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Christian Léonard and Jean-Claude Zambrini

Abstract. In the framework of a probabilistic deformation of the classical
calculus of variations, we consider the simplest problem of constraints, and
solve it in two different ways. First by a pathwise argument in the line of
Euclidean Quantum Mechanics. Second from an entropic (measure theoretic)
perspective.
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1. Introduction

In classical calculus of variations, most concrete problems of optimization are ac-
companied with various kinds of constraints: isoperimetric, holonomic or not, etc.
handled with the method of “Lagrange multipliers” (a misnomer, in fact, since it
has been introduced by Euler), see for example [7].

In [3], we presented what can be regarded as a probabilistic deformation of
the classical calculus of variations. Its basic principle is to deform in a minimal
way the ideas and tools of the classical theory, so that those become compatible
with the very irregular paths of diffusion processes. Since then, it has been shown
that the same method holds for a much wider class of stochastic processes [11].
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By minimal deformation, we mean one involving exclusively the regulariza-
tions associated with the existence of the underlying probability measures on path
spaces. By construction, our variational framework depends on a positive constant
~. At the (“classical”) limit where this constant vanishes, those paths become
smooth and any claim should reduce to a statement of classical calculus of varia-
tions.

We are going to consider a problem of constraint in this probabilistic context,
from a dual perspective. First, along the original line of [3], namely in the deformed
variational perspective. Then, in a measure theoretic perspective, with a strong
entropic flavor. It has been known, indeed, for a long time that the diffusions
critical points of our regularizartion functionals belong to special time-symmetric
class (Bernstein’s reciprocal class) which can be naturally described in this way, see
for instance [2, 6, 9]. As a matter of fact, the second perspective makes, in a way,
clearer the status of Lagrange multipliers in our deformed calculus of variations.

In the present paper, one mostly presents the main ideas without focusing
to precise assumptions and detailed proofs. The constraint considered here (pre-
scribed final condition) is the simplest one in a hierarchy of manageable constraints.
They will be systematically explored in future publications with a complete math-
ematical treatment.

Notation

For any measurable set A, P(A) denotes the set of all probability measures on A.
The space Ω = C([0, T ],Rd) of all continuous paths from the time interval [0, T ]
to the configuration space Rd is equipped with its usual σ-field. The canonical
process on Ω is (Xt)0≤t≤T .
One denotes by Pt = Xt#P the image law of Xt under P ∈ P(Ω) and Pty =
P (·|Xt = y).

2. Stochastic least action principle with final constraint

Let us consider the following action functional on P(Ω)

J(P ) = EP

∫ T

0

L(Xt, D
PXt) dt+ EPS(XT ), P ∈ DJ (2.1)

defined on a domain DJ of diffusion processes, with measures P ∈ P(Ω), solving
stochastic differential equations (SDE) of the form{

dXt = b(Xt, t) dt+
√

~ dWt

X0 = x
(2.2)

where W is the Wiener process, b a Markov measurable “drift” and ~ a positive
constant, our deformation parameter. It should be noted that b = bP can be
regarded as a parametrization of P in DJ . In definition (2.1),

L : (q, v) ∈ Rd × Rd 7→ L(q, v) ∈ R
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is called the Lagrangian of J, DP stands for the partial differential operator of
parabolic type associated with the diffusion law P, defined on smooth (real valued)
functions φ(q, t) by

DPφ = ∂tφ+ bP (q, t)∂qφ+
~
2
∂2

qφ

In our “deformation perspective”, its proper interpretation is given by the following
regularizations (or “deformation”) of time derivative of φ along the solution of
(2.2):

DPφ(Xt, t) = lim
∆t↓0

EP

[
φ(Xt+∆t, t+ ∆t)− φ(Xt, t)

∆t
| Xt

]
(2.3)

In particular, when φ(q, t) = q := prq(q, t), with some abuse of notationDP prq(Xt, t)
reduces to

DPXt = bP (Xt, t)
the second (random) variable of L, regarded as independent of the first one. The
existence of such a space of independent variables, in this context, is in itself an
interesting geometrical problem which is solved by a deformation of its classical
solution, i.e. of classical Contact Geometry. This aspect will not be elaborated here
(for a glimpse, see [10, 14]).

