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Abstract. In this paper, one investigates the transportation-information TcI inequalities:
α(Tc(ν, µ)) ≤ I(ν|µ) for all probability measures ν on a metric space (X , d), where µ is
a given probability measure, Tc(ν, µ) is the transportation cost from ν to µ with respect
to the cost function c(x, y) on X 2, I(ν|µ) is the Fisher-Donsker-Varadhan information
of ν with respect to µ and α : [0,∞) → [0,∞] is a left continuous increasing function.
Using large deviation techniques, it is shown that TcI is equivalent to some concentration
inequality for the occupation measure of a µ-reversible ergodic Markov process related to
I(·|µ).

The tensorization property of TcI and comparisons of TcI with Poincaré and log-Sobolev
inequalities are investigated. Several easy-to-check sufficient conditions are provided for
special important cases of TcI and several examples are worked out.

1. Introduction

Let M1(X ) be the space of all probability measures on a complete separable metric space
(X , d) and consider the cost function c(x, y) : X 2 → [0,+∞] with c(x, x) = 0 (for all
x ∈ X ), which is lower semicontinuous on X 2. Given µ, ν ∈M1(X ), the transportation cost
Tc(ν, µ) from ν to µ with respect to the cost function c is defined by

Tc(ν, µ) = inf
π∈M1(X 2):π0=ν,π1=µ

∫∫
X 2

c(x, y) π(dx, dy) (1.1)

where π0(dx) = π(dx×X ), π1(dy) = π(X × dy) are the marginal distributions of π. When
c(x, y) = dp(x, y) where p ≥ 1, (Tc(ν, µ))1/p = Wp(ν, µ) is the Lp- Wasserstein distance
between ν and µ.
The relative entropy (or Kullback information) of ν with respect to µ is given by

H(ν|µ) :=


∫
X
f log f dµ, if ν � µ and f := dν

dµ

+∞, otherwise.
(1.2)

The usual transportation inequalities for a given µ ∈M1(X ), introduced by K. Marton [35]
and M. Talagrand [40], compare the Wasserstein metric Wp(ν, µ) with the relative entropy
H(ν|µ). The following extension of these inequalities:

α(Tc(ν, µ)) ≤ H(ν|µ), ∀ν ∈M1(X ), (TcH)

has recently been proposed and developed by Gozlan and Léonard [24]. Here α : [0,∞)→
[0,+∞] is some left continuous and increasing function with α(0) = 0.
Let us denote

α~(λ) := sup
r≥0

(λr − α(r)) (1.3)
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the monotone conjugate of α. With α as above, one sees that α~ is the restriction to [0,∞)
of the usual convex conjugate α̃∗(λ) = supr∈R(λr − α̃(r)) of α̃(r) = 1r≥0α(r), r ∈ R. We
also denote µ(v) :=

∫
X vdµ.

As an extension of the Bobkov-Götze criterion [6], we have

Theorem 1.1 (Gozlan-Léonard [24]). Let (Xn)n∈N be a sequence of X -valued i.i.d. random
variables with common law µ and α be moreover convex. Then the following properties are
equivalent:

(a) The transportation inequality TcH holds;
(b) For any couple of bounded and measurable functions u, v : X → R such that u(x)−

v(y) ≤ c(x, y) over X 2, log
∫
X e

λudµ ≤ λµ(v) + α~(λ), ∀λ ≥ 0;
(c) For all n ≥ 1 and r > 0 and for any couple of bounded and measurable functions

u, v : X → R such that u(x) − v(y) ≤ c(x, y) over X 2, the following concentration
inequality holds P

(
1
n

∑n
k=1 u(Xk) ≥ µ(v) + r

)
≤ e−nα(r).

The main purpose of this paper. In this paper, instead of the transportation-entropy
inequality TcH, one investigates the following transportation-information inequality

α(Tc(ν, µ)) ≤ I(ν|µ), ∀ν ∈M1(X ) (TcI)

for some given probability measure µ. Here I(ν|µ) is the Fisher-Donsker-Varadhan infor-
mation of ν with respect to µ

I(ν|µ) =

{
E(
√
f,
√
f) if ν = fµ,

√
f ∈ D(E)

+∞ otherwise
(1.4)

associated with the Dirichlet form E on L2(µ) with domain D(E).

Notation. In the special case where c(x, y) = dp(x, y), we use the notation WpI instead of
TdpI. In particular, W1I stands for TdI.

Organization of the paper. This paper is organized as follows. In the next section we
characterize TcI by means of concentration inequalities for the empirical means Lt(u) =
1
t

∫ t
0
u(Xs) ds of observables u, extending Theorem 1.1 from i.i.d. sequences to time-continuous

Markov processes. The method of proof is borrowed from Gozlan and Léonard [24] who
proved Theorem 1.1 by means of large deviations of the empirical measure of an i.i.d. se-
quence. Here, it relies on the large deviations of the occupation measure of (Xt). The
tensorization of TcI is proved, and the relations between W2I, Poincaré and log-Sobolev
are exhibited with the help of Otto-Villani [37].

In Section 3, W1I is proved for the trivial metric d(x, y) = 1x 6=y with the sharp constant
in terms of the spectral gap as well as a sharp Hoeffding concentration inequality for Markov
processes.

For a general metric, using Lyons-Meyer-Zheng forward-backward martingale decompo-
sition, we obtain in Section 4 a sharp W1I inequality under the spectral gap existence of
the Markov diffusion process in the space of Lipschitz functions. An explicit sharp constant
is provided for one-dimensional diffusions.

