ) for any δ > 0.

Step 1: We show that there is δ(α) such that for any δ < δ(α) the function Φα := Φα,δ satisfies (1.25)
and (1.26).

Clearly, Φα,δ satisfies (1.25) for all δ > 0 in view of (2.38), since Φα,δ(x) = Φ(x) for x ∈ K.
Now, by (1.18), for x ∈ Σ \K

Φα,δ(x) = d(x)− ĝ(x)α2 d(x)− (1− ĝ)(x)
(Bε

2
ln
(d(x)

ε

))
+ g̃(x)

(
1− α

2

)(
dδ − d

)
(x) (3.5)

Choosing B ≥ 2, all logarithms in (3.5) are positive (using 2d(x)
Bε ≥ 1 on the support of g). Since

‖dδ − d‖∞ → 0 as δ → 0 and using that for some C, by Hypothesis 1.4,

inf{d(x) |x ∈ Σ \K} ≥ C > 0 , (3.6)

it follows that there is a δ(α) such that for all δ < δ(α)(
1− α

2

)∣∣dδ(x)− d(x)
∣∣ ≤ α

2 d(x) , x ∈ Σ \K , (3.7)

proving the upper bound in (1.26) for Φα.
Now observe that there is an εα > 0 such that for all ε ∈ (0, εα)

Bε

2
ln
(d(x)

ε

)
≤ α

4
d(x) , x ∈ Σ \K . (3.8)

This follows from the fact that lhs(3.8)= o(1) as ε→ 0 uniformly in x together with (3.6). Inserting (3.8)
and (3.7) into (3.5) proves the lower bound of (1.26).
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Step 2: We shall show that there are constants α0, C0, C1 > 0 independent of B and E and εα, δ(α) > 0
such that for all δ < δ(α), ε < εα and for any fixed α ∈ (0, α0]

V0(x)− t̃Σ0 (x,∇Φα,δ(x)) ≥


0 , x ∈ Σ ∩ d−1([0, Bε))
B
C0
ε , x ∈ Σ ∩ d−1([Bε,D + η))

C1 , x ∈ Σ ∩ d−1([D + η,∞))

(3.9)

Case 1: d(x) ≤ Bε
2

Since Φα,δ(x) = d(x)− Bε
2 ln

(
B
2

)
and the eikonal equation (1.18) holds, we get

V0(x)− t̃0(x,∇Φα,δ(x)) = V0(x)− t̃0(x,∇d(x)) = 0 , x ∈ Σ ∩ d−1([0, Bε2 ]) .

which by (3.1) leads to (3.9).

Case 2: Bε
2 < d(x) < Bε

Here Φα,δ(x) = Φ(x). Since 1 < 2d(x)
Bε < 2, f1 and f2 in (3.3) are non-negative. In addition 0 ≤ fj(x) ≤

1, j = 1, 2 (use assumption χ′(r) ≤ 2
log 2 ). Therefore

|1− f1(x)− f2(x)| =: |λ(x)| ≤ 1. (3.10)

By Lemma 2.4, t̃0(x, ξ) is convex with respect to ξ, therefore

t̃0(x, λξ + (1− λ)η) ≤ λt̃0(x, ξ) + (1− λ)t̃0(x, η) for 0 ≤ λ ≤ 1, ξ, η ∈ Rd . (3.11)

and, since t̃0(x, 0) = 0 and t̃0(x, ξ) = t̃0(x,−ξ), it follows by choosing η = 0 that

t̃0(x, λξ) ≤ |λ|t̃0(x, ξ) , for λ ∈ R, |λ| ≤ 1, ξ ∈ Rd, x ∈ Σ . (3.12)

Combining (3.10), (3.12) and (3.1) it follows that

V0(x)− t̃Σ0 (x,∇Φα,δ(x)) ≥ V0(x)− |λ(x)|t̃0(x,∇d(x)) ≥ V0(1− |λ(x)|) , (3.13)

where for the second step we used (3.2). Since |λ(x)| ≤ 1 and V0 ≥ 0, (3.13) gives (3.9).