Let us consider the following “constrained problem”: Find the critical points
of the action functional (2.1) in the class of diffusions (2.2) such that, in addition,
the following final constraint holds:

EPN(XT ) = 0 (2.4)

for a given measurable function N satisfying some integrability conditions.
Now, we introduce, in complete analogy with the classical case, the new,

unconstrained, action functional

Jλ(P ) = EP

∫ T

0

L(Xt, D
PXt) dt+ EP (S − λN)(XT ) (2.5)

for λ ∈ R the Lagrange multiplier.
Then, as expected, the claim is the following

Theorem 2.1. If, for any λ ∈ R (or λ in an interval) we can find Pλ in the class
(2.2) critical point of the unconstrained action functional (2.5) and if there is a λo

(in the same interval) for which the constraint (2.4) is satisfied:

EP λo
N(XT ) = 0 (2.6)

then Pλo is a critical point of the constrained problem and the process associated
with P = Pλo solves the stochastic Euler-Lagrange equation:

[DP∂vL− ∂qL](Xt, D
PXt) = 0, 0 < t < T, P -a.s. (2.7)

with {
∂vL(XT , D

PXT ) = −∇(S − λoN)(XT )
X0 = x

P -a.s. (2.8)
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Idea of proof. Let us apply to the unconstrained action Jλ the method of [3] (see
also [1, §6.2]) to compute its variation at P in a direction δP, for δP a signed
measure such that P + δP is a Markov probability measure absolutely continuous
with respect to P. By Girsanov’s theorem, this implies that there exists a bounded
variation random process δX such that the image measure (X+δX)#P = P+δP.
It is enough to differentiate Jλ in the directions δX with sample paths in the
Cameron-Martin space. This gives

〈∇Jλ(P )|δP 〉 :=
d

dε |ε=0

{
EP

∫ T

0

L
(
(X + εδX)t, D

P (X + εδX)t

)
dt

+EP (S − λN)(XT + εδXT )
}

= EP

∫ T

0

(
∂qL(Xt, D

PXt)δXt + ∂vL(Xt, D
PXt)DP δXt

)
dt

+EP [(∇S − λ∇N)(XT )δXT ] (2.9)

For the second term under the integral, we appeal to Itô’s product formula for δX
of bounded variation:

DP
[
∂vL(Xt, D

PXt)δXt

]
= DP

[
∂vL(Xt, D

PXt)
]
δXt + ∂vL(Xt, D

PXt)DP
[
δXt

]
Since the differential meaning of (2.3) is EP [DPφ(Xt, t) dt] = EP [dφ(Xt, t), ] the
r.h.s. of (2.9) reduces to

EP

∫ T

0

[∂qL−DP∂vL](Xt, D
PXt) δXt dt

+ EP
{
[∂vL(XT , D

PXT ) +∇(S − λN)(XT )]δXT

}
(2.10)

A diffusion Pλ in the class (2.2) is extremal (or critical) for the functional Jλ

if 〈∇Jλ(P )|δP 〉 = 0 for any admissible δP in the Cameron-Martin subspace. By
(2.10) this means that, Pλ-a.s.

[∂qL−DP λ

(∂vL)](Xt, D
P λ

Xt) = 0 and

∂vL(XT , D
P λ

XT ) +∇(S − λN)(XT ) = 0.

In particular, if λ = λo then the final constraint (2.6) is satisfied, as well as, by
definition, for any diffusion satisfying (2.4) whose boundary term N is irrelevant
to the action. This means that Pλo is critical for the above constrained problem
and solves (2.7) and (2.8). �

This argument is along the line of a verification theorem in the sense of
stochastic optimal control theory (see [5] for instance). Let us see how it works in
practice.
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Consider a typical example suggested by “Euclidean Quantum Mechanics”
[1], namely the action functional

J(P ) = EP

∫ T

s

{
1
2
|DPXt|2 +

1
2
X2

t

}
dt

where instead of a zero initial time, as before, it will be useful to pick any time
s < T.