Finally in Section 5 we propose a practical Lyapunov condition for W1I (or a more general
TΦI) which, although not providing the sharp constant, yields a good order.
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About the literature. Let us give some historical notes on the usual transportation
inequality WpH. K. Marton [33] first noticed that W1H implies the concentration inequality
for µ by a very elementary and neat argument, and she established W1H for the law of a
Dobrushin-contractive Markov chain in [35]. M. Talagrand [40] established W2H for the
Gaussian measure µ with α(r) = r/2C and provided the sharp constant C (this particular
case of TcH is often called Talagrand’s transportation inequality). Bobkov and Götze
[6] obtained the characterization of WpH in Theorem 1.1 with [p = 1, α quadratic] and
[p = 2, α linear]. Otto and Villani [37] proved that the log-Sobolev inequality is stronger
than Talagrand’s transportation inequality and presented a differential geometrical point
of view on M1(X ) equipped with the W2-metric. Bobkov, Gentil and Ledoux [5] shed
light on a profound relation between Talagrand’s transportation inequality, log-Sobolev
inequality, inf-convolution and some Hamilton-Jacobi equation. Djellout, Guillin and Wu
[15] obtained a necessary and sufficient condition for W1H with a quadratic α by means
of the Gaussian integrability of d(x, x0) under µ, and gave a direct proof of Talagrand’s
transportation inequality for the law of a diffusion process by means of Girsanov’s formula,
without appealing to log-Sobolev inequality. See X. Fernique [19], Feyel and Ustunel [20],
Bogachev and Kolesnikov [7] for the approach of Girsanov’s transform to optimal mass
transportation and TcH.

Bolley and Villani [8] and later Gozlan and Léonard [24] refined the result of [15] under
a Gaussian integrability condition. Cattiaux and Guillin [11] constructed the first example
for which Talagrand’s transportation inequality holds but not log-Sobolev inequality, and
Gozlan [23] found a necessary and sufficient condition for Talagrand’s transportation in-
equality with µ(dx) = e−V (x)dx on R when the Bakry-Emery curvature V ′′ is lower bounded.
Otto-Villani’s differential geometrical point of view on M1(X ) equipped with the W2-metric
is very fruitful, as developed by the recent works of Sturm [38, 39] and Lott and Villani
[32]. The reader is referred to the textbooks by Ledoux [29] and Villani [42, 41] for further
references pertaining to this very active field.

The transportation-information inequalities TcI are new objects.

Convention and notation. Throughout this paper (X , d) is a complete separable metric
space with the associated Borel σ-field B.
- The space of all real bounded and B-measurable functions is denoted by bB.
- The functions to be considered later are assumed to be measurable without warning.
- For µ, ν ∈M1(X ), ‖ν − µ‖TV := supu:|u|≤1

∫
u d(ν − µ) is the total variation norm.

- A cost function c is a nonnegative lower semicontinuous function on X 2 such that c(x, x) =
0 for all x ∈ X .

2. General results on TcI

2.1. Markov processes, Fisher-Donsker-Varadhan information and Feynman-
Kac semigroup. The main probabilistic object to be considered in this paper is an X -
valued time-continuous Markov process (Ω,F , (Xt)t≥0, (Px)x∈X ) with an invariant probabil-
ity measure µ. The transition semigroup is denoted (Pt)t≥0.

Assumption: Ergodicity. It is assumed that the invariant probability measure µ is ergodic:
if f ∈ bB satisfies Ptf = f, µ-a.e. for all t ≥ 0, then f is constant µ-a.e. Denoting
Pβ(·) :=

∫
X Px(·) β(dx) for any initial probability measure β, the previous condition on µ

amounts to stating that ((Xt)t≥0,Pµ) is a stationary ergodic process.
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Assumption: Closability of the symmetrized Dirichlet form. It is assumed that (Pt) is
strongly continuous on L2(µ) := L2(X ,B, µ). Let L be its generator with domain D2(L) on
L2(µ). It is also assumed that

E(g, g) := 〈−Lg, g〉µ, g ∈ D2(L)

is closable in L2(µ). Its closure which is denoted by (E ,D(E)) is a Dirichlet form: the
symmetrized Dirichlet form associated with the Markov process (Xt) (or (Pt)). Notice
that (E ,D(E)) corresponds to a self-adjoint generator Lσ (formally Lσ = (L+ L∗)/2), and
P σ
t = etL

σ
is the symmetrized Markov semigroup of (Pt). When Pt is symmetric on L2(µ),

the above closability assumption is always satisfied and the domain D(E) of the Dirichlet
form coincides with the domain D2(

√
−L) in L2(µ).

These above assumptions of ergodicity and closability of the Dirichlet form prevail for
the whole paper.

Fisher-Donsker-Varadhan information. The following definition is motivated by standard
large deviation results.

Definition 2.1. Given the Dirichlet form E with domain D(E) on L2(µ), the Fisher-
Donsker-Varadhan information of ν with respect to µ is defined by

I(ν|µ) :=

{
E(
√
f,
√
f), if ν = fµ,

√
f ∈ D(E)

+∞, otherwise.
(2.1)

Remarks 2.2. (I as rate function) When (Pt) is µ-symmetric, ν 7→ I(ν|µ) is exactly
the Donsker-Varadhan entropy i.e. the rate function governing the large deviation principle
of the empirical measure Lt := 1

t

∫ t
0
δXsds for large time t. This was proved by Donsker and

Varadhan [17] under some conditions of absolute continuity and regularity of Pt(x, dy), and
established in full generality by L. Wu [46, Corollary B.11].

Remarks 2.3. (Framework of Riemannian manifold) When µ = e−V (x)dx/Z (Z is
the normalization constant) with V ∈ C1 on a complete connected Riemannian manifold
X = M , the diffusion (Xt) generated by L = ∆ − ∇V · ∇