Case 3: Bε ≤ d(x) < D

In this region, we have Φα,δ(x) = Φ(x) = d(x)− Bε
2 ln

(d(x)
ε

)
, thus

∇Φα,δ(x) = ∇d(x)

(
1− Bε

2d(x)

)
. (3.14)

Since 1
2 ≤ (1− Bε

2d(x) ) < 1, by (3.14) and (3.12) we get the estimate

V0(x)− t̃0(x,∇Φα,δ(x)) ≥ V0(x)−
(

1− Bε

2d(x)

)
t̃0(x,∇d(x))

≥ V0(x)
Bε

2d(x)
, (3.15)

where for the second estimate we used that by Hypothesis 1.4 the eikonal inequality t̃0(x,∇d(x)) ≤ V0(x)
holds. We now claim that there exists a constant C0 > 0 such that

V0(x)

2d(x)
≥ C−1

0 , x ∈ Σ ∩ d−1([Bε,∞)) . (3.16)

Then, combining (3.1), (3.15) and (3.16), we finally get (3.9).
To see (3.16), we split the region W = Σ ∩ d−1([Bε,∞)) into two parts. Clearly, for any δ > 0, (3.16)

holds for x ∈W ∩ {|x− xj | > δ} (since Σ is bounded, d ∈ C 2(Σ) and V0(x) ≥ C > 0 for |x− xj | > δ by
Hypothesis 1.2,(b)).

To discuss the region W ∩ {|x − xj | ≤ δ}, we remark that for some C > 0 by Hypothesis 1.2,(b)

V0(x) ≥ C|x− xj |2 if |x− xj | ≤ δ. Thus it suffices to show that for some C̃ > 0

d(x) ≤ C|x− xj |2 , |x− xj | ≤ δ .

This follows from Lemma 2.5(a).
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Case 4: D ≤ d(x) < D + η
Since Φα,δ(x) = (1− ĝ(x))Φ(x) + ĝ(x)

(
1− α

2

)
d(x) and ∇Φ(x) is given by (3.14) in this region, we have

∇Φα,δ(x) = ∇d(x)
[(

1− Bε

2d(x)

)
(1− ĝ(x))− χ̂′(d(x))

((
d(x)− Bε

2
ln
(d(x)

ε

))
+

+ χ̂′(d(x))
(
1− α

2

)
d(x) + ĝ(x)

(
1− α

2

)]
= λ∇d(x) , (3.17)

where

λ = 1 + hα(x)− (1− ĝ(x))
Bε

2d(x)
− ĝ(x)

α

2
, hα(x) := χ̂′(d(x))

(
−α

2
d(x) +

Bε

2
ln
(d(x)

ε

))
.

Since χ̂′(y) ≥ 0 it follows from the upper bound in (3.8) that hα ≤ 0, proving for α sufficiently small

0 ≤ λ ≤ 1− t, t = t(x, α, ε) = (1− ĝ(x))
Bε

2d(x)
+ ĝ(x)

α

2
. (3.18)

Combining (3.1), (3.12), (3.17) and(3.18) gives, for all ε ≤ εα sufficiently small

V0(x)− t̃Σ0 (x,∇Φα,δ) ≥ V0(x)t(x, α, ε) ≥ B

C0
ε ,

where we used (1.19) and, for the last estimate, (3.16).

Case 5: D + η ≤ d(x) < D + 2η
We have Φα,δ(x) =

(
1− α

2

)
((1− g̃(x))d(x) + g̃(x)dδ(x) and thus

∇Φα,δ(x) =
(
1− α

2

)[
(1− g̃(x))∇d(x) + χ̃′(d(x))(dδ(x)− d(x))∇d(x) + g̃(x)∇dδ(x)

]
=
(
1− α

2

)[
(1− g̃(x))∇d(x) + g̃(x)∇dδ(x)

]
+ α

2
2
αfδ(x)∇d(x) , (3.19)

where we set
fδ(x) := χ̃′(d(x))(dδ(x)− d(x)) and thus |fδ(x)| = o(1) (δ → 0) .