We are looking for a critical point of J in the class of diffusions (2.2) such
that

EP
sx[X2

T −m2] = 0, for m a given constant.
According to the theorem, we need first to find, for any λ ∈ R, the critical point
of the (unconstrained) functional

Jλ(P ) = EP
sx

∫ T

s

{
1
2
|DPXt|2 +

1
2
X2

t

}
dt− λEP

sx[X2
T −m2]

This is an action of the form (6.25) in [1], for a quadratic potential V (q) = 1
2q

2

and a final value SL(q, T ) := −λ(q2 −m2).
A key point of the method advocated in [1] (dating back, in fact, to the

mid-eighties, see [13] and references in [3]) is the following change of variables

SL(q, T ) = −~ log ηT (q)

Here, ηT (q) = e
λ
~ (q2−m2). Indeed, the local characteristics of the diffusion Pλ,

critical for Jλ, will be provided by the (positive) solution of the PDE with final
boundary condition {

~∂tη = Hη, t < T
η(q, T ) = ηT (q) (2.11)

and “Hamiltonian”

H = −~2

2
∂2

q + V (q) (2.12)

This solution is given explicitly, in terms of the (“Mehler”) integral kernel

h(q, T − t, y) = kernel
{
e−

T−t
~ H

}
(q, y)

by

η(q, t) =
∫

R
h(q, T − t, y)ηT (y) dy (2.13)

The critical process Pλ of Jλ solves a SDE of the form (2.2) for the drift

bλ(q, t) = −∇SL(q, t) := ~∇ log η(q, t) = −
[
sinh(T − t) + 2λ cosh(T − t)
cosh(T − t) + 2λ sinh(T − t)

]
q

(2.14)
Now, let us look for a λo ∈ R such that the constraint

EP λ

sx [(Xλo

T )2] = m2 (2.15)

is satisfied.
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As observed in the introduction, the structure of the diffusions Pλ critical
for action functionals such as Jλ is very special. Their probability density, for any
fixed H, is of the Bernstein reciprocal form [3, 1]

P (Xt ∈ A) =
∫

A

η∗(q, t)η(q, t) dq (2.16)

with t in the existence interval of P, A a Borel set and η∗ a positive solution of
the equation adjoint to (2.11) with respect to the time parameter t :{

−~∂tη
∗ = Hη∗, s ≤ t ≤ T

η∗(q, s) = η∗s (q)

The product form (2.16) is, in fact, the key one for the relation with the entropic
approach of §3 (cf. Conclusion).

Our constraint expectation (2.15) is a conditional one, knowing that Xs = x.
This means that η∗s (q) dq = δx(dq). The relevant normalized probability density of
Pλ

t is therefore of the special product form

N−1h(x, t− s, q)η(q, t) dq

with η given by (2.13) and a normalizing factor N = η(x, s).
For ηT (q) as prescribed before, the l.h.s. of (2.15) means

EP λo

sx [(XT )2] =
1
2α

(1 +
β2

2α
)

where α = ~−1( 1
2 coth(T − s)− λo), β = (~ sinh(T − s))−1x.

The constraint (2.15) becomes equivalent to a quadratic polynomial in λo,
whose coefficient depend on m,T, x and s. So Pλo with drift bλo of the form (2.14)
is a solution of the constrained problem and P = Pλo (or, better, its associated
diffusion) solves  DDPXt = Xt, ∀s ≤ t ≤ T ;

Xs = x;
DPXT = bλo(XT , T )

P -a.s. (2.17)

which is a stochastic Euler-Lagrange equation with boundary conditions, for the
given Lagrangian. As expected on a classical basis, an endpoint constraint such as
(2.15) does not affect the dynamics of the extremal process of our stochastic action
functional (given by (2.18)), but only the boundary conditions it should satisfy.

Let us observe that, in the perspective of the above calculus of variations, it is
natural to regard Xt as a (random) variable subjected to a variational procedure.

