
FROM THE SCHRÖDINGER PROBLEM TO THE
MONGE-KANTOROVICH PROBLEM

CHRISTIAN LÉONARD

Abstract. The aim of this article is to show that the Monge-Kantorovich problem is
the limit, when a fluctuation parameter tends down to zero, of a sequence of entropy
minimization problems, the so-called Schrödinger problems. We prove the convergence
of the entropic optimal values to the optimal transport cost as the fluctuations decrease
to zero, and we also show that the cluster points of the entropic minimizers are optimal
transport plans. We investigate the dynamic versions of these problems by considering
random paths and describe the connections between the dynamic and static problems.
The proofs are essentially based on convex and functional analysis. We also need specific
properties of Γ-convergence which we didn’t find in the literature; these Γ-convergence
results which are interesting in their own right are also proved.
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1. Introduction

The aim of this article is to describe a link between the Monge-Kantorovich optimal
transport problem and a sequence of entropy minimization problems. We show that the
Monge-Kantorovich problem is the limit of this sequence when a fluctuation parameter
tends down to zero. More precisely, we prove that the entropic optimal values tend to
the optimal transport cost as the fluctuations decrease to zero, and also that the cluster
points of the entropic minimizers are optimal transport plans. We also investigate the
dynamic versions of these problems by considering random paths.

Our main results are stated at Section 2, they are Theorems 2.4, 2.7 and 2.8.
Although the assumptions of these results are in terms of large deviation principle, it

is not necessary to be acquainted to this theory or even to probability theory to read this
article. We tried as much as possible to formulate the probabilistic notions in terms of
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analysis and measure theory. A short reminder of the basic definitions and results of large
deviation theory is given at the beginning of Appendix A.

The connection between large deviation and optimal transport was discovered by Mikami
in the context of the quadratic transport [Mik04]. Although no relative entropy appears
in [Mik04] where an optimal control approach is performed, the results of the present
paper can be seen as extensions of Mikami’s ones.

Some notation. Let us introduce briefly some notation and conventions before present-
ing our main results. For any topological space Z, we denote by P(Z) the set of all
probability measures on the Borel σ-field of Z.
In the whole paper, X denotes a state space which is assumed to be Polish, i.e. complete
metric and separable. As usual when working with stochastic processes, we are going to
consider probability measures on the space

Ω := D([0, 1],X ) ⊂ X [0,1]

of all X -valued paths on the time interval [0, 1] which are left continuous and right limited.
For any P ∈ P(Ω), i.e. P is the law of a random path (Xt)0≤t≤1, and any 0 ≤ t ≤ 1, we
denote by Pt = (Xt)#P ∈ P(X ) the law of the random location Xt at time t, where
we write f#m for the push-forward of the measure m by the measurable mapping f.
In particular, P0 and P1 are the laws of the initial and final random locations under P.
Also useful is the joint law of the initial and final locations (X0, X1): P01 = (X0, X1)#P ∈
P(X 2). The disintegration of P with respect to (X0, X1) is P (dω) =

∫
X 2 P

xy(dω)P01(dxdy)
where P xy(·) := P (· | X0 = x,X1 = y), x, y ∈ X is the bridge of P between x and y, i.e.
P conditioned by the event (X0, X1) = (x, y).
When working with the product space

X 2 = X {0,1},
one sees the first and second factors X as the sets of initial and final states respectively.
Therefore, denoting the canonical projections X0(x, y) := x and X1(x, y) := y, (x, y) ∈
X 2, the first and second marginals of the probability measure π ∈ P(X 2) are π0 :=
(X0)#π ∈ P(X ) and π1 := (X1)#π ∈ P(X ).

Monge-Kantorovich and Schrödinger problems. In its Kantorovich form, the op-
timal transport problem dates back to the 40’s, see [Kan42, Kan48]. It appears that its
entropic approximation has its roots in an even older problem which was addressed by
Schrödinger in the early 30’s, see [Sch32].

Monge-Kantorovich problem. It is about finding the cheapest way of transporting some
given mass distribution onto another one. We describe these mass distributions by means
of two probability measures on a state space X : the initial one is called µ0 ∈ P(X )
and the final one µ1 ∈ P(X ). The rules of the game are (i): it costs c(x, y) ∈ [0,∞] to
transport a unit mass from x to y and (ii): it is possible to transport infinitesimal portions
of mass from the x-configuration µ0 to the y-configuration µ1. The resulting minimization
problem is the celebrated Monge-Kantorovich problem∫

X 2

c dπ → min; π ∈ P(X 2) : π0 = µ0, π1 = µ1. (MK)

It is worth introducing a dynamic version of this static problem. For this purpose, let us
take a cost function on the path space C : Ω → [0,∞] and consider the corresponding
geodesic problem, for all x, y ∈ X :

C(ω)→ min; ω ∈ Ω : ω0 = x, ω1 = y. (Gxy)
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The dynamic Monge-Kantorovich problem is∫
Ω

C dP → min; P ∈ P(Ω) : P0 = µ0, P1 = µ1. (MKdyn)

The following results about (MK) and (MKdyn) are part of Theorem 2.8 below. We have
inf (MKdyn) = inf (MK), whenever c and C are related by

c(x, y) = inf (Gxy) := inf{C(ω);ω ∈ Ω : ω0 = x, ω1 = y}, x, y ∈ X . (1)

This will be assumed once for all.
If P̂ is a minimizer of (MKdyn), then P̂01 minimizes (MK). Moreover, the formula

P̂ (dω) =

∫
X 2

δΓxy(dω) π̂(dxdy),

is a one-one relation between the minimizers P̂ of (MKdyn) and
(
π̂, (δΓxy)x,y∈X

)
where π̂

solves (MK) and (x, y) 7→ δΓxy ∈ P(Ω) is any measurable mapping such that for π̂-almost
each (x, y), δΓxy concentrates on the set of geodesic paths

Γxy := {ω ∈ Ω;ω0 = x, ω1 = y, C(ω) = c(x, y)},
i.e. δΓxy(Γxy) = 1.
Optimal transport is an active field of research. For a remarkable overview of this topic,
see Villani’s textbook [Vil09] and the references therein.

Schrödinger problem. In his Saint-Flour lecture notes [Föl88], Föllmer gave a modern
translation of a statistical physics problem that Schrödinger addressed in 1932 in connec-
tion with the newly born quantum physics. The relative entropy of the probability p with
respect to the reference probability r is defined by

H(p|r) :=

{ ∫
log
(
dp
dr

)
dp ∈ [0,∞], if p� r

∞, otherwise.

Take R ∈ P(Ω) which is seen as the law of some reference1 stochastic process and two
probability measures µ0, µ1 ∈ P(X ). Schrödinger’s dynamic problem is

H(P |R)→ min; P ∈ P(Ω) : P0 = µ0, P1 = µ1 (Sdyn)

where as for the Monge-Kantorovich problem, µ0 and µ1 ∈ P(X ) are prescribed. In order
to obtain a minimization problem on the same set P(X 2) as (MK), let us project (Sdyn)
from P(Ω) onto P(X 2) by taking the push-forward P01 = (X0, X1)#P ∈ P(X 2) of any
P ∈ P(Ω). The reference probability on X 2 becomes

ρ = (X0, X1)#R := R01 ∈ P(X 2)

and we call

H(π|ρ)→ min; π ∈ P(X 2) : π0 = µ0, π1 = µ1, (S)

the Schrödinger problem.
One can prove that inf (Sdyn) = inf (S) ∈ [0,∞] and since the relative entropy is a strictly
convex function, if inf (Sdyn) <∞, then (Sdyn) and (S) admit respectively a unique mini-

mizer P̂ ∈ P(Ω) and π̂ ∈ P(X 2). Moreover, these solutions are related by π̂ = P̂01 and

P̂ (dω) =

∫
X 2

Rxy(dω) π̂(dxdy), (2)

1The unusual letter R is used to stress the fact that R is the reference process.
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i.e. P̂ is the π̂-mixture of the bridges Rxy of the reference process R. Indeed, as noticed
in [Föl88], these results follow from the disintegration P (·) =

∫
X 2 P

xy(·)P01(dxdy), the
tensorization formula H(P |R) = H(P01|R01) +

∫
X 2 H(P xy|Rxy)P01(dxdy) and the fact

that H(P xy|Rxy) attains uniquely its minimal value zero at P xy = Rxy.

A link between these problems. In order to reinforce the formal resemblance between the
Monge-Kantorovich and the Schrödinger problems, it is necessary to understand how the
reference process R encodes the dynamic cost C. This will be done by replacing R with
a sequence (Rk)k≥1 of reference processes which satisfies a large deviation principle with
scale k, as k tends to infinity, and rate function C. It roughly means that

Rk(A) �
k→∞

exp

(
−k inf

ω∈A
C(ω)

)
, (3)

for a large class of measurable subsets A ⊂ Ω.
Very informally, the most likely paths ω correspond to high values Rk(dω) and therefore
to low values of C(ω). As k tends to infinity, the support of Rk shrinks down to a subset
of the minimizers of C. Under endpoint constraints, it shouldn’t be surprising to meet the
family (Gxy) of geodesic problems: The large deviation behaviour of the sequence (Rk)k≥1

brings us a family of geodesic paths. More precisely, it can be proved that for R01-almost
all (x, y), the cluster points of the sequence (Rk,xy)k≥1 of bridges of (Rk)k≥1 concentrate
on the set Γxy of solutions to the geodesic problem (Gxy): limk→∞R

k,xy = δΓxy .

Instead of (Sdyn) and (S), we introduce the sequence of problems (S̃
k

dyn)k≥1 and (S̃
k
)k≥1:

1

k
H(P |Rk)→ min; P ∈ P(Ω) : P0 = µ0, P1 = µ1 (S̃

k

dyn)

and
1

k
H(π|ρk)→ min; π ∈ P(X 2) : π0 = µ0, π1 = µ1 (S̃

k
)

where

ρk := Rk
01

and 1/k is a normalization factor which prevents H(P |Rk) from exploding as k tends to
infinity. Note that, as a direct consequence of the contraction principle (Theorem A.1),
(ρk)k≥1 satisfies the large deviation principle with scale k and the rate function c on X 2

which is defined by (1).
The aim of this paper is to prove the informal statement{

(a) limk→∞ (S̃
k
) = (MK),

(b) limk→∞ (S̃
k

dyn) = (MKdyn),
(4)

having in mind

• limk→∞ inf (S̃
k
) = inf (MK)

• and any cluster point of the sequence (π̂k)k≥1 of minimizers of (S̃
k
)k≥1 is a mini-

mizer of (MK).

And also similar statements for the dynamic problems. It will be seen later that it is

necessary to replace (S̃
k
) and (S̃

k

dyn) by some modified problems (Sk) and (Skdyn), see the
statements of Theorems 2.4 and 2.7 respectively. The relevant notion of convergence in
(4) is the Γ-convergence, see (6) below and Theorem 2.1 for more details.
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Presentation of the results. In this introduction, we briefly present our main results
by means of the specific important example which was Schrödinger’s original motivation
in [Sch32].

Schrödinger’s heat bath. Our general results applied to Schrödinger’s original example2

lead us to a restatement in terms of relative entropy of the main result of Mikami’s article
[Mik04]. For each integer k ≥ 1, let Rk be the law of a Brownian motion Y k with diffusion
coefficient 1/k :

dY k
t =

√
1/k dBt (5)

where B is a standard Brownian motion. With these dynamics, it is enough to consider
the path space C([0, 1],X ) ⊂ Ω of all continuous trajectories from [0, 1] to X = Rd. As k
tends to infinity, Rk tends to some deterministic dynamics: R∞ describes a deterministic
flow since it only gives mass to constant paths.
The rate function C corresponding to (5) is given by Schilder’s theorem (Theorem A.3),
a standard large deviation result which tells us that C is the classical kinetic action
functional which is given for any path ω by C(ω) = 1

2

∫
[0,1]
|ω̇t|2 dt ∈ [0,∞] if ω = (ωt)0≤t≤1

is absolutely continuous (ω̇ is its time derivative), and +∞ otherwise. With Jensen’s
inequality, one easily sees that the corresponding static cost defined by (1) is the standard
quadratic cost

c(x, y) = |y − x|2/2, x, y ∈ Rd.

For each k ≥ 1, the solution to (S̃
k

dyn) is

P̂ k(·) =

∫
X 2

Rk,xy(·) π̂k(dxdy)

where Rk,xy is the bridge between x and y of the Brownian motion with variance 1/k, and

π̂k is the minimizer of (S̃
k
) with

ρk(dy|X0 = x) = Rk(X1 ∈ dy|X0 = x) = (2π/k)−d/2 exp(−k|y − x|2/2) dy, x ∈ Rd.

If the quadratic cost transport problem on X = Rd admits a unique solution, for instance
when

∫
X |x|

2µ0(dx),
∫
X |y|

2µ1(dy) < ∞ and µ0 is absolutely continuous [Bre91], then

(P̂ k)k≥1 converges to

P̂ (·) =

∫
X 2

δγxy(·) π̂(dxdy) ∈ P(Ω)

where for each x, y ∈ X , γxy is the constant velocity geodesic path between x and y, δγxy is
the Dirac measure at γxy and π̂ ∈ P(X 2) is the unique solution to the Monge-Kantorovich
transport problem (MK) with a quadratic cost. Observing

lim
k→∞

P̂ k = P̂

and comparing the expressions of P̂ k and P̂ , it is worth remarking that

- “− limk→∞
1
k

log ρk(dxdy) ' c(x, y)”, which reflects the fact that (ρk(X1 ∈ ·|X0 = x))k≥1

obeys the large deviation principle with scale k and rate function c(x, ·),
- limk→∞R

k,xy = δγxy , which is a consequence of (1) and (3),
- limk→∞ π̂

k = π̂, which is part of (4)-(a) when π̂ is unique.