Using (3.11) twice, we get by (3.19)

t̃0(x,∇Φα,δ(x)) ≤
(
1− α

2

)[
(1− g̃(x))t̃0(x,∇d(x)) + g̃(x)t̃0(x,∇dδ(x))

]
+ α

2 t̃0
(
x, 2

αfδ(x)∇d(x)
)
.

Combining Lemma 2.7 with (1.19) yields, as δ → 0,

V0(x)− t̃0
(
x,∇Φα,δ(x)

)
≥ V0(x)

[α
2

+ o(1)
]
≥ C1 , (3.20)

since V0(x) ≥ C > 0 in this region. Combining (3.1) with (3.20) gives (3.9).

Case 6: d(x) ≥ D + 2η
Since Φα,δ(x) =

(
1− α

2

)
dδ(x), we have by (3.12)

t̃0
(
x,∇Φα,δ(x)

)
≤
(

1− α

2

)
t̃0
(
x,∇dδ(x)

)
(3.21)

Combining Lemma 2.7 with (3.21) gives (3.20), as in Case 5.

Step 3: We shall show

Vε(x) + V Φα(x) ≥


−C2 ε for x ∈ Σ ∩ d−1([0, Bε])(
B
C0
− C3

)
ε for x ∈ Σ ∩ d−1([Bε,D + η))

C4 for x ∈ Σ ∩ d−1([D + η,∞))

(3.22)

for some C2, C3, C4 > 0 independent of B and E, where V Φα := V Φα
ε,Σ is defined in (2.2) and Φα = Φα,δ

for any δ < δ(α).

We write

Vε(x) + V Φα(x) = (Vε(x)− V0(x)) +
(
V Φα(x) + t̃Σ0 (x,∇Φα(x))

)
+
(
V0(x)− t̃Σ0 (x,∇Φα(x))

)
(3.23)

By Hypothesis 1.1 and since Σ is bounded, there exists a constant C1 > 0 such that

Vε(x)− V0(x) ≥ −C1ε , x ∈ Σ . (3.24)
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We shall show that ∣∣V Φα(x) + t̃Σ0 (x,∇Φα(x))
∣∣ ≤ εC2 . (3.25)

Then inserting (3.25), (3.24) and (3.9) into (3.23) proves (3.22). Setting (see (2.2))

V Φα
0 (x) :=

∫
Σ′(x)

[1− cosh (Fα(x))]K(0)(x, dγ), Fα(x) = Fα(x, γ, ε) = 1
ε (Φα(x)− Φα(x+ εγ))

we write

V Φα(x) + t̃Σ0 (x,∇Φα(x)) =
(
V Φα(x)− V Φα

0 (x)
)

+
(
V Φα

0 (x) + t̃Σ0 (x,∇Φα(x))
)

=: D1(x) +D2(x)

and analyze the two summands on the right hand side separately. Since Φα ∈ C 2(Σ), it follows from

Hypotheses 1.1 and 1.2(a), using (2.5), that for some C̃ > 0

|D1(x)| =
∣∣∣∫

Σ′(x)

[1− cosh (Fα(x))]
(
εK(1) +R(2)

ε

)
(x, dγ)

∣∣∣ ≤ C̃ε . (3.26)

uniformly with respect to x. We have for x ∈ Σ

|D2(x)| ≤
∫

Σ′(x)

∣∣∣cosh
(
γ∇Φα(x)

)
− cosh

(
Fα(x)

)∣∣∣K(0)(x, dγ) . (3.27)

By the mean value theorem for cosh z and since | sinhx| ≤ e|x|∣∣∣cosh
(
Fα(x)

)
− cosh

(
γ∇Φα(x)