In the next §, it will be more appropriate to consider the process as a fixed
canonical one and the probability laws as the true variables of optimization.
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3. Random dynamical particles performing an unexpected final
event

In 1932, Erwin Schrödinger addressed (in [12]) a problem of Brownian particles
performing an unexpected event. His answer founded what we call, since the mid
eighties, Euclidean Quantum Mechanics (cf [3], [13], for instance).

The problem of classical statistical physics is the following one. Suppose that
you observe at time t = 0, a large number n of independent Brownian particles
with some configuration distribution on Rd close to the probability measure µ and
that at some later time T you observe that their distribution ν differs significantly
from the expected distribution µ∗γT : the convolution of the initial state µ with the
centered Gaussian measure with variance T. What is the most probable evolution
of the whole system between these two states?

A modern answer to this problem is in terms of large deviations when n tends
to infinity of the empirical measure

LY
n :=

1
n

n∑
i=1

δY i

for the n random paths Y 1, . . . , Y n (δY is the Dirac measure at Y : t ∈ [0, T ] 7→
Yt ∈ Rd), see [6]. Note that LY

n is a random element of P(Ω). In this section,
inspired by the above example, we address a similar problem where the n particles
are no longer Brownian but are independent and identically distributed with the
law

RV := z−1
V exp

(
−1

~

∫ T

0

V (Xt) dt

)
R

where R is the Wiener measure with variance ~ and initial law X0#R = µ = δx,
i.e. the law of (2.2) with b = 0, and V some real function such that

zV := ER exp

(
−1

~

∫ T

0

V (Xt) dt

)
<∞.

The initial configuration LY
n (0) = 1

n

∑n
i=1 δY i

0
is almost surely δx and, according to

(2.4), one observes the mean value of a real function N on the final configuration:∫
Rd

N(q)LY
n (T )(dq) =

1
n

n∑
i=1

N(Y i
T ) ≈ c

which may deviate significantly from the value predicted by the law of large num-
bers.

Sanov’s theorem tells us that the large deviations of LY
n where the Yi’s are

identically distributed with the reference law RV is governed by the relative en-
tropy

H(P |RV ) =
{
EP

(
log dP

dRV

)
if P ≺ RV

+∞ otherwise
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This approximately means that P(LY
n ∈ A) �

n→∞
exp[−n infP∈AH(P |RV )] for

A a subset of P(Ω). A precise statement is in terms of a large deviation prin-
ciple, see [4]. This means that for any closed set A, lim supn→∞

1
n log P(LY

n ∈
A) ≤ − infP∈AH(P |RV ) and for any open set A, lim infn→∞

1
n log P(LY

n ∈ A) ≥
− infP∈AH(P |RV ) where P(Ω) is endowed with the usual weak topology. With
regular enough subsets A (for instance open convex subsets) and Cδ = {P ∈
P(Ω);EP [N(XT )] ∈ [c − δ, c + δ]} (one introduces δ > 0 to make sure that
P(LY

n ∈ Cδ) > 0), one can expect the following conditional law of large numbers

lim
δ↓0

lim
n→∞

P(LY
n ∈ A | LY

n ∈ Cδ) =
{

1, if A 3 P o

0, otherwise

where P o is a minimizer of P 7→ H(P |RV ) on C := limδ↓0 Cδ = {P ∈ P(Ω);EP [N(XT )] =
c}. To see this, remark that (formally)

P(LY
n ∈ A | LY

n ∈ Cδ) �
n→∞

exp[−n( inf
P∈A∩Cδ

H(P |RV )− inf
P∈Cδ

H(P |RV ))].

Since H(·|RV ) is strictly convex and C is a convex set, P o is unique and this
roughly means that conditionally on LY

n ∈ C, as n tends to infinity LY
n tends to

the solution P o of the minimization problem

minimize H(P |RV ) subject to EP [N(XT )] = c (3.1)

Clearly

H(P |RV ) = EP log
dP

dRV
= EP log

dP

dR
− EP log

dRV

dR

= H(P |R) + EP 1
~

∫ T

0

V (Xt) dt+ log zV

and with Girsanov’s theorem one proves that

H(P |R) = EP

∫ T

0

1
2~
|DPXt|2 dt. (3.2)