2In [Sch32], the semi-classical limit k →∞ is not investigated.
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Note also that P̂ is a process with a deterministic dynamics and a random initial condition.
Moreover, it is the solution to (MKdyn) and its time-marginal flow is given by

P̂t =

∫
X 2

δγxyt
(·) π̂(dxdy) ∈ P(X ), 0 ≤ t ≤ 1.

This flow is precisely the displacement interpolation between µ0 and µ1 with respect to
the quadratic cost transport problem, see [Vil09, Chapter 7] for this notion. Therefore,

P̂ k
t (·) =

∫
X 2

Rk,xy
t (·) π̂k(dxdy), 0 ≤ t ≤ 1

is an entropic approximation of the displacement interpolation (P̂t)0≤t≤1.

These results hold true with the unmodified minimization problems (S̃
k
) and (S̃

k

dyn)
whenever both µ0 and µ1 are assumed to be absolutely continuous with respect to Lebesgue
measure. But our general results allow us to remove this restriction, see Theorems 2.4
and 2.7. They are stated in terms of Γ-limits of some modifications (Sk) and (Skdyn) of

(S̃
k
) and (S̃

k

dyn): the informal statement (4) must be replaced by{
(a) Γ- limk→∞ (Sk) = (MK),
(b) Γ- limk→∞ (Skdyn) = (MKdyn).

(6)

The definition and some basic results about Γ-convergence are recalled at the beginning
of Section 2. In particular, Theorem 2.1 tells us that Γ-convergence is well-suited for
obtaining

• limk→∞ inf (Sk) = inf (MK);
• any cluster point of the minimizers (π̂k)k≥1 of (Sk)k≥1 is a minimizer of (MK);

and their dynamic analogues.
The problem of knowing if (π̂k)k≥1 converges even if (MK) admits several solutions

is left open in this article. It seems likely that this holds true and that the entropy
minimization approximation selects a “viscosity solution” of (MK).

Results. Our main results are Theorems 2.4, 2.7 and 2.8.

• The quadratic cost is an important instance of transport cost, but our results are
valid for any cost functions c and C satisfying (1) and (3), plus some coercivity
properties. In addition, it is not even necessary that c is derived from a dynamic
cost C via (1): the convergence (6)-(a) holds in a more general setting, this is
the content of Theorem 2.4. Its dynamic analogue (6)-(b) is stated at Theorem
2.7 and the connection between the dynamic and static minimizers is described at
Theorem 2.8.
• Examples of random dynamics (Rk)k≥1 are introduced, leading to several cost

functions C and c. They are mainly based on random walks and the Brownian
motion so that one can compute explicitly the corresponding cost functions. In
particular, we propose dynamics which generate the standard costs cp(x, y) :=
|y − x|p, x, y ∈ Rd for any p > 0. See Examples 3.5 for such dynamics based on
the Brownian motion.
• The relevant tool for handling convergence of minimization problems is the Γ-

convergence theory. We also prove technical results about Γ-convergence which
we didn’t find in the literature. A typical result about the Γ-convergence of a
sequence of convex functions (fk)k≥1 is: If the sequence of the convex conjugates
(f ∗k )k≥1 converges pointwise, then (fk)k≥1 Γ-converges. Known results of this type
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are usually stated in separable reflexive Banach spaces, which is a natural setting
when working with PDEs. But here, we need to work with the narrow topology on
the set of probability measures. Theorem 5.2 is such a result in this weak topology
setting.
• Finally, we also prove Theorem 6.1 which tells us that if one adds a continuous

constraint to an equi-coercive sequence of Γ-converging minimization problems,
then the minimal values and the minimizers of the new problems still enjoy nice
convergence properties.

Organization of the paper. Our main results are stated at Section 2. Since our primary
object is the sequence of random processes (Rk)k≥1, it is necessary to connect it with the
cost functions C and c. This is the purpose of Section 3 where these costs functions are
derived for a large family of random dynamics. The proofs of our main results are done
at Section 4. They are partly based on two Γ-convergence results which are stated and
proved at Sections 5 and 6.

Literature. We already mentioned Mikami’s important contribution [Mik04] which con-
nects large deviation and optimal quadratic transport. Let us note also that an interesting
aspect of [Mik04], which is uncovered by the present paper, is that the stochastic control
approach together with c-cyclical monotonicity arguments, provide a stochastic proof to
the existence of the solution to Monge problem with a quadratic cost without relying on
Brenier and McCann’s results [Bre91, McC95]. Still using optimal control, Mikami and
Thieullen [MT06, MT08] obtained Kantorovich type duality results.

Recently, Adams, Dirr, Peletier and Zimmer [ADPZ11] have shown that the small time
large deviation behavior of a large particle system is equivalent up to the second order to
a single step of the Jordan-Kinderleher-Otto gradient flow algorithm. This is reminiscent
of the Schrödinger problem, but the connection is not completely understood by now.

The connection between the Monge-Kantorovich and the Schrödinger problems is also
exploited implicitly in some works where (MK) is penalized by a relative entropy, leading
to the minimization problem∫

X 2

c dπ +
1

k
H(π|ρ)→ min; π ∈ P(X 2) : π0 = µ0, π1 = µ1

where ρ ∈ P(X 2) is a fixed reference probability measure on X 2, for instance ρ = µ0⊗µ1.
Putting ρk = Z−1

k e−kc ρ with Zk =
∫
X 2 e

−kc dρ <∞, up to the additive constant log(Zk)/k,

this minimization problem rewrites as (S̃
k
). See for instance the papers by Rüschendorf

and Thomsen [RT93, RT98] and the references therein. Also interesting is the recent
paper by Galichon and Salanie [GS] with an applied point of view.

2. Statements of the main results

The statements of our results are in terms of Γ-convergence and large deviation princi-
ple. We start introducing their definitions, together with general notation.

Some more notation and conventions. For any topological space Z, P(Z) is fur-
nished with the usual narrow topology σ(P(Z),Cb(Z)) weakened by the space Cb(Z) of
all continuous bounded functions on Z and the corresponding Borel σ-field.

We denote X = (Xt)t∈[0,1] the canonical process which is defined for all t ∈ [0, 1] by

Xt(ω) := ωt, ω = (ωt)t∈[0,1] ∈ Ω = D([0, 1],X ).
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The set Ω is endowed with the σ-field σ(Xt, t ∈ [0, 1]) which is generated by the canonical
process. It is known that it matches with the Borel σ-field of Ω when Ω is furnished with
the Skorokhod topology3 which turns Ω into a Polish space, see [Bil68].

Recall that a function f : X → (−∞,∞] is said to be lower semicontinuous on the
topological space X if all its sublevel sets {f ≤ a}, a ∈ R are closed. It is said to be
coercive if its sublevel sets are compact in the Hausdorff space X. A sequence (fk)k≥1 is
said to be equi-coercive, if for all a ≥ 0,

⋃
k≥1{fk ≤ a} is relatively compact in X. The

convex analysis indicator of a set A ⊂ X is defined by

ι{x∈A} = ιA(x) =

{
0 if x ∈ A
∞ otherwise

, x ∈ X.

Large deviation principle. Let X be a Polish space furnished with its Borel σ-field.
One says that the sequence (pk)k≥1 of probability measures on X satisfies the large devia-
tion principle (LDP for short) with scale k and rate function I, if for each Borel measurable
subset A of X we have

− inf
x∈intA

I(x)
(i)

≤ lim inf
k→∞

1

k
log pk(A) ≤ lim sup

k→∞

1

k
log pk(A)

(ii)

≤ − inf
x∈clA

I(x) (7)

where intA and clA are respectively the topological interior and closure of A in X and
the rate function I : X → [0,∞] is lower semicontinuous. The inequalities (i) and (ii) are
called respectively the LD lower bound and LD upper bound, where LD is an abbreviation
for large deviation.
Important standard LD results are recalled at Appendix A.

Γ-convergence. Recall that if it exists, the Γ-limit of the sequence (fk)k≥1 of (−∞,∞]-
valued functions on a topological space X is given for all x in X by

Γ- lim
k→∞

fk(x) = sup
V ∈N (x)

lim
k→∞

inf
y∈V

fk(y)

where N (x) is the set of all neighborhoods of x. In a metric space X, this is equivalent
to:

(i) For any sequence (xk)k≥1 such that limk→∞ xk = x,

lim inf
k→∞

fk(xk) ≥ f(x)

(ii) and there exits a sequence (x̃k)k≥1 such that limk→∞ x̃k = x and

lim inf
k→∞

fk(x̃k) ≤ f(x).

Item (i) is called the lower bound and the sequence (x̃k)k≥1 in item (ii) is the recovery
sequence. An important standard Γ-convergence result is the following

Theorem 2.1. Let (fk)k≥1 be an equi-coercive sequence of (−∞,∞]-valued functions
which Γ-converges to some function f which is not identically equal to +∞.

(1) Then, f is coercive and minx∈X f(x) = limk→∞ infx∈X fk(x).
(2) For each k ≥ 1, let x̂k be a minimizer of fk. If (x̂k)k≥1 converges to some x̂ ∈ X,

then x̂ is a minimizer of f .

For a proof, see [DM93, Thm 7.8, Cor 7.20].

The main results. The state space X is assumed to be Polish.

3In the special case when the paths are continuous, one can choose Ω = C([0, 1],X ), in which case this
topology reduces to the topology of uniform convergence.
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Static results. For each integer k ≥ 1, we take a measurable kernel

(ρk,x ∈ P(X );x ∈ X )

of probability measures on X . We also take µ0 ∈ P(X ), denote

ρk,µ0(dxdy) := µ0(dx)ρk,x(dy) ∈ P(X 2)

and define the [0,∞]-valued functions on P(X 2) :{
Ck,µ001 (π) := 1

k
H(π|ρk,µ0) + ι{π0=µ0}

Cµ001 (π) :=
∫
X 2 c dπ + ι{π0=µ0}

, π ∈ P(X 2).

Proposition 2.2. We assume that for each x ∈ X , the sequence ((X1)#ρ
k,x)k≥1 satisfies

the LDP in X with scale k and the coercive rate function

c(x, ·) : X → [0,∞]

where c : X 2 → [0,∞] is a lower semicontinuous function.

Then, for any µ0 ∈ P(X ) we have: Γ- limk→∞ Ck,µ001 = Cµ001 in P(X 2).

Let us define the functions

T k01(µ0, ν) := inf

{
1

k
H(π|ρk,µ0); π ∈ P(X 2) : π0 = µ0, π1 = ν

}
= inf{Ck,µ001 (π); π ∈ P(X 2) : π1 = ν}, ν ∈ P(X )

and

T01(µ0, ν) := inf

{∫
X 2

c dπ; π ∈ P(X 2) : π0 = µ0, π1 = ν

}
= inf{Cµ001 (π);π ∈ P(X 2) : π1 = ν}, ν ∈ P(X ).

The subsequent result will follow from Proposition 2.2 and Theorem 6.1.

Corollary 2.3. Under the assumptions of Proposition 2.2, for any µ0 ∈ P(X ) we have

Γ- lim
k→∞

T k01(µ0, ·) = T01(µ0, ·)

on P(X ). In particular, for any µ1 ∈ P(X ), there exists a sequence (µk1)k≥1 such that
limk→∞ µ

k
1 = µ1 in P(X ) and limk→∞ T

k
01(µ0, µ

k
1) = T01(µ0, µ1) ∈ [0,∞].

The main result of the paper is the following theorem.

Theorem 2.4. Let us consider the sequence (Sk)k≥1 of minimization problems which is
given for each k ≥ 1, by

1

k
H(π|ρk,µ0)→ min; π ∈ P(X 2) : π0 = µ0, π1 = µk1 (Sk)

where (µk1)k≥1 is a sequence in P(X ) as in Corollary 2.3.
Under the assumptions of Proposition 2.2, for any µ0, µ1 ∈ P(X ) we have limk→∞ inf (Sk) =
inf (MK) ∈ [0,∞].
Suppose that in addition inf (MK) <∞, then for each large enough k, (Sk) admits a unique
solution π̂k ∈ P(X 2). Moreover, any cluster point of the sequence (π̂k)k≥1 in P(X 2) is a
solution to (MK).
In particular, if (MK) admits a unique solution π̂ ∈ P(X 2), then limk→∞ π̂

k = π̂.

Remark that limk→∞ inf (Sk) = inf (MK) is a restatement of limk→∞ T
k
01(µ0, µ

k
1) =

T01(µ0, µ1) in Corollary 2.3.
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Dynamic results. Proposition 2.2 and Theorem 2.4 admit a dynamic version. For each
integer k ≥ 1, we take a measurable kernel

(Rk,x ∈ P(Ωx);x ∈ X )

of probability measures on Ω, with

Ωx := {X0 = x}.
We have in mind the situation where Rk ∈ P(Ω) is the law of a stochastic process and
Rk,x = Rk(· | X0 = x) is its conditional law knowing that X0 = x. For any µ0 ∈ P(X ),
denote

Rk,µ0(·) :=

∫
X
Rk,x(·)µ0(dx) ∈ P(Ω), Rk,µ0

01 (·) :=

∫
X
Rk,x

01 (·)µ0(dx) ∈ P(X 2).