)∣∣∣ ≤ sup
t∈[0,1]

exp
(∣∣Fα(x)t+ γ∇Φα(x)(1− t)

∣∣)∣∣Fα(x) + γ∇Φα(x)
∣∣ . (3.28)

Since Φα ∈ C 2(Σ) there exist constants c1, c2 > 0 such that

|Fα(x)| ≤ c1|γ| and |γ∇Φα(x)| ≤ c2|γ| , x ∈ Σ, γ ∈ Σ′(x) . (3.29)

(3.29) gives a constant D > 0 such that

exp
(∣∣Fα(x)t+ γ∇Φα(x)(1− t)

∣∣) ≤ eD|γ| . (3.30)

By second order Taylor-expansion, using (2.37)∣∣(Fα(x) + γ∇Φα(x)
∣∣ ≤ C̃3ε|γ|2 . (3.31)

for all ε ∈ (0, ε0] and some C̃3 > 0 independent of the choice of B. By (1.5), inserting (3.30) and (3.31)
into (3.28) and this in (3.27), using Hypothesis 1.2(a), we get

|D2(x)| =
∣∣∣V Φα

0 (x)− tΣ0 (x,−i∇Φα)
∣∣∣ ≤ εC ′ .

This and (3.26) give (3.25).

Step 4: We prove (1.24) and (1.21) by use of Lemma 2.3.

Choosing B ≥ C0(1 +R0 + C3) (depending only on R0, but independent of u and E), we have(
B

C0
− C3

)
ε− E ≥ ε , E ∈ [0, εR0] . (3.32)

Let
Ω− := {x ∈ Σ |Vε(x) + V Φα(x)− E < 0} and Ω+ := Σ \ Ω− , (3.33)

then from (3.32) combined with (3.22) it follows that Ω− ⊂ {d(x) < εB} and by (3.22)

|Vε(x) + V Φα(x)| ≤ ε max{C3, R0} for all x ∈ Ω− . (3.34)

We define the functions F± : Σ→ [0,∞) by

F+(x) :=
√
ε1{d(x)<Bε}(x) + (Vε(x) + V Φα(x)− E)1Ω+(x) (3.35)

and

F−(x) :=
√
ε1{d(x)<Bε}(x) + (E − Vε(x)− V Φα(x))1Ω−(x) . (3.36)

Then F± are well defined and furthermore there exists a constant C, C̃ > 0 depending only of R0 and B
such that

F := F+ + F− ≥ C
√
ε > 0 , |F−| ≤ C̃

√
ε and F 2

+ − F 2
− = Vε + V Φα − E . (3.37)
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The first inequality uses (3.22) combined with (3.32). By (2.38) and (3.37)∥∥∥FeΦα
ε u
∥∥∥2

L2(Σ)
≥ Cε

∥∥∥eΦα
ε u
∥∥∥2

L2(Σ)
(3.38)

and ∥∥∥ 1
F e

Φα
ε

(
HΣ
ε − E

)
u
∥∥∥2

L2(Σ)
≤ Cε−1

∥∥∥eΦα
ε

(
HΣ
ε − E

)
u
∥∥∥2

L2(Σ)
. (3.39)

Since suppF− ⊂ {d(x) < Bε}, by (2.38) and (3.37) there exists a constant C > 0 such that∥∥∥F−eΦ
ε u
∥∥∥2

L2(Σ)
≤ Cε ‖u‖2L2(Σ) . (3.40)

Inserting (3.38), (3.39) and (3.40) in (2.27) yields (1.24) uniformly with respect to E ∈ (0, εR0) and u.

Proof of (c):

(1.27) follows at once from (1.24) together with (1.25) and (1.26).
If u is an eigenfunction of HΣ

ε with eigenvalue E, then the first summand on rhs(1.24) vanishes. The
normalization of u therefore leads to (1.28).

Proof of (a):

For ĝ defined in (3.4) and dδ = d ∗ jδ defined in Lemma 2.7, we set

Φ̃α,δ(x) =
(

1− α

2

)((
1− ĝ

)
d(x) + ĝ dδ(x)

)
.