Finally, P o is the critical point of a special functional of type (2.1):

J(P ) =
1
~
EP

∫ T

0

(
1
2
|DPXt|2 + V (Xt)

)
dt = H(P |RV )− log zV

under the constraint EP [N(XT )] = c, and applying Theorem 2.1 one sees that
(P o, λo) satisfies

DDP o

Xt = ∇V (Xt), 0 < t < T ;
X0 = x

DP o

XT = λo∇N(XT )
EP o

N(XT ) = c

P o-a.s. (3.3)
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On the other hand, one can characterize P o as the solution of (3.1), using
general results about entropy minimization. For each real λ, let

Λ(λ) := log
∫

Rd

e
λ
~ N(y)RV

T (dy) ∈ (−∞,+∞].

The convex conjugate of Λ is defined for all real a by Λ∗(a) := supλ∈R{aλ−Λ(λ)} ∈
(−∞,+∞].

Theorem 3.1. It is assumed that N satisfies Λ(λ) <∞ for all λ ∈ R and that c in
(3.1) stands in the interior of the convex hull of the support of RV

T . Then:
1. There exists a unique solution P o to (3.1) and it is of the form

P o = exp
(
λo

~
N(XT )− Λ(λo)

)
RV (3.4)

where λ = λo is the unique solution to Λ′(λ) = c, λ ∈ R.
2. H(P o|RV ) = Λ∗(c) <∞.
3. P o(dω) =

∫
Rd R

V
T,y(dω) ρo(dy) where ρo = P o

T uniquely solves the entropy
minimization problem:

minimize H(ρ|RV
T ) subject to

∫
Rd

N(y) ρ(dy) = c, ρ ∈ P(Rd).

4. P o is the Markov diffusion associated with (2.2) for the drift

bo(q, t) = ~∇ log η(q, t)

where η is the solution to{
~∂tη = Hη, t < T

η(y, T ) = exp
(

λo

~ N(y)− Λ(λo)
) (3.5)

and H = −~2

2 ∆ + V (q) is the Hamiltonian defined in (2.12).
5. P o and λo satisfy (3.3).

Idea of proof. Except for the proof of (4), where regularity conditions are left
vague, the proof is rigorous.

The interior of the convex hull of the support of RV
T is equal to the interior

of {a,Λ∗(a) < ∞} : int dom Λ∗. Since P o solves (3.1), it is known (see [9] for
instance) that under the assumption Λ(λ) < ∞ for all λ ∈ R and c in (3.1) is in
int dom Λ∗, P o has the form (3.4). On the other hand, a direct computation shows
that Λ′(λo) =

∫
Rd N dP o

T . This proves (1) and (2).
The proof of (3) is a consequence of the general tensorization formula for the

relative entropy:

H(P |RV ) = H(PT |RV
T ) +

∫
Rd

H(PT,y|RV
T,y)PT (dy)

Since the given constraint only concerns PT and H(PT,y|RV
T,y) = 0 if and only if

PT,y = RV
T,y, we have P o

T,y = RV
T,y for P o

T -a.e. y and P o
T = ρo.
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Let us give an idea of the proof of (4). One writes (3.4): P o = η(XT , T )RV

with η(y, T ) = exp
(

λo

~ N(y)− Λ(λo)
)
. If the solution η = e−

1
~ SL of (3.5) doesn’t

vanish we have 1
~V (q) = η(q, t)−1(∂t + ~

2∆)η(q, t) and

Tt := η(X0, 0)−1 exp
(
−1

~

∫ t

0

V (Xs) ds
)
η(Xt, t)

= η(X0, 0)−1 exp

(
−
∫ t

0

(∂s + ~
2∆)η(Xs, s)
η(Xs, s)

ds

)
η(Xt, t)

= exp−1
~

(
SL(Xt, t)− SL(X0, 0)−

∫ t

0

(∂s +
~
2
∆)SL(Xs, s)−

1
2

∫ t

0

|∇SL(Xs, s)|2 ds
)

= exp−1
~

(∫ t

0

∇SL(Xs, s) · dXs −
1
2

∫ t

0

|∇SL(Xs, s)|2 ds
)

is a positive local R-martingale. If T is not only a local but also a genuine R-
martingale, then P o = z−1

V η(x, 0)TT R. Now, Girsanov’s theorem tells us that the
drift of P o is bo = −∇SL, the desired result.