We see that Rk,µ0 is the law of a stochastic process with initial law µ0 and its dynamics
determined by (Rk,x;x ∈ X ) where x must be interpreted as an initial position, while

Rk,µ0
01 = (X0, X1)#R

k,µ0 is the joint law of the initial and final positions under Rk,µ0 . Let
us define the functions{

Ck,µ0(P ) := 1
k
H(P |Rk,µ0) + ι{P0=µ0}

Cµ0(P ) :=
∫

Ω
C dP + ι{P0=µ0}

, P ∈ P(Ω)

where C : Ω→ [0,∞] is a lower semicontinuous function.

Proposition 2.5. We assume that for each x ∈ X , the sequence (Rk,x)k≥1 satisfies the
LDP in Ω with scale k and the [0,∞]-valued coercive rate function on Ω

Cx = C + ι{X0=x}

where C : Ω→ [0,∞] is a lower semicontinuous function.
Then, for any µ0 ∈ P(X ) we have: Γ- limk→∞ Ck,µ0 = Cµ0 in P(Ω).

Let us define the functions

T k(µ0, ν) := inf

{
1

k
H(P |Rk,µ0);P ∈ P(Ω) : P0 = µ0, P1 = ν

}
= inf{Ck,µ0(P );P ∈ P(Ω) : P1 = ν}, ν ∈ P(X )

and

T (µ0, ν) := inf

{∫
Ω

C dP ;P ∈ P(Ω) : P0 = µ0, P1 = ν

}
= inf{Cµ0(P );P ∈ P(Ω) : P1 = ν}, ν ∈ P(X ).

Corollary 2.6. Under the assumptions of Proposition 2.5, we have

Γ- lim
k→∞

T k(µ0, ·) = T (µ0, ·)

on P(X ). In particular, for any µ1 ∈ P(X ), there exists a sequence (µk1)k≥1 such that

lim
k→∞

µk1 = µ1

in P(X ) and limk→∞ T
k(µ0, µ

k
1) = T (µ0, µ1) ∈ [0,∞].

Theorem 2.7. Let us consider the sequence (Skdyn)k≥1 of minimization problems which is
given for each k ≥ 1, by

1

k
H(P |Rk,µ0)→ min; P ∈ P(Ω) : P0 = µ0, P1 = µk1 (Skdyn)
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where (µk1)k≥1 is a sequence in P(X ) as in Corollary 2.6.
Under the assumptions of Proposition 2.5, for any µ0, µ1 ∈ P(X ) we have limk→∞ inf (Skdyn) =
inf (MKdyn) ∈ [0,∞].
Suppose that in addition inf (MKdyn) <∞, then for each large enough k, (Skdyn) admits a

unique solution P̂ k ∈ P(Ω). Moreover, any cluster point of the sequence (P̂ k)k≥1 in P(Ω)
is a solution to (MKdyn).

In particular, if (MKdyn) admits a unique solution P̂ ∈ P(Ω), then limk→∞ P̂
k = P̂ .

From the dynamic to a static version. Once we have the dynamic results, the static ones
can be derived by means of the continuous projection P ∈ P(Ω) 7→ (X0, X1)#P = P01 ∈
P(X 2). The LD tool which is behind this transfer is the contraction principle which is
recalled at Theorem A.1 below. The connection between the dynamic cost C and the
static cost c is Eq. (1).
Since Cx is coercive for all x ∈ X , there exists at least one solution to the geodesic problem
(Gxy) which we call a geodesic path, provided that its value c(x, y) is finite.

The above static results hold true for any [0,∞]-valued function c satisfying the as-
sumptions of Proposition 2.2 even if it is not derived from a dynamic rate function C
via the identity (1). Note also that the coerciveness of Cx for all x ∈ X , implies that
y ∈ X 7→ c(x, y) is coercive (the sublevel sets of c(x, ·) are continuous projections of the
sublevel sets of Cx which are assumed to be compact). Nevertheless, it is not clear at first
sight that c is jointly (on X 2) measurable. Theorem 2.8 below tells us that it is jointly
lower semicontinuous.
The coerciveness of Cx also guarantees that the set Γxy of all geodesic paths from x to
y is a nonempty compact subset of Ω as soon as c(x, y) < ∞. In particular, it is a Borel
measurable subset.

Theorem 2.8. Suppose that the assumptions of Proposition 2.5 are satisfied.

(1) Then, not only the dynamic results Corollary 2.6 and Theorem 2.7 are satisfied
with the cost function C, but also the static results Proposition 2.2, Corollary 2.3
and Theorem 2.4 hold with the cost function c which is derived from C by means of
(1). It is also true that c is lower semicontinuous and inf (MKdyn) = inf (MK) ∈
[0,∞].

Suppose in addition that µ0, µ1 ∈ P(X ) satisfy inf (MK) := T01(µ0, µ1) <∞, so that both
(MK) and (MKdyn) admit a solution.

(2) Then, for all large enough k ≥ 1, (Sk) and (Skdyn) admit respectively a unique

solution π̂k ∈ P(X 2) and P̂ k ∈ P(Ω). Furthermore, π̂k = P̂ k
01 and more precisely

P̂ k =

∫
X 2

Rk,xy(·) π̂k(dxdy)

which means that P̂ k is the π̂k-mixture of the bridges Rk,xy of Rk.
(3) The sets of solutions to (MK) and (MKdyn) are nonempty convex compact subsets

of P(X 2) and P(Ω) respectively.

A probability P̂ ∈ P(Ω) is a solution to (MKdyn) if and only if P̂01 is a solution to
(MK) and

P̂ xy(Γxy) = 1, ∀(x, y) ∈ X , P̂01-a.e. (8)

In particular, if (MK) admits a unique solution π̂ ∈ P(X 2) and for π̂-almost every
(x, y) ∈ X 2, the geodesic problem (Gxy) admits a unique solution γxy ∈ Ω, then
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(MKdyn) admits the unique solution

P̂ =

∫
X 2

δγxy π̂(dxdy) ∈ P(Ω)

which is the π̂-mixture of the Dirac measures at the geodesics γxy and

lim
k→∞

P̂ k = P̂

in P(Ω).

Several comments and remarks. • The Schrödinger dynamic problem (Skdyn) looks like

the Monge-Kantorovich dynamic problem (MKdyn) not only because of µ0 and µk1 →
k→∞

µ1,

but also because of some cost of transportation. Indeed, if the random dynamics creates
a trend to move in some direction rather than in another one, it costs less to a dynamic
particle system whose empirical measure is close to P to end up at some configurations
close to µ1 than other ones. For the particle system picture associated with Schrödinger’s
problem, see [Sch32, Föl88]. Even if no direction is favoured by a drift vector field, we
see that the structure of the random fluctuations which is described by the sequence
(Rk)k≥1 encodes some zero-fluctuation cost functions C on Ω (via the LD assumption of
Proposition 2.5) and c on X 2 (via (1)).

• Let us comment on the necessity for replacing the entropy minimization problems (S̃
k
)k≥1

with (Sk)k≥1 and consequently (S̃
k

dyn)k≥1 by (Skdyn)k≥1. Recall that we introduced

1

k
H(π|ρk)→ min; π ∈ P(X 2) : π0 = µ0, π1 = µ1 (S̃

k
)

For inf (S̃
k
) to be finite, it is necessary that µ0 and µ1 are respectively absolutely contin-

uous with respect to ρk0 and ρk1. Considering ρk,µ0 instead of ρk guarantees ρk,µ00 = µ0. To
see why µ1 must be approximated by some sequence (µk1)k≥1, let us consider two examples.

- Take X = R, µ0 = µ1 = δ0 and choose ρk,µ0 to be the Gaussian distribution Gauss(0,1/k)
with mean zero and variance 1/k. Since µ1 and ρk,µ0 are mutually singular, we have for

each k, inf (S̃
k
) = inf ∅ = ∞. But this sequence (ρk)k≥1 corresponds to the quadratic

cost (see Schrödinger’s heat bath at the introductory section or Example 3.4-(1) below).
Therefore (MK) admits the unique solution π̂ = δ(0,0) and it is necessary to approximate
µ1 = δ0 by a sequence of absolutely continuous probability measures (µk1)k≥1 to obtain
limk→∞ inf (Sk) = inf (MK) = 0.

- Take X = R, µ0 = δ0 and choose ρk,µ0 as the law of the random variable Y k = 2Sk/k−1
where Sk has a binomial law Bin(k, 1/2), i.e. Sk is the number of successes after tossing
a fair coin k times. Clearly, Y k lives in Σk := {2n/k − 1; 0 ≤ n ≤ k} ⊂ [−1, 1] and if

µ1 is absolutely continuous with respect to the Lebesgue measure on [0, 1], (S̃
k
) has no

solution at all and inf (S̃
k
) =∞ for all k ≥ 1. It is necessary that µ1 be approximated by

µk1 whose support is included in Σk. The cost function c corresponding to this sequence
(ρk)k≥1 is given below at Example 3.4-(2) and it is immediate to see that taking µ0 = δ0

and any µ1 with a support included in [−1, 1] leads to inf (MK) ≤ log 2 which clearly
implies that (MK) admits a (unique) solution.

• Let us comment on the necessity for replacing the pointwise convergence in (4) with the
Γ-convergence in (6). Considering the Brownian dynamics described by (5), one obtains
a sequence (Rk)k≥1 of mutually singular reference probability measures on Ω. Indeed, for
each k, Rk concentrates of the set of all continuous paths with quadratic variation t/k,
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0 ≤ t ≤ 1. Hence, for any P ∈ P(Ω), we have H(P |Rk) = ∞ for all but at most one
k ≥ 1. This rules out the pointwise convergence in (4)-(b) which has to be replaced with
Γ- limk→∞H(·|Rk) = 〈C, ·〉Ω where the recovery sequences (P k)k≥1 satisfy limk→∞ P

k = P
and H(P k|Rk) <∞ for all large enough k, whenever

∫
Ω
C dP <∞. The supports of the

P k’s must follow the drifting supports of the Rk’s. Of course, this is the case in particular

for the sequence (P̂ k)k≥1 of the minimizers of (Skdyn)k≥1.

Remarks 2.9 (about related literature). • Proposition 2.5 is an important technical step
on the way to our main results. A variant of this proposition, under more restrictive
assumptions than ours, was proved by Dawson and Gärtner [DG94, Thm 2.9] in a context
which is different from optimal transport and with no motivation in this direction. Indeed,
[DG94] is aimed at studying the large deviations of a large number of diffusion processes
subject to a hierarchy of mean-field interactions, by means of random variables which live
in P(P(Ω)): the set of probability measures on the set of probability measures on the
path space Ω. The proofs of Proposition 2.5 in the present paper and in [DG94] differ
significantly. Dawson-Gärtner’s proof is essentially probabilistic while ours is analytic.
The strategies of the proofs are also separate: Dawson-Gärtner’s proof is based on rather
precise probability estimates which partly rely on the specific structure of the problem,
while the present one takes place in the other side of convex duality, using the Laplace-
Varadhan principle and Γ-convergence. Because of these significantly different approaches
and of the weakening of the hypotheses in the present paper, we provide a complete
analytic proof of Proposition 2.5 at Section 4.
• Although one may interpret 1/k as something of the order of Planck’s constant ~ to build
a Euclidean analogue of the quantum dynamics, in [Sch32] Schrödinger isn’t concerned
with the semiclassical limit k →∞.
• Schrödinger’s paper is the starting point of the Euclidean quantum mechanics which
was developed by Zambrini [CZ08].

Remarks 2.10 (about Theorem 2.8). • Formula (8) simply means that P̂ only charges

geodesic paths. But we didn’t write P̂ (Γ) = 1 since it is not clear that the set Γ :=⋃
x,y∈X Γxy of all geodesic paths is measurable.

• In case of uniqueness as in the last statement of Theorem 2.8, the marginal flow of P̂ is

µt := P̂t =

∫
X 2

δγxyt
π̂(dxdy) ∈ P(X ), t ∈ [0, 1].

It is the displacement interpolation between µ0 and µ1 associated with the cost c.
As a consequence of the abstract disintegration result of the probability measures on a
Polish space, the kernel (x, y) 7→ δγxy is measurable. This also means that (x, y) 7→ γxy is
measurable.
• In case when no uniqueness holds for (MKdyn), any flow (Xt)#P̂ ∈ P(X ), t ∈ [0, 1] is
still a good candidate for being called a displacement interpolation between µ0 and µ1.

It would be interesting to know if (P̂ k)k≥1 converges to some “entropic” P̂ , selecting a
privileged displacement interpolation.