Then for all x ∈ Σ and δ < δα

(1− α) d(x) ≤ Φ̃α,δ(x) ≤ d(x) . (3.41)

In fact, if x ∈ K (3.41) is trivial, so let x ∈ Σ \K. Then, writing Φ̃α,δ = (1 − α
2 )(d + ĝ(dδ − d)), (3.41)

follows directly from (3.7).
For η as in the definition of ĝ, we now claim that for any fixed α ∈ (0, 1] and for all δ < δα and ε < ε0

V0(x)− t̃Σ0 (x,∇Φ̃α,δ(x)) ≥

{
0 , x ∈ Σ ∩ d−1([0, D + η)

C , x ∈ Σ ∩ d−1([D + η,∞)) .
(3.42)

If x ≥ D, this follows as in the proof of (b) (Case 5 and 6 of Step 2).

If x < D, we have ∇Φ̃α,δ(x) = (1− α
2 )∇d(x) and thus by the convexity of t̃0 and the eikonal inequality

(1.19), analog to Step 2, Case 3 in the proof of (b),

V0(x)− t̃Σ0 (x,∇Φ̃α,δ(x)) ≥ α

2
V0(x) ≥ 0 .

Similar to Step 3 in the proof of (b), it follows that for some C1, C2 > 0

Vε(x) + V Φ̃α(x) ≥

{
−εC1 , x ∈ Σ ∩ d−1([0, D + η)

C2 , x ∈ Σ ∩ d−1([D + η,∞)) ,
(3.43)

where we set Φ̃α := Φ̃α,δ for any δ < δα. If F+, F− are defined as in (3.35) and (3.36) with Φα replaced

by Φ̃α, arguments similar to those in (3.37) and below lead to∥∥∥e Φ̃α
ε u
∥∥∥
L2(Σ)

≤ C
[
ε−1

∥∥∥e Φ̃α
ε

(
HΣ
ε − E

)
u
∥∥∥
L2(Σ)

+ ‖u‖L2(Σ)

]
,

which combined with (3.41) proves (1.23). 2

Proof of Theorem 1.5. This is a consequence of (the proof of) Theorem 1.6,(b). Since d ∈ C 2(Σ), we can
use Φ defined in (2.36) instead of Φα. The arguments in Step 2, Case 1 - 3, show that there are constants
C0, C1 > 0 independent of B, E and ε0 > 0 such that for all ε < ε0

V0(x)− t̃Σ0 (x,∇Φ(x)) ≥

{
0 , x ∈ Σ ∩ d−1([0, Bε])
B
C0
ε , x ∈ Σ ∩ d−1([Bε,∞))
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Since Φ ∈ C 2(Σ), the same arguments as in Step 3 of the proof of Thm. 1.6,(b), show

Vε(x) + V Φ(x) ≥

{
−C2 ε for x ∈ Σ ∩ d−1([0, Bε])(
B
C0
− C3

)
ε for x ∈ Σ ∩ d−1([Bε,∞))

for some C2, C3 > 0 independent of B and E, where V Φ := V Φ
ε,Σ is defined in (2.2). Defining F− and F+

by (3.35) and (3.36) with Φα replaced by Φ, we get (1.20) by use of Lemma 2.3 and Lemma 2.6. Note
that Lemma 2.7 is not needed and neither is the continuity assumption (1.22).
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[4] M. Dimassi, J. Sjöstrand: Spectral Asymptotics in the Semi- Classical Limit, London Mathematical Society Lecture

Note Series 268, Cambridge University Press, 1999
[5] R.M. Dudley: Real Analysis and Probability, Cambridge studies in advanced mathematics 74, Cambridge University

Press, 2002

[6] M. Fukushima, Y. Oshima, M. Takeda: Dirichlet Forms and Symmetric Markov Processes, de Gruyter, 1994
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