In particular, at time T, DP o

XT = bo(XT , T ) = ~∇ log η(XT , T ) = λo∇N(XT ),
P o-almost surely. Comparing with (3.3), one sees that λo in Theorems 2.1 and 3.1
is the same. This proves (5) and completes the proof of the theorem. �

Theorem 3.1 seems to have very little to do with our pathwise line of thought
(§2). However, consider the function SL defining the R-martingale Tt and therefore
the Markovian diffusion of (4) in Theorem 3.1.

As a function, since SL = −~ log η for η a positive solution of Eq. (3.5), SL

solves the following Hamilton-Jacobi-Bellman (HJB) equation:
∂SL

∂t
− 1

2
|∇SL|2 +

~
2
∆SL + V = 0 t < T.

Assuming that the solution SL is smooth enough (This is not a trivial as-
sumption since, generically they are not: this is for this equation that the notion
of viscosity solution was initially designed: cf [5]), the gradient of HJB provides,
since bo = −∇SL,

DDP o

Xt = ∇V (Xt).
This is the a.s Euler-Lagrange equation (3.3), solved by the process critical

for the associated stochastic action functional J(P ). So the key elements of our
pathwise analysis are also present, although implicitly, in the entropic approach.

It has been shown that the study of the symmetries of HJB equation is very
rewarding for computations with such critical diffusions (cf [10]).

Let us make a final remark about the product form (2.16). It was the main
motivation of Schrödinger’s investigation in [12], since it looks like Born’s inter-
pretation of the wave function: |ψt(q)|2 dq = ψt(q)ψ̄t(q) dq i.e. the probability of
presence of a quantum particle when ψ solves Schrödinger’s equation for the same
Hamiltonian H.
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Formula (3.4): P o = ηT (XT )RV which is a direct consequence of the minimization
of the relative entropy H(·|RV ), can also be given (approximately) a product form

P = η∗0(X0) exp

(
−1

~

∫ T

0

V (Xr) dr

)
ηT (XT )Rα (3.6)

Here, Rα(dω) :=
∫

Rd Rq(dω)α(dq) where Rq is the Wiener measure issued from q
and α denotes Lebesgue measure. It is an unbounded “reversible” measure of the
Wiener process, in the traditional sense of symmetric diffusions (cf [8]). In fact,
since it is assumed that RV

0 = δx, P
o is only approximately of the form (3.6).

Under this P, the law Pt of Xt is given by

Pt(dq) = ERα

[
η∗0(X0) exp

(
−1

~

∫ T

0

V (Xr) dr

)
ηT (XT )

∣∣∣Xt = q

]
dq

= η∗(q, t)η(q, t) dq

where we used the Markov property of Rα at time t, 0 < t < T , and we have
introduced

η∗(q, t) = ERα

[
η∗0(X0) exp

(
−1

~

∫ t

0

V (Xr) dr
) ∣∣∣Xt = q

]
η(q, t) = ERα

[
exp

(
−1

~

∫ T

t

V (Xr) dr

)
ηT (XT )

∣∣∣Xt = q

]
.

Using forward and backward exponential martingales, one shows that{
~∂tη(q, t) = Hη(q, t)
η(·, 0) = η0

and
{
−~∂tη

∗(q, t) = Hη∗(q, t)
η∗(·, 0) = η∗0

.

Given the fact that η and η∗ can be regarded as time reversed of each other,
the product form of Pt(dq) is, therefore, the expression of a time dependent version
of reversibility generalizing considerably the above-mentioned notion of symmetric
diffusions. Explored since the mid-eighties (cf [13], [3], etc ...), this idea is the basic
one in the program of stochastic deformation whose simplest variational problem
with constraint was considered here.
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[11] N. Privault and J.C. Zambrini. Markovian bridges and reversible diffusions with
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