3. From stochastic processes to transport cost functions

We have seen in the introductory section that Schilder’s theorem leads to the quadratic
cost function. The aim of this section is to present a series of examples of LD sequences
(Rk)k≥1 in P(Ω) which give rise to various cost functions c on X 2.
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Simple random walks on Rd. Instead of (5), let us consider

Y k,x
t = x+W k

t , 0 ≤ t ≤ 1, (9)

where for each k ≥ 1, W k is a random walk. The law of Y k,x is our Rk,x ∈ P(Ω).
To build these random walks, one needs a sequence of independent copies (Zm)m≥1 of a

random variable Z in Rd. For each integer k ≥ 1, W k is the rescaled random walk defined
for all 0 ≤ t ≤ 1, by

W k
t =

1

k

bktc∑
j=1

Zj (10)

where bktc is the integer part of kt. This sequence satisfies a LDP which is given by
Mogulskii’s theorem. As a pretext to set some notations, we recall its statement. The
logarithm of the Laplace transform of the law mZ ∈ P(Rd) of Z is log

∫
Rd e

ζ·zmZ(dz). Its
convex conjugate is

cZ(v) := sup
ζ∈Rd

{
ζ · v − log

∫
Rd

eζ·zmZ(dz)

}
, v ∈ Rd. (11)

One can prove, see [DZ98], that cZ is a convex [0,∞]-valued function which attains its
minimum value 0 at v = EZ :=

∫
Rd z mZ(dz). Moreover, the closure of its effective domain

cl{cZ <∞} is the closed convex hull of the topological support suppmZ of the probability
measure mZ . Under the assumption (12) below, it is also strictly convex.
For each initial value x ∈ Rd, we define the action functional

Cx
Z(ω) :=

{ ∫
[0,1]

cZ(ω̇t) dt if ω ∈ Ωac and ω0 = x

+∞ otherwise
, ω ∈ Ω.

Theorem 3.1 (Mogulskii’s theorem). Under the assumption∫
Rd

eζ·zmZ(dz) < +∞, ∀ζ ∈ Rd, (12)

for each x ∈ Rd the sequence (Rk,x)k≥1 of the laws of (Y k,x)k≥1 specified by (9) satisfies
the LDP in Ω = D([0, 1],Rd), equipped with its natural σ-field and the topology of uniform
convergence, with scale k and the coercive rate function Cx

Z .

For a proof see [DZ98, Thm 5.1.2]. This result corresponds to our general setting with

C(ω) = CZ(ω) :=

{ ∫
[0,1]

cZ(ω̇t) dt if ω ∈ Ωac

+∞ otherwise
, ω ∈ Ω. (13)

Since cZ is a strictly convex function, the geodesic problem (Gxy) admits as unique solution
the constant velocity geodesic

σxy : t ∈ [0, 1] 7→ (1− t)x+ ty ∈ Rd. (14)

Now, let us only consider the final position

Y k,x
1 = x+

1

k

k∑
j=1

Zj.

Denote ρk,x = (X1)#R
k,x ∈ P(X ) the law of Y k,x

1 . By the contraction principle, see
Theorem A.1, one deduces immediately from Mogulskii’s theorem the simplest result of
LD theory which is the Cramér theorem.
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Corollary 3.2 (A complicated version of Cramér’s theorem). Under the assumption (12),

for each x ∈ Rd the sequence (ρk,x)k≥1 of the laws of (Y k,x
1 )k≥1 satisfies the LDP in Rd

with scale k and the coercive rate function

y ∈ X 7→ cZ(y − x) ∈ [0,∞] y ∈ X
where cZ is given at (11).
Furthermore, cZ(v) = inf{CZ(ω);ω ∈ Ω : ω0 = x, ω1 = x+ v} for all x, v ∈ Rd.

Last identity is a simple consequence of Jensen’s inequality which also lead us to (14)
a few lines earlier. Cramér’s theorem corresponds to the case when x = 0 and only the
deviations of Y k,x=0

1 = 1
k

∑k
j=1 Zj in Rd are considered.

Theorem 3.3 (Cramér’s theorem). Under the assumption (12), the sequence ( 1
k

∑k
j=1 Zj)k≥1

satisfies the LDP in Rd with scale k and the coercive rate function cZ given at (11).

For a proof, see [DZ98, Thm 2.2.30].
We have just described a general procedure which converts the law mZ ∈ P(Rd) into

the cost functions C = CZ and

c(x, y) = cZ(y − x), x, y ∈ Rd.

Here are some examples with explicit computations.

Examples 3.4. We recall some well-known examples of Cramér transform cZ .

(1) To obtain the quadratic cost function cZ(v) = |v|2/2, choose Z as a standard
normal random vector in Rd : mZ(dz) = (2π)−d/2 exp(−|z|2/2) dz.

(2) Taking Z such that Proba(Z = +1) = Proba(Z = −1) = 1/2, i.e. mZ = (δ−1 +
δ+1)/2 leads to

cZ(v) =

 [(1 + v) log(1 + v) + (1− v) log(1− v)]/2, if − 1 < v < +1
log 2, if v ∈ {−1,+1}
+∞, if v 6∈ [−1,+1].

(3) If Z has an exponential law with expectation 1, i.e. mZ(dz) = 1{z≥0}e
−z dz, then

cZ(v) = v − 1− log v if v > 0 and cZ(v) = +∞ if v ≤ 0.
(4) If Z has a Poisson law with expectation 1, i.e. mZ(dz) = e−1

∑
n≥0

1
n!
δn(dz), then

cZ(v) = v log v − v + 1 if v > 0, cZ(0) = 1 and cZ(v) = +∞ if v < 0.
(5) We also have

caZ+b(u) = cZ
(
a−1(v − b)

)
for all invertible linear operator a : Rd → Rd and all b ∈ Rd.

Although Example 3.4-(3) does not satisfy Assumption (12), Mogulskii’s theorem still
holds true and cZ is strictly convex since the log-Laplace transform of mZ is a steep
function.

We have cZ(0) = 0 if and only if EZ :=
∫
Rd z mZ(dz) = 0. More generally, cZ(v) ∈

[0,+∞] and cZ(v) = 0 if and only if v = EZ.

If EZ = 0, cZ is quadratic at the origin since cZ(v) = v · Γ−1
Z v/2 + o(|v|2) where ΓZ is

the covariance matrix of Z. This rules out the usual costs c(v) = |v|p with p 6= 2.
Nevertheless, taking Z a real valued variable with density C exp(−|z|p/p) with p ≥ 1

leads to cZ(v) = |v|p/p(1+o|v|→∞(1)). The case p = 1 follows from Example 3.4-(3) above.
To see that the result still holds with p > 1, compute by means of the Laplace method
the principal part as ζ tends to infinity of

∫∞
0
e−z

p/peζz dz =
√

2π(q − 1)ζ1−q/2eζ
q/q(1 +

oζ→+∞(1)) where 1/p+ 1/q = 1.
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Of course, we deduce a related d-dimensional result considering Z with the density
C exp(−|z|pp/p) where |z|pp =

∑
i≤d |zi|p. This gives cZ(v) = |v|pp/p(1 + o|v|→∞(1)).

Nonlinear transformations. By means of the contraction principle (Theorem A.1), we
can twist the cost functions which have been obtained earlier. We only present some
examples to illustrate this technique.

The static case. Here, we only consider the LD of the final position Y k
1 . We have just

remarked that the cost functions cZ as above are necessarily quadratic at the origin. This
drawback will be partly overcome by means of continuous transformations.
We are going to look at an example

Y k,x
1 = x+ V k

where (V k)k≥1 satisfies a LDP which is not given by Cramér’s theorem. Let (Zj)j≥1 be
as above and let α be any continuous mapping on Rd. Consider

V k = α

(
1

k

∑
1≤j≤k

Zj

)
.

We obtain c(v) = inf{cZ(u);u ∈ Rd, α(u) = v}, v ∈ Rd as a consequence of the contraction
principle. In particular if α is a continuous injective mapping, then

c = cZ ◦ α−1. (15)

For instance, if Z is a standard normal vector as in Example 3.4-(1), we know that the
empirical mean of independent copies of Z : 1

k

∑
1≤j≤k Zj, is a centered normal vector

with variance Id/k. Taking α = αp which is given for each p > 0 and v ∈ Rd by αp(v) =
2−1/p|v|2/p−1v, leads us to

V k Law
= (2k)−1/p|Z|2/p−1Z, (16)

the equality in law
Law
= simply means that both sides of the equality share the same

distribution. The mapping αp has been chosen to obtain with (15):

c(v) = cp(v) := |v|p, v ∈ Rd.

Note that V k has the same law as k−1/pZp where the density of the law of Zp is κ|z|p/2−1e−|z|
p

for some normalizing constant κ.

The dynamic case. We now look at an example where

Y k,x
t = x+ V k

t , 0 ≤ t ≤ 1 (17)

and (V k)k≥1 satisfies a LDP in Ω which is not given by Mogulskii’s theorem.
We present examples of dynamics V k based on the standard Brownian motion B =
(Bt)0≤t≤1 in Rd. In these examples, one can restrict the path space to be the space Ω =
C([0, 1],Rd) equipped with the uniform topology. The item (1) below is already known
to us, we recall it for the comfort of the reader.

Examples 3.5.

(1) An important example is given by

V k
t = k−1/2Bt, 0 ≤ t ≤ 1.



17

Schilder’s theorem states that (V k)k≥1 satisfies the LDP in Ω with the coercive
rate function

C0(ω) =

{ ∫ 1

0
|ω̇t|2/2 dt if ω ∈ Ωac, ω0 = 0

+∞ otherwise.

As in Example 3.4-(1), it corresponds to the quadratic cost function |v|2/2, but
with a different dynamics.

(2) More generally, with p > 0, we have just seen that

V k
t = (2k)−1/p|Bt|2/p−1Bt, 0 ≤ t ≤ 1

corresponds to the power cost function cp(v) = |v|p, v ∈ Rd, since V k
1

Law
= V k as in

(16). The associated dynamic cost is given for all ω ∈ Ω by

C0(ω) =

{
p2/4

∫
[0,1]
|ωt|p−2|ω̇t|2 dt if ω ∈ Ωac, ω0 = 0

+∞ otherwise.

(3) Similarly, with p > 0, the dynamics

V k
t = (2k)−1/p|Bt/t|2/p−1Bt, 0 < t ≤ 1

also corresponds to the power cost function cp(v) = |v|p, v ∈ Rd, since V k
1

Law
= V k

as in (16). But, this time the associated dynamic cost is given for all ω ∈ Ω by

C0(ω) =

{
1
4

∫
(0,1]

1{ωt 6=0}|ωt/t|p
∣∣∣(2− p)ωt/|ωt|+ ptω̇t/|ωt|

∣∣∣2 dt if ω ∈ Ωac, ω0 = 0

+∞ otherwise.

Recall that as a definition, a geodesic path from x to y is some ω ∈ Ωac which solves
the minimization problem (Gxy) associated with the cost function C. It is well known
that the geodesic paths for Item (1) are the constant velocity paths σxy, see (14). The
geodesic paths for Item (2) are still straight lines but with a time dependent speed (except
for p = 2). On the other hand, the geodesic paths for Item (3) are the constant velocity
paths.

Modified random walks on Rd. Simple random walks correspond to (17) with V k =
W k given by (10). We introduce a generalization which is defined by (17) with

V k
t = αt(W

k
t ), 0 ≤ t ≤ 1

where α : (t, v) ∈ [0, 1]×Rd 7→ αt(v) ∈ Rd is a continuous application such that α0(0) = 0
(remark that W k

0 = 0 almost surely) and αt is injective for all 0 < t ≤ 1.
For all x ∈ Rd and all k ≥ 1, the random path Y k,x = x+ V k satisfies

Y k,x = Φ(W k,x)

where W k,x = x+W k and Φ : Ω→ Ω is the bicontinuous injective mapping given for all
ω ∈ Ω by Φ(ω) = (Φt(ω))0≤t≤1 where

Φt(ω) = ω0 + αt(ωt − ω0), 0 ≤ t ≤ 1.

As for (15), the LD rate function of (Y k,x)k≥1 is Cx = C + ι{X0=x} where

C = CZ ◦ Φ−1
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and CZ is given at (13). It is easy to see that for all φ ∈ Ω, Φ−1(φ) = (Φ−1
t (φ))0≤t≤1

where for all 0 < t ≤ 1, Φ−1
t (φ) = φ0 + βt(φt − φ0) with βt := α−1

t . Assuming that β is
differentiable on (0, 1]× Rd, we obtain

C(ω) =

{ ∫
[0,1]

cZ
(
∂tβt(ωt − ω0) +∇βt(ωt − ω0) · ω̇t

)
dt if ω ∈ Ωac

+∞ otherwise
, ω ∈ Ω.

For each x, y ∈ Rd, (Gxy) admits a unique solution γxy which is given by the equation
Φ−1(γxy) = σx,x+β1(y−x) where σxy is the constant velocity geodesic, see (14). That is

γxyt = x+ αt(tβ1(y − x)), 0 ≤ t ≤ 1.

The corresponding static cost function c which is specified by (1), i.e. c(x, y) = C(γxy).
In the case when α doesn’t depend on t, we see that for all x, y ∈ Rd,

c(x, y) = C(γxy) = CZ(σx,x+β(y−x)) = cZ(α−1(y − x)),

which is (15), but the velocity of the geodesic path

γ̇xyt = ∇α
(
tα−1(y − x)

)
· α−1(y − x)

is not constant in general.

4. Proofs of the main results

We give the proofs of the results which were stated at Section 2. The main technical
result is Proposition 2.5. See Remark 2.9 about the contribution of Dawson and Gärtner
[DG94] to this result.

It will be used at several places that X0, X1 : Ω → X are continuous. This is clear
when Ω = C([0, 1],X ) since it is furnished with the topology of uniform convergence. In
the general case when Ω = D([0, 1],X ) is furnished with the Skorokhod topology, it is
known that Xt is not continuous in general [Bil68]. But, it remains true that X0 and X1

are continuous, due to the specific form of the metric at the endpoints.
Let X and Y be two topological vector spaces equipped with a duality bracket 〈x, y〉 ∈

R, that is a bilinear form on X × Y. The convex conjugate f ∗ of f : X → (−∞,∞] with
respect to this duality bracket is defined by

f ∗(y) := sup
x∈X
{〈x, y〉 − f(x)} ∈ [−∞,∞], y ∈ Y.

It is a convex σ(Y,X)-lower semicontinuous function.

Proof of Proposition 2.5. It is organized as follows:

Lemma 4.1 → Lemma 4.2 (a)
Lemma 4.3 → Lemma 4.4 → Lemma 4.5 (b)

Theorem A.2 → Lemma 4.6 (c)
Corollary 5.4 (d)

→ Proposition 2.5

where Theorem A.2 is the Laplace-Varadhan principle and Corollary 5.4 is about Γ-
convergence with respect to a weak topology and is the main result of Section 5.

The space Cb(Ω) is furnished with the supremum norm ‖f‖ = supΩ |f |, f ∈ Cb(Ω)
and Cb(Ω)′ is its topological dual space. Let Mb(Ω), resp. M+

b (Ω) denote the spaces of
all bounded, resp. bounded positive, Borel measures on Ω. Of course, Mb(Ω) ⊂ Cb(Ω)′

with the identification 〈f,Q〉Cb(Ω),Cb(Ω)′ =
∫

Ω
f dQ for any Q ∈ Mb(Ω). We write 〈f,Q〉 :=

〈f,Q〉Cb(Ω),Cb(Ω)′ for simplicity.
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(a) Proof of Lemma 4.2. We start proving the preliminary Lemma 4.1. Denote

Θ(f) :=

∫
X

log〈ef , Rx〉µ0(dx) ∈ (−∞,∞], f ∈ Cb(Ω)

Its convex conjugate with respect to the duality 〈Cb(Ω),Cb(Ω)′〉 is given for all Q ∈ Cb(Ω)′

by Θ∗(Q) := supf∈Cb(Ω) {〈f,Q〉 −Θ(f)} .

Lemma 4.1. {Θ∗ <∞} ⊂ M+
b (Ω).

Proof. Let us show that Q ≥ 0 if Θ∗(Q) < ∞. Let f ∈ Cb(Ω) be such that f ≥ 0. As
Θ(af) ≤ 0 for all a ≤ 0,

Θ∗(Q) ≥ sup
a≤0
{a〈f,Q〉 −Θ(af)}

≥ sup
a≤0
{a〈f,Q〉}

=

{
0, if 〈f,Q〉 ≥ 0
+∞, otherwise.

Therefore, if Θ∗(Q) <∞, 〈f,Q〉 ≥ 0 for all f ≥ 0, which is the desired result.
For a positive element Q ∈ Cb(Ω)′ to be in Mb(Ω), it necessary and sufficient that it is

σ-additive. That is, for all decreasing sequence (fn)n≥1 in Cb(Ω) such that limn→∞ fn = 0
pointwise, we have limn→∞〈fn, Q〉 = 0. Let us take a decreasing sequence (fn)n≥1 in Cb(Ω)
which converges pointwise to zero. By the dominated convergence theorem, we have

lim
n→∞

Θ(afn) = 0, ∀a ≥ 0.

It follows that for all Q ∈ Cb(Ω)′,

Θ∗(Q) ≥ sup
a≥0

lim sup
n→∞

{a〈fn, Q〉 −Θ(afn)}

≥ sup
a≥0

(
lim sup
n→∞

a〈fn, Q〉 − lim
n→∞

Θ(afn)

)
= sup

a≥0
a lim sup

n→∞
〈fn, Q〉

=

{
0 if lim supn→∞〈fn, Q〉 ≤ 0
+∞ otherwise.

Therefore, if Θ∗(Q) < ∞, we have lim supn→∞〈fn, Q〉 ≤ 0. Since we have just seen that
Q ≥ 0, we have the desired result. �

Dropping the superscript k for a moment, we have (Rx ∈ P(Ω);x ∈ X ) a measurable
kernel and Rµ0 :=

∫
X R

x(·)µ0(dx) where µ0 ∈ P(X ) is the initial law.

Lemma 4.2. For all Q ∈ Cb(Ω)′,

H(Q|Rµ0) + ι{Q∈P(Ω):Q0=µ0} = sup
f∈Cb(Ω)

{
〈f,Q〉 −

∫
X

log〈ef , Rx〉µ0(dx)

}
.

This identity should be compared with the well-known variational representation of the
relative entropy

H(Q|R) + ιP(Ω)(Q) = sup
f∈Cb(Ω)

{
〈f,Q〉 − log〈ef , R〉

}
, Q ∈ Mb(Ω) (18)

which holds for any reference probability measure R ∈ P(Ω) on any Polish space Ω.
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Proof. It has been proved at Lemma 4.1 that any Q ∈ Cb(Ω)′ such that Θ∗(Q) < ∞ is
in M+

b (Ω). Let us take such a Q. Choosing f = φ(X0) with φ ∈ Cb(X ), we see that
supφ∈Cb(X )

∫
X φ d(Q0 − µ0) ≤ Θ∗(Q). Hence, Θ∗(Q) < ∞ implies that Q0 = µ0. As Q is

positive, we also see that Q is a probability measure with Q0 = µ0.
It remains to prove that for such a Q ∈ P(Ω), we have Θ∗(Q) = H(Q|Rµ0). Since Ω is a
Polish space, any Q ∈ P(Ω) such that Q0 = µ0 disintegrates as

Q(·) =

∫
X
Qx(·)µ0(dx)

where (Qx;x ∈ X ) is a measurable kernel of probability measures. We see that

Θ∗(Q) = sup
f∈Cb(Ω)

∫
X

[〈f,Qx〉 − log〈ef , Rx〉]µ0(dx)

and we obtain

Θ∗(Q) ≤
∫
X

sup
f∈Cb(Ω)

[〈f,Qx〉 − log〈ef , Rx〉]µ0(dx)

X
=

∫
X
H(Qx|Rx)µ0(dx)

= H(Q|Rµ0)

where (18) is used at the marked equality and last equality follows from the tensorization
property of the entropy. Note that x 7→ H(Qx|Rx) is measurable. Indeed, (Q,R) 7→
H(Q|R) is lower semicontinuous being the supremum of continuous functions, see (18).
Hence, it is Borel measurable. On the other hand, x 7→ Rx and x 7→ Qx are also
measurable, being the disintegration kernels of Borel measures on a Polish space.

Let us prove the converse inequality. By Jensen’s inequality:
∫
X log〈ef , Rx〉µ0(dx) ≤

log
∫
X 〈e

f , Rx〉µ0(dx) = log〈ef , Rµ0〉, so that

Θ∗(Q) ≥ sup
f∈Cb(Ω)

{∫
Ω

f dQ− log

∫
Ω

ef dRµ0

}
= H(Q|Rµ0)

where the equality is (18) again. This completes the proof of the lemma. �

(b) Proof of Lemma 4.5. We start proving the preliminary Lemmas 4.3 and 4.4.

Lemma 4.3. Let J be a coercive [0,∞]-valued function on Ω and (fn)n≥1 a decreasing
sequence of continuous bounded functions on Ω which converges pointwise to some bounded
upper semicontinuous function f. Then, (supΩ{fn − J})n≥1 is a decreasing sequence and

lim
n→∞

sup
Ω
{fn − J} = sup

Ω
{f − J}.

Proof. Changing sign and denoting gn = J − fn, g = J − f, we want to prove that
limn→∞ infΩ gn = infΩ g.

We see that (gn)n≥1 is an increasing sequence of lower semicontinuous functions. It
follows from [DM93, Prop 5.4] that it is a Γ-convergent sequence and

Γ- lim
n→∞

gn = lim
n→∞

gn = g. (19)

Let us admit for a while that there exists some compact set K which satisfies

inf
Ω
gn = inf

K
gn (20)
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for all n. This and the convergence (19) allow to apply [DM93, Thm 7.4] to obtain
limn→∞ infΩ gn = infΩ Γ- limn→∞ gn = infΩ g which is the desired result.

It remains to check that (20) is true. Let ω∗ ∈ Ω be such that J(ω∗) <∞ (if J ≡ +∞,
there is nothing to prove). Then, infΩ gn ≤ gn(ω∗) = J(ω∗) − fn(ω∗) ≤ J(ω∗) − f(ω∗) ≤
J(ω∗) − infΩ f. On the other hand, for all n, fn ≤ f1 ≤ A := sup f1. Let B := A + 1 +
J(ω∗) − infΩ f. For all ω such that J(ω) > B, we have gn(ω) > B − supΩ fn ≥ B − A ≥
J(ω∗)− infΩ f + 1. We have just seen that for all n,

inf
Ω
gn ≤ J(ω∗)− inf

Ω
f and inf

ω;J(ω)>B
gn(ω) ≥ J(ω∗)− inf

Ω
f + 1.

This proves (20) with the compact level set K = {J ≤ B} and completes the proof of the
lemma. �

Let us denote

Λ(f) :=

∫
X

sup
Ω
{f − Cx}µ0(dx) =

∫
X

sup
Ωx

{f − C}µ0(dx), f ∈ Cb(Ω)

where Ωx := {X0 = x} ⊂ Ω. It will appear later that the function Λ is the convex
conjugate of the Γ-limit C. Its convex conjugate with respect to the duality 〈Cb(Ω),Cb(Ω)′〉
is given for all Q ∈ Cb(Ω)′ by Λ∗(Q) := supf∈Cb(Ω) {〈f,Q〉 − Λ(f)} .

Lemma 4.4. {Λ∗ <∞} ⊂ M+
b (Ω).

Proof. Let us show that Q ≥ 0 if Λ∗(Q) < ∞. Let f ∈ Cb(Ω) be such that f ≥ 0. As
inf C = 0, Λ(af) ≤ 0 for all a ≤ 0, and we conclude as in Lemma 4.1.

As in the proof of Lemma 4.1, a positive element Q ∈ Cb(Ω)′ is in Mb(Ω) if and only if
for all decreasing sequence (fn)n≥1 in Cb(Ω) such that limn→∞ fn = 0 pointwise, we have
limn→∞〈fn, Q〉 = 0. Let us take a decreasing sequence (fn)n≥1 in Cb(Ω) which converges
pointwise to zero. By Lemma 4.3, for all x ∈ X ,

(
supΩ{fn − Cx}

)
n≥1

is a decreasing

sequence and limn→∞ supΩ{fn − Cx} = 0. As |supΩ{fn − Cx}| ≤ supΩ |f1| < ∞ for all n
and x, we can apply the dominated convergence theorem to obtain that limn→∞ Λ(afn) =
0, for all a ≥ 0 and we conclude as in Lemma 4.1.

Finally, one must be careful with the measurability of x ∈ X 7→ un(x) := infΩ{Cx −
fn} = − supΩ{fn − Cx} ∈ R. Since Ω and X are assumed to be Polish, we can apply a
general result by Beiglböck and Schachermayer [BS09, Lem. 3.7,3.8] which tells us that for
each n ≥ 1 and each Borel probability measure µ on X , there exists a Borel measurable
function ũn on X such that ũn ≤ un and ũn(x) = un(x) for µ-a.e. x ∈ X . �

Lemma 4.5. Let C be a lower semicontinuous [0,∞]-valued function on the Polish space
Ω. Denote Cx = C + ι{θ=x} for each x ∈ X , where θ : Ω→ X is a continuous application
with its values in the Polish space X . Take µ ∈ P(X ) and suppose that

inf
Ω
Cx = 0

for µ-almost every x ∈ X . Then, we have

Λ∗(Q) := sup
f∈Cb(Ω)

{
〈f,Q〉 −

∫
X

sup
Ω
{f − Cx}µ(dx)

}
=

∫
Ω

C dQ+ ι{Q∈P(Ω):θ#Q=µ}, Q ∈ Mb(Ω). (21)

Note that since C is measurable and nonnegative, the integral
∫

Ω
C dP makes sense in

[0,∞] for any P ∈ P(Ω).
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Proof. Let us first check that if Q ∈ Mb(Ω) satisfies Λ∗(Q) < ∞, then Q ∈ P(Ω) and
θ#Q = µ ∈ P(X ). We already know by Lemma 4.4 that Q ∈ M+

b (Ω). Choosing f = φ ◦ θ
with φ ∈ Cb(X ), since infΩ C

x = 0, we see that supΩ{φ ◦ θ − Cx} = φ(x). Hence,
supφ∈Cb(X )

∫
X φ d(θ#Q − µ) ≤ Λ∗(Q) < ∞ which implies that θ#Q = µ. This proves

the desired result.
It remains to prove the equality for a fixed P ∈ P(Ω) which satisfies θ#P = µ. Because Ω

and X are Polish spaces, we know that P disintegrates as follows: P (·) =
∫
X P

x(·)µ(dx),
with x ∈ X 7→ P x(·) := P (· | θ = x) ∈ P(Ω) Borel measurable. For any f ∈ Cb(Ω),

〈f, P 〉 −
∫
X

sup
Ω
{f − Cx}µ(dx) =

∫
X

[〈f, P x〉 − sup
Ω
{f − Cx}]µ(dx)

=

∫
X

[〈Cx, P x〉+ 〈f − Cx − sup
Ω
{f − Cx}, P x〉]µ(dx)

≤
∫
X
〈Cx, P x〉µ(dx)

=

∫
Ω

C dP.

Optimizing, we obtain

sup
f∈Cb(Ω)

{
〈f, P 〉 −

∫
X

sup
Ω
{f − Cx}µ(dx)

}
≤
∫

Ω

C dP.

If C is in Cb(Ω), the case of equality is obtained with f = C, P -a.e. and in this situation
we see that the identity (21) is valid. This will be invoked very soon.

In the general case, C is only assumed to be lower semicontinuous. By means of
the Moreau-Yosida approximation procedure which is implementable since Ω is a metric
space, one can build an increasing sequence (Cn)n≥1 of functions in Cb(Ω) which converges
pointwise to C. Therefore,

sup
f∈Cb(Ω)

{
〈f, P 〉 −

∫
X

sup
Ω
{f − Cx}µ(dx)

}
≤

∫
Ω

C dP

(i)
= sup

n≥1

∫
Ω

Cn dP

(ii)
= sup

n≥1
sup

f∈Cb(Ω)

{
〈f, P 〉 −

∫
X

sup
Ω
{f − Cx

n}µ(dx)

}
= sup

f∈Cb(Ω)

{
〈f, P 〉+ sup

n≥1

∫
X

inf
Ω
{Cx

n − f}µ(dx)

}
(iii)

≤ sup
f∈Cb(Ω)

{
〈f, P 〉+

∫
X

inf
Ω
{Cx − f}µ(dx)

}
= sup

f∈Cb(Ω)

{
〈f, P 〉 −

∫
X

sup
Ω
{f − Cx}µ(dx)

}
,

which proves the desired identity (21).
Equality (i) follows from the monotone convergence theorem. Since Cn stands in Cb(Ω),
equality (ii) is valid (this has been proved a few lines earlier) and the inequality (iii) is
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a direct consequence of Cn ≤ C for all n ≥ 1. Note that x ∈ X 7→ infΩ{Cx
n − f} ∈ R is

upper semicontinuous and it is a fortiori Borel measurable. �

(c) Proof of Lemma 4.6. Let us introduce for each k ≥ 1,

Λk(f) :=

∫
X

1

k
log〈ekf , Rk,x〉µ0(dx), f ∈ Cb(Ω).

The keystone of the proof of Proposition 2.5 is the following consequence of the Laplace-
Varadhan principle.

Lemma 4.6. Under the assumptions of Proposition 2.5, for all f ∈ Cb(Ω), we have

(1) limk→∞ Λk(f) = Λ(f);
(2) supk≥1 |Λk(f)| ≤ ‖f‖, |Λ(f)| ≤ ‖f‖ := supΩ |f |.

The functions Λk and Λ are convex.

Proof. Our assumptions allow us to apply the Laplace-Varadhan principle, see Theorem
A.2. It tells us that for each x ∈ X ,

lim
k→∞

1

k
log〈ekf , Rk,x〉 = sup

Ω
{f − Cx}.

On the other hand, it is clear that for each k ≥ 1, | 1
k

log〈ekf , Rk,x〉| ≤ ‖f‖. Passing to the
limit, we also get | supΩ{f − Cx}| ≤ ‖f‖. Now by the Lebesgue dominated convergence
theorem, we obtain the statements (1) and (2).
Note that x 7→ supΩ{f −Cx} is measurable as a pointwise limit of measurable functions.
It is standard to prove with Hölder’s inequality that f 7→ 1

k
log〈ekf , Rk,x〉 is convex. It

follows that Λk and Λ are also convex. �

(d) Completion of the proof of Proposition 2.5. With Lemma 4.2, we see that

Ck,µ0(Q) = Λ∗k(Q), Q ∈ Cb(Ω)′ (22)

where Λ∗k is the convex conjugate of Λk with respect to the duality 〈Cb(Ω),Cb(Ω)′〉.
Let us equip Cb(Ω)′ with the ∗-weak topology σ(Cb(Ω)′,Cb(Ω)). By Lemma 4.6 and
Corollary 5.4, we have Γ- limk→∞ Λ∗k = Λ∗ in Cb(Ω)′. By Lemma 4.4, this limit still holds
in Mb(Ω) ⊂ Cb(Ω)′:

Γ- lim
k→∞

Λ∗k = Λ∗ in Mb(Ω). (23)

As the function C of Proposition 2.5 is such that Cx is a LD rate function for all x ∈ X ,
it satisfies the assumption of Lemma 4.5 which is infΩ C

x = 0 for µ-almost every x ∈ X .
Therefore, we have Λ∗(Q) =

∫
Ω
C dQ+ ι{Q∈P(Ω):θ#Q=µ}, Q ∈ Mb(Ω).

Together with (22) and (23), this completes the proof of Proposition 2.5. �

Proofs of the remaining results. The main ingredients of the proofs of the remaining
results are Proposition 2.5 and Theorem 6.1 which is the main result of Section 6.

• Proof of Proposition 2.2. Proposition 2.2 is a particular case of Proposition 2.5. Indeed,
choosing Ω = X 2 which can be interpreted as the space of all X -valued paths on the
two-point time interval {0, 1}, and taking C(ω) = c(ω0, ω1) where c is assumed to be
lower semicontinuous, with ω = (x, y) we see that Cx(x′, y) = c(x, y) + ι{x′=x} for all
x, x′, y ∈ X . The assumption that c(x, ·) is coercive on X is equivalent to the coerciveness
of Cx on X 2.

• Proofs of Corollary 2.3 and Theorem 2.4. With Proposition 2.2 in hand, Corollary 2.3
and Theorem 2.4 are immediate consequences of Theorem 6.1 and of the equi-coerciveness
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with respect to the ∗-weak topology σ(P(X ),Cb(X )) of {C01, Ck01; k ≥ 1}. This equi-
coerciveness follows from the fact that the set of all probability measures π ∈ P(X 2)
such that π0 = µ0 and π1 ∈ {µ1, µ

k
1; k ≥ 1} is relatively compact since limk→∞ µ

k
1 = µ1; a

consequence of Prokhorov’s theorem in a Polish space.
The uniqueness of the solution to (Sk) follows from the strict convexity of the relative
entropy.
Note that, when C and c are linked by (1), one can also derive the equi-coerciveness of
{C01, Ck01; k ≥ 1} from the equi-coerciveness of {C, Ck; k ≥ 1} (see below), as in the proof
of Theorem 6.1.

• Proofs of Corollary 2.6 and Theorem 2.7. Similarly, once we have Proposition 2.5 in
hand, Corollary 2.6 and Theorem 2.7 are immediate consequences of Theorem 6.1 and of
the equi-coerciveness with respect to the ∗-weak topology σ(P(Ω),Cb(Ω)) of {C, Ck; k ≥
1}. This equi-coerciveness follows from Corollary 5.4 and Lemma 4.6. Again, the unique-
ness of the solution to (Skdyn) follows from the strict convexity of the relative entropy.

• Proof of Theorem 2.8. It relies upon the subsequent lemma.

Lemma 4.7. Under the assumptions of Proposition 2.5, the function c defined by (1) is
lower semicontinuous and

inf

{∫
Ω

C dP ;P ∈ P(Ω), P01 = π

}
=

∫
X
c dπ ∈ [0,∞],

for all π ∈ P(X 2).

Proof. Let us define the function

Ψ(π) := inf

{∫
Ω

C dP ;P ∈ P(Ω) : P01 = π

}
, π ∈ P(X 2).

As C is assumed to be lower semicontinuous on Ω, Ψ satisfies the Kantorovich type dual
equality:

Ψ(π) = sup
f∈F

∫
X 2

f dπ, π ∈ P(X 2) (24)

where F := {f ∈ Cb(X 2); f(X0, X1) ≤ C}. For a proof of (24), one can rewrite mutatis
mutandis the proof of the Kantorovich dual equality. See for instance [Léo11, Thm 3.2]
and note that this result takes into account cost functions which may take infinite values
as in the present case.
This shows that Ψ is a lower semicontinuous function on P(X 2), being the supremum of
continuous functions. Define the function

ψ(x, y) := Ψ(δ(x,y)), x, y ∈ X .

We deduce immediately from the lower semicontinuity of Ψ that ψ is lower semicontinuous
on X 2. Hence it is Borel measurable. Since it is [0,∞]-valued, the integral

∫
X ψ dπ is

meaningful for all π ∈ P(X 2). We are going to prove that

Ψ(π) =

∫
X 2

ψ dπ, π ∈ P(X 2). (25)
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For any π ∈ P(X 2), we obtain

Ψ(π) = inf

{∫
X 2

(∫
Ω

C dP xy

)
π(dxdy);P ∈ P(Ω)

}
≥

∫
X 2

inf

{∫
Ω

C dP ;P ∈ P(Ω) : P01 = δ(x,y)

}
π(dxdy)

=

∫
X 2

ψ dπ.

Let us show the converse inequality. With (24), we see that for each f ∈ F and all
(x, y) ∈ X 2, ψ(x, y) = Ψ(δ(x,y)) ≥

∫
X 2 f dδ(x,y) = f(x, y). That is f ≤ ψ, for all f ∈ F .

Therefore, Ψ(π) = supf∈F
∫
X 2 f dπ ≤

∫
X 2 ψ dπ, completing the proof of (25).

It remains to establish that ψ = c. With (24), we get ψ = supF . But it is clear that f ∈
F if and only if for all x, y ∈ X , f(x, y) ≤ inf{C(ω);ω ∈ Ω : ω0 = x, ω1 = y} := c(x, y).
Hence, ψ is the upper envelope of the set of all functions f ∈ Cb(X 2) such that f ≤ c.
In other words ψ is the lower semicontinuous envelope ls c of c. Finally, for all x, y ∈ X ,
ls c(x, y) = ψ(x, y) = inf

{∫
Ω
C dP xy;P ∈ P(Ω)

}
≥ c(x, y) ≥ ls c(x, y). This implies the

desired result: ψ = ls c = c. �

Proof of Theorem 2.8. It is assumed that for any x ∈ X , (Rk,x)k≥1 satisfies the LDP with
scale k and rate function Cx. We have ρk,x = (X1)#R

k,x. Taking the continuous image
X1 : Ω→ X , by means of the contraction principle, see Theorem A.1, we obtain that for
any x ∈ X , (ρk,x)k≥1 satisfies the LDP with scale k and rate function

y ∈ X 7→ inf{Cx(ω);ω ∈ Ω : ω1 = y} = c(x, y) ∈ [0,∞].

• Proof of (1). The first assertion of Theorem 2.8 follows from the lower semicontinuity
of c which was obtained at Lemma 4.7. Indeed, this shows that the assumptions of
Proposition 2.2 are fulfilled. The identity inf (MKdyn) = inf (MK) is a direct consequence
of Lemma 4.7.

• Proof of (2).The second assertion follows from inf (MKdyn) = inf (MK), the convergence
of the minimal values which was obtained at item (1) together with the strict convexity
(for the uniqueness) and the coerciveness (for the existence) of the relative entropy. The

relation between P̂ k and π̂k is Eq. (2).

• Proof of (3). Let us first show that P 7→ 〈C,P 〉+ ι{P0=µ0} is coercive on P(Ω). By (21)
and the proof of Corollary 5.4, we see that its sublevel sets are relatively compact. Since
C is lower semicontinuous, it is also lower semicontinuous. Therefore, it is coercive and
so is P 7→ 〈C,P 〉+ ι{P0=µ0,P1=µ1}. In particular, if inf (MKdyn) <∞, the set of minimizers
of (MKdyn) is a nonempty convex compact subset of P(Ω).

Let P̂ be such a minimizer. It disintegrates as P̂ (·) =
∫
X 2 P̂

xy(·) P̂01(dxdy) and with

Lemma 4.7, we see that P̂01 := π̂ is a solution to (MK). Moreover,
∫
X 2 c dπ̂ = ψ(π̂) =∫

Ω
C dP̂ =

∫
X 2

(∫
Ω
C dP̂ xy

)
π̂(dxdy) and

∫
Ω
C dP̂ xy ≥ c(x, y) for π̂-a.e. (x, y). Hence,∫

Ω
C dP̂ xy = c(x, y) for π̂-a.e. (x, y). This means that for π̂-a.e. (x, y), P̂ xy(Γxy) = 1.

Following the cases of equality, it is clear that if, conversely P ∈ P(Ω) satisfies P xy(Γxy) =
1 for P01-a.e. (x, y), then P minimizes Q 7→

∫
Ω
C dQ subject to Q01 = P01. This completes

the proof of the theorem. �
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5. Γ-convergence of convex functions on a weakly compact space

During the proof of Proposition 2.5, we used Corollary 5.4 to derive the key identity
(23). This section is devoted to the proof of Corollary 5.4 which is an easy consequence
of Theorem 5.2 below.

A typical result about the Γ-convergence of a sequence of convex functions (fk)k≥1 is:
If the sequence of the convex conjugates (f ∗k )k≥1 converges in some sense, then (fk)k≥1

Γ-converges. Known results of this type are usually stated in separable reflexive Banach
spaces. For instance Corollary 3.13 of H. Attouch’s monograph [Att84] is

Theorem 5.1. Let X be a separable reflexive Banach space and (fk)k≥1 a sequence of
closed convex functions from X into (−∞,+∞] satisfying the equi-coerciveness assump-
tion: fk(x) ≥ α(‖x‖) for all x ∈ X and k ≥ 1 with limr→+∞ α(r)/r = +∞. Then, the
following statements are equivalent

(1) f = seqXw-Γ- limk→∞ fk
(2) f ∗ = X∗s -Γ- limn→∞ f

∗
k

(3) ∀y ∈ X∗, f ∗(y) = limk→∞ f
∗
k (y)

where X∗ is the dual space of X, seqXw refers to the weak sequential convergence in X
and X∗s to the strong convergence in X∗.

Going beyond the reflexivity assumption is not so easy, as can be seen in Beer’s mono-
graph [Bee93]. In some applications in probability, the reflexive Banach space setting is
not as natural as it is for the usual applications of variational convergence to PDEs. For
instance when dealing with random measures on X , the narrow topology σ(P(X ), Cb(X ))
doesn’t fit the above framework since Cb(X ) endowed with the uniform topology may not
be separable (unless X is compact) and is not reflexive.

The next result is an analogue of Theorem 5.1 which agrees with applications for random
probability measures. Since we didn’t find it in the literature, we give its detailed proof.

Let X and Y be two vector spaces in separating duality. The space X is furnished with
the weak topology σ(X, Y ).

We denote ιC the indicator function of the subset C of X which is defined by ιC(x) = 0
if x belongs to C and ιC(x) = +∞ otherwise. Its convex conjugate is the support function
of C : ι∗C(y) = supx∈C〈x, y〉, y ∈ Y.
The effective domain of an extended-real valued function f is defined as dom f :=
{f <∞} .

Theorem 5.2. Let (gk)k≥1 be a sequence of functions on Y such that

(a) for all k, gk is a real-valued convex function on Y,
(b) (gk)k≥1 converges pointwise to g := limk→∞ gk,
(c) g is real-valued and
(d) in restriction to any finite dimensional vector subspace Z of Y, (gk)k≥1 Γ-converges

to g, i.e. Γ- limk→∞(gk + ιZ) = g + ιZ , where ιZ is the indicator function of Z.

Denote the convex conjugates on X : fk = g∗k and f = g∗.
If in addition,

(e) there exists a σ(X, Y )-compact set K ⊂ X such that dom fk ⊂ K for all k ≥ 1
and dom f ⊂ K

then, (fk)k≥1 Γ-converges to f with respect to σ(X, Y ).

The proof of this theorem is postponed after the two preliminary Lemmas 5.5 and 5.6.
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Remark 5.3. By [DM93, Prop. 5.12], under the assumption (a), assumption (d) is implied
by:

(d’) in restriction to any finite dimensional vector subspace Z of Y, (gk)k≥1 is equi-
bounded, i.e. for all yo ∈ Z, there exists δ > 0 such that

sup
k≥1

sup{|gk(y)|; y ∈ Z, |y − yo| ≤ δ} <∞.

A useful consequence of Theorem 5.2 is

Corollary 5.4. Let (Y, ‖ · ‖) be a normed space and X its topological dual space. Let
(gk)k≥1 be a sequence of functions on Y such that

(a) for all k, gk is a real-valued convex function on Y,
(b) (gk)k≥1 converges pointwise to g := limk→∞ gk and

(d”) there exists c > 0 such that |gk(y)| ≤ c(1 + ‖y‖) for all y ∈ Y and k ≥ 1.

Then, (fk)k≥1 Γ-converges to f with respect to σ(X, Y ) where fk = g∗k and f = g∗.
Moreover, there exists a σ(X, Y )-compact set K ⊂ X such that dom fk ⊂ K for all k ≥ 1
and dom f ⊂ K.

Proof. Under (b), (d”) implies (c). As (d”) implies (d’), we have (d) by Remark 5.3.
Finally, (d”) implies (e) with K = {x ∈ X; ‖x‖∗ ≤ c} where ‖x‖∗ = supy,‖y‖≤1〈x, y〉
is the dual norm on X. Indeed, suppose that for all y ∈ Y, g(y) ≤ c + c‖y‖ and take
x ∈ X such that g∗(x) < +∞. As for all y, 〈x, y〉 ≤ g(y) + g∗(x), we get |〈x, y〉|/‖y‖ ≤
(g∗(x) + c)/‖y‖ + c. Letting ‖y‖ tend to infinity gives ‖x‖∗ ≤ c which is the announced
result.
The conclusion follows from Theorem 5.2. �

Before proving Theorem 5.2, let us show the preliminary Lemmas 5.5 and 5.6.

Lemma 5.5. Let f : X → (−∞,+∞] be a lower semicontinuous convex function such
that dom f is included in a compact set. Let V be a closed convex subset of X.

Then, if V satisfies

V ∩ dom f 6= ∅ or V ∩ cl dom f = ∅, (26)

we have
inf
x∈V

f(x) = − inf
y∈Y

(f ∗(y) + ι∗V (−y)) ∈ (−∞,∞] (27)

and if V doesn’t satisfy (26), we have

inf
x∈W

f(x) = − inf
y∈Y

(f ∗(y) + ι∗W (−y)) = +∞ (28)

for all closed convex set W such that W ⊂ intV.

Proof. The proof is divided into two parts. We first consider the case when V ∩dom f 6= ∅,
then the case when V ∩ cl dom f = ∅.
• The case when V ∩ dom f 6= ∅. As V is a nonempty closed convex set, its indicator
function ιV is a closed convex function so that its biconjugate satisfies ι∗∗V = ιV , i.e.
ιV (x) = supy∈Y {〈x, y〉 − ι∗V (y)} for all x ∈ X. Consequently,

inf
x∈V

f(x) = inf
x∈X

sup
y∈Y
{f(x) + 〈x, y〉 − ι∗V (y)}.

One wishes to invert infx∈X and supy∈Y by means of the following standard inf-sup the-
orem (see [Eke74] for instance). We have infx∈X supy∈Y F (x, y) = supy∈Y infx∈X F (x, y)
provided that infx∈X supy∈Y F (x, y) 6= ±∞ and
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- domF is a product of convex sets,
- x 7→ F (x, y) is convex and lower semicontinuous for all y,
- there exists yo such that x 7→ F (x, yo) is coercive and
- y 7→ F (x, y) is concave for all x.

Our assumptions on f allow us to apply this result with F (x, y) = f(x) + 〈x, y〉 − ι∗V (y).
Note that

inf
x∈X

f(x) > −∞ (29)

since f doesn’t take the value −∞ and is assumed to be lower semicontinuous on a
compact set. Therefore, if infx∈V f(x) < +∞, we have

inf
x∈V

f(x) = sup
y∈Y

inf
x∈X
{f(x) + 〈x, y〉 − ι∗V (y)} = − inf

y∈Y
{f ∗(y) + ι∗V (−y)}.

• The case when V ∩ cl dom f = ∅. As cl dom f is assumed to be compact, by Hahn-
Banach theorem cl dom f and V are strictly separated: there exists yo ∈ Y such that
ι∗V (yo) = supx∈V 〈x, yo〉 < infcl dom f〈x, yo〉 ≤ infx∈dom f〈x, yo〉. Hence,

inf
x∈dom f

{〈x, yo〉 − ι∗V (yo)} > 0 (30)

and

− inf
y∈Y

(f ∗(y) + ι∗V (−y)) = sup
y∈Y

inf
x∈X
{f(x) + 〈x, y〉 − ιV (y)}

= sup
y∈Y

inf
x∈dom f

{f(x) + 〈x, y〉 − ιV (y)}

≥ inf
x∈X

f(x) + sup
a>0

inf
x∈dom f

{〈x, ayo〉 − ι∗V (ayo)}

= inf
x∈X

f(x) + sup
a>0

a inf
x∈dom f

{〈x, yo〉 − ι∗V (yo)}

= +∞
where the last equality follows from (29) and (30). This proves that (28) holds with
W = V.
• Finally, if (26) isn’t satisfied, taking W such that W ⊂ intV insures the strict separation
of W and cl dom f as above. �

Lemma 5.6. Let the σ(X, Y )-closed convex neighbourhood V of the origin be defined by

V = {x ∈ X; 〈yi, x〉 ≤ 1, 1 ≤ i ≤ n} (31)

with n ≥ 1 and y1, . . . , yn ∈ Y. Its support function ι∗V is [0,∞]-valued, coercive and its
domain is the finite dimensional convex cone spanned by {y1, . . . , yn}. More precisely, its
level sets are {ι∗V ≤ b} = b cv{y1, . . . , yn} for each b ≥ 0 where cv{y1, . . . , yn} is the
convex hull of {y1, . . . , yn}.

Proof. The closed convex set V is the polar set of N = {y1, . . . , yn} : V = N◦. Let x1 ∈ V
and xo ∈ E := ∩1≤i≤nker yi. Then, 〈yi, x1 + xo〉 = 〈yi, x1〉 ≤ 1. Hence, x1 + xo ∈ V.
Considering the factor space X/E, we now work within a finite dimensional vector space
whose algebraic dual space is spanned by {y1, . . . , yn}.

We still denote by X and Y these finite dimensional spaces. We are allowed to apply
the finite dimension results which are proved in the book [RW98] by Rockafellar and
Wets. In particular, one knows that if C is a closed convex set in Y, then the gauge
function γC(y) := inf{λ ≥ 0; y ∈ λC}, y ∈ Y is the support function of its polar set
C◦ = {x ∈ X; 〈x, y〉 ≤ 1,∀y ∈ C}. This means that γC = ι∗C◦ , see [RW98, Example
11.19].
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As V = (N◦◦)◦ and N◦◦ is the closed convex hull of N, i.e. N◦◦ = cv(N) : the convex
hull of N, we get V = cv(N)◦ and

ι∗V = γcv(N).

In particular, for all real b, ι∗V (y) ≤ b⇔ γcv(N)(y) ≤ b⇔ y ∈ b cv(N). It follows that the
effective domain of ι∗V is the convex cone spanned by y1, . . . , yn and ι∗V is coercive. �

Proof of Theorem 5.2. Let N (xo) denote the set of all the neighbourhoods of xo ∈ X. We
want to prove that Γ- limk→∞ fk(xo) := supU∈N (xo) limk→∞ infx∈U fk(x) = f(xo). Since f
is lower semicontinuous, we have f(xo) = supU∈N (xo) infx∈U f(x), so that it is enough to
show that for all U ∈ N (xo), there exists V ∈ N (xo) such that V ⊂ U and

lim
k→∞

inf
x∈V

fk(x) = inf
x∈V

f(x). (32)

The topology σ(X, Y ) is such that N (xo) admits the sets

V = {x ∈ X; |〈yi, x− xo〉| ≤ 1, i ≤ n}
as a base where (y1, . . . , yn), n ≥ 1 describes the collection of all the finite families of
vectors in Y. By Lemma 5.5, there exists such a V ⊂ U which satisfies

inf
x∈V

fk(x) = − inf
y∈Y

hk(y) for all k ≥ 1 and inf
x∈V

f(x) = − inf
y∈Y

h(y)

where we denote hk(y) = gk(y) + ι∗V (−y) and h(y) = g(y) + ι∗V (−y), y ∈ Y.
Let Z denote the vector space spanned by (y1, . . . , yn) and hZk , h

Z the restrictions to Z
of hk and h. For all y ∈ Y, we have

ι∗V (−y) = −〈xo, y〉+ ι∗V−xo(−y) (33)

and by Lemma 5.6, the effective domain of ι∗V is Z. Therefore, to prove (32) it remains to
show that

lim
k→∞

inf
y∈Y

hZk (y) = inf
y∈Y

hZ(y). (34)

By assumptions (b) and (d), (hZk ) Γ-converges and pointwise converges to hZ . Note that
this Γ-convergence is a consequence of the lower semicontinuity of the convex conjugate
ι∗V and [DM93, Prop. 6.25].

Because of assumptions (a) and (c), (hZk ) is also a sequence of finite convex functions
which converges pointwise to the finite function hZ . By [Roc97, Thm. 10.8], (hZk ) converges
to hZ uniformly on any compact subset of Z and hZ is convex.

We now consider three cases for xo.
The case when xo ∈ dom f. We already know that (hZk ) Γ-converges to hZ . To prove (34),
it remains to check that the sequence (hZk ) is equicoercive, see Theorem 2.1.
For all y ∈ Y, g(y)−〈xo, y〉 ≥ −f(xo) and (33) imply hZ(y) ≥ −f(xo) + ι∗V−xo(−y). Since,
−f(xo) > −∞ and ι∗V−xo is coercive (Lemma 5.6), we obtain that hZ is coercive. As (hZk )
converges to hZ uniformly on any compact subset of Z, it follows that (hZk ) is equicoercive.
This proves (34).
The case when xo ∈ cl dom f. In this case, there exists x′o ∈ dom f such that V ′ =
x′o + (V − xo)/2 = {x ∈ X; |〈2yi, x− x′o〉| ≤ 1, i ≤ k} ∈ N (x′o) satisfies xo ∈ V ′ ⊂ V ⊂ U.
One deduces from the previous case, that (34) holds true with V ′ instead of V.
The case when xo 6∈ cl dom f. As (hZk ) Γ-converges to hZ , by [Bee93, Prop. 1.3.5], we
have lim supn→∞ infy∈Y h

Z
k (y) ≤ infy∈Y h

Z(y). As xo 6∈ cl dom f, for any small enough
V ∈ N (xo), infy∈Y h

Z(y) = − infx∈V f(x) = −∞. Therefore, limk→∞ infy∈Y h
Z
k (y) =

infy∈Y h(y) = −∞ which is (34).
This completes the proof of Theorem 5.2. �
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6. Γ-convergence of minimization problems under constraints

At Section 4, we derived the proofs of Corollary 2.3, Theorem 2.4, Corollary 2.6 and
Theorem 2.7 from Propositions 2.2 and 2.5 by means of Theorem 6.1. The aim of this sec-
tion is to prove this theorem. As this theorem demonstrates, the notion of Γ-convergence
is well-designed for minimization problems.

Let (fk)k≥1 be a Γ-converging sequence of (−∞,∞]-valued functions on a metric space
X. Let us denote its limit

Γ- lim
k→∞

fk = f.

Let θ : X → Y be a continuous function with values in another metric space Y. Assume
that for each k ≥ 1, fk is coercive and also that the sequence (fk)k≥1 is equi-coercive, i.e.
for all a ≥ 0,

⋃
k≥1{fk ≤ a} is relatively compact in X.

Theorem 6.1. Under the above assumptions, the sequence of functions (ψk)k≥1 on Y
which is defined by

ψk(y) := inf{fk(x);x ∈ X : θ(x) = y}, y ∈ Y, k ≥ 1

Γ-converges to

ψ(y) := inf{f(x);x ∈ X : θ(x) = y}, y ∈ Y.
In particular, for any y∗ ∈ Y, there exists a sequence (y∗k)k≥1 in Y such that limk→∞ y

∗
k = y∗

and limk→∞ inf{fk(x);x ∈ X : θ(x) = y∗k} = inf{f(x);x ∈ X : θ(x) = y∗} ∈ (−∞,∞].
Moreover, if y∗ satisfies inf{f(x);x ∈ X : θ(x) = y∗} < ∞, then for each k ≥ 1, the

minimization problem

fk(x)→ min; x ∈ X : θ(x) = y∗k

admits at least a minimizer x̂k ∈ X. Any sequence (x̂k)k≥1 of such minimizers admits
at least one cluster point and any such cluster point is a solution to the minimization
problem

f(x)→ min; x ∈ X : θ(x) = y∗.

The proof of this result which is based on Lemmas 6.2 and 6.3 below, is postponed
after the proofs of these preliminary lemmas.

Let Y be another metric space. We consider a Γ-convergent sequence (gk)k≥1 of [0,∞]-
valued functions on X × Y with

Γ- lim
k→∞

gk = g.

Let us define for each k ≥ 1 and y ∈ Y,

ψk(y) := inf
x∈X

gk(x, y), ψ(y) := inf
x∈X

g(x, y).

Assume that for each k ≥ 1, gk is coercive and also that the sequence (gk)k≥1 is equi-
coercive on X × Y.

Lemma 6.2. Under the above assumptions on (gk)k≥1, Γ- limk→∞ ψk = ψ in Y.

Proof. Let us fix y∗ ∈ Y and prove that Γ- limk→∞ ψk(y
∗) = ψ(y∗). Since gk is assumed

to be coercive, for every y ∈ Y, there exists x̂k,y ∈ X such that ψk(y) = gk(x̂k,y, y).

Lower bound. Let (yk)k≥1 be any converging sequence in Y such that limk→∞ yk = y∗. we
want to show that

lim inf
k→∞

ψk(yk) ≥ ψ(y∗).
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Suppose that lim infk→∞ ψk(yk) <∞, since otherwise there is nothing to prove. We denote
x∗k = x̂k,yk. Then,

lim inf
k→∞

ψk(yk) = lim inf
k→∞

gk(x
∗
k, yk)

(a)
= lim

m→∞
gm(x∗m, ym)

(b)
= lim

n→∞
gn(x∗n, yn)

where the index m at equality (a) means that we have extracted a subsequence such that
lim infk→∞ = limn→∞ . At equality (b), once again a new subsequence is extracted in order
that (x∗n)n≥1 converges to some cluster point x∗ :

lim
n→∞

x∗n = x∗.

The existence of a cluster point x∗ is insured by our assumptions that lim infk→∞ ψk(yk) <
∞ and

⋃
k≥1{gk ≤ a} is relatively compact for all a ≥ 0. Now, by filling the holes

in an approriate way one can construct a sequence (x̃k)k≥1 which admits (xn)n≥1 as a
subsequence and such that limk→∞ x̃k = x∗. It follows that

lim inf
k→∞

ψk(yk) = lim
n→∞

gn(x∗n, yn) ≥ lim inf
k→∞

gk(x̃k, yk)
X
≥ g(x∗, y∗) ≥ ψ(y∗)

which is the desired result. At the marked inequality, we have used our assumption that
Γ- limk→∞ gk = f.

Recovery sequence. Under our assumptions, the Γ-limit g is coercive onX×Y, see Theorem
2.1. It follows that g(·, y∗) is also coercive and that there exists x̂ ∈ argmin g(·, y∗). Let
(xk, yk)k≥1 be a recovery sequence of (gk)k≥1 at (x̂, y∗). This means that limk→∞(xk, yk) =
(x̂, y∗) and lim infk→∞ gk(xk, yk) ≤ g(x̂, y∗) = ψ(y∗). We see eventually that

lim inf
k→∞

ψk(yk) ≤ lim inf
k→∞

gk(xk, yk) ≤ ψ(y∗),

which is the desired estimate. �

Let us fix y∗ ∈ Y. By Lemma 6.2, there exists a sequence (y∗k)k≥1 such that

lim
k→∞

y∗k = y∗, lim
k→∞

ψk(y
∗
k) = ψ(y∗). (35)

Let us define

ϕk(x) := gk(x, y
∗
k), ϕ(x) := g(x, y∗), x ∈ X

for all k ≥ 1. Since gk is coercive, ϕk is also coercive. In particular, if ψ(y∗) = infX ϕ <∞,
its minimum value ψk(y

∗
k) = infX ϕk is finite and therefore attained at some x̂k ∈ X.

Lemma 6.3. In addition to the assumptions of Lemma 6.2, suppose that infX ϕ < ∞.
For each k, let x̂k be a minimizer of ϕk. Then the sequence (x̂k)k≥1 admits cluster points
in X and any cluster point is a minimizer of ϕ.

Remark that this lemma doesn’t assert that (ϕk)k≥1 Γ-converges to ϕ.

Proof. We have already noticed that for each k, ϕk is coercive so that it admits one or
several minimizers. Since limk→∞ infX ϕk = infX ϕ < ∞, we see that supk infX ϕk < ∞.
It follows from the assumed relative compactness of

⋃
k≥1{gk ≤ a} for all a ≥ 0, that⋃

k≥1 argminϕk is also relatively compact. Therefore any sequence (x̂k)k≥1 of minimizers
x̂k ∈ argminϕk admits at least one cluster point.
As ϕk(x̂k) = ψk(y

∗
k), we see with (35) that

lim
k→∞

ϕk(x̂k) = inf ϕ.
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On the other hand, let x̂ be any cluster point of (x̂k)k≥1. There exists a subsequence
(indexed by m with an abuse of notation) such that limm→∞ x̂m = x̂. Because of the
assumed Γ-limit: Γ- limk→∞ gk = g, we obtain

ϕ(x̂) := g(x̂, y∗) ≤ lim inf
m→∞

gm(x̂m, y
∗
m) := lim inf

m→∞
ϕm(x̂m) = lim

k→∞
ϕk(x̂k) = inf ϕ.

It follows that x̂ is a minimizer of ϕ. �

Proof of Theorem 6.1. Consider the functions

gk(x, y) := fk(x) + ι{y=θ(x)}, (x, y) ∈ X × Y,
for each k ≥ 1 and

g(x, y) := f(x) + ι{y=θ(x)}, (x, y) ∈ X × Y.
Because of Lemmas 6.2, 6.3 and (35), to complete the proof it is enough to show that

Γ- lim
k→∞

gk = g (36)

together with the coerciveness assumptions of these lemmas.
Let us begin with the coerciveness. Since for each k ≥ 1, fk is coercive and θ is

continuous, we see that for any large enough a, {gk ≤ a} = {(x, y) ∈ X × Y ;x ∈ {fk ≤
a}, y = θ(x)} is compact, i.e. for each k ≥ 1, gk is coercive. As (fk)k≥1 is assumed to be
equi-coercive, its Γ-limit f is coercive and it follows by the same argument that g is also
coercive. We also see that

⋃
k≥1{gk ≤ a} = {(x, y) ∈ X×Y ;x ∈

⋃
k≥1{fk ≤ a}, y = θ(x)}

is relatively compact, i.e. (gk)k≥1 is equi-coercive.
Let us prove that (36) holds true. Let (x, y) ∈ X × Y be fixed. We have to prove that:

(i) For any sequence (xk, yk)k≥1 such that limk→∞(xk, yk) = (x, y),
lim infk→∞ fk(xk) + ι{yk=θ(xk)} ≥ f(x) + ι{y=θ(x)}.

(ii) There exists a sequence (x̃k, ỹk)k≥1 such that limk→∞(x̃k, ỹk) = (x, y), and
lim infk→∞ fk(x̃k) + ι{ỹk=θ(x̃k)} ≤ f(x) + ι{y=θ(x)}.

Suppose first that y 6= θ(x). Then (ii) is obvious and due to the continuity of θ, for any
sequence (xk, yk)k≥1 such that limk→∞(xk, yk) = (x, y) we have that for all large enough
k, θ(xk) 6= yk. This proves (i).
Now, suppose that y = θ(x). Then (i) follows from lim infk→∞ fk(xk) + ι{yk=θ(xk)} ≥
lim infk→∞ fk(xk) ≥ f(x) = f(x) + ι{y=θ(x)}, whenever limk→∞ xk = x. To prove (ii),
take a recovering sequence (x̃k)k≥1 for (fk)k≥1 at x, i.e. lim infk→∞ fk(x̃k) ≤ f(x) and put
ỹk = θ(x̃k), for each k ≥ 1. By the continuity of θ, limk→∞ ỹk = y, so that limk→∞(x̃k, ỹk) =
(x, y). We also have lim infk→∞ fk(x̃k) + ι{ỹk=θ(x̃k)} = lim infk→∞ fk(x̃k) ≤ f(x) = f(x) +
ι{y=θ(x)}, which proves (ii) and completes the proof of the theorem. �

Appendix A. Large deviations

We refer to the monograph by Dembo and Zeitouni [DZ98] for a clear exposition of
the subject. Let X be a Polish space furnished with its Borel σ-field. One says that the
sequence (pk)k≥1 of probability measures on X satisfies the large deviation principle (LDP
for short) with scale k and rate function I, if for each Borel measurable subset A of X we
have

− inf
x∈intA

I(x)
(i)

≤ lim inf
k→∞

1

k
log pk(A) ≤ lim sup

k→∞

1

k
log pk(A)

(ii)

≤ − inf
x∈clA

I(x) (37)

where intA and clA are respectively the topological interior and closure of A in X and
the rate function I : X → [0,∞] is lower semicontinuous. The inequalities (i) and (ii) are
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called respectively the LD lower bound and LD upper bound, where LD is an abbreviation
for large deviation.

Next theorem states that the continuous image of a LDP is still a LDP with the same
scale.

Theorem A.1 (Contraction principle). Let (pk)k≥1 satisfy the LDP in X with scale k
and rate function I. Suppose in addition that I is not only lower semicontinuous, but that
it is coercive. For any continuous function f : X → Y from X to another Polish space Y
furnished with its Borel σ-field,

(f#pk)k≥1

satisfies the LDP in Y with scale k and the rate function

J(y) = inf{I(x);x : f(x) = y}, y ∈ Y.
Moreover, J is also coercive.

For a proof, see [DZ98, Thm. 4.2.1].

Theorem A.2 (Laplace-Varadhan principle). Suppose that (pk)k≥1 satisfy the LDP in X
with a coercive rate function I : X → [0,∞], and let f be a continuous function on X.
Assume further that

lim
M→∞

lim inf
k→∞

1

k
log

∫
X

ekf(x)1{f≥M} pk(dx) = −∞.

Then,

lim
k→∞

1

k
log

∫
X

ekf(x) pk(dx) = sup
x∈X
{f(x)− I(x)}.

For a proof, see [DZ98, Thm. 4.3.1].
A well-known LD result is about the large deviations of the Rd-valued process which

we have already met at (5) and is defined by

Y k,x
t = x+

√
1/kBt, 0 ≤ t ≤ 1,

where the initial condition Y k,x
0 = x is deterministic, B = (Bt)0≤t≤1 is the Wiener process

on Rd.

Theorem A.3 (Schilder’s theorem). The sequence of random processes (Y k,x)k≥1 satisfies
the LDP in Ω = C([0, 1],Rd) equipped with the topology of uniform convergence with scale
k and rate function

Cx(ω) =

∫
[0,1]

|ω̇t|2

2
dt ∈ [0,∞], ω ∈ Ω

if ω0 = x and ω is an absolutely continuous path (its derivative is denoted by ω̇) and
Cx(ω) =∞, otherwise.

For a proof, see [DZ98, Thm. 5.2.3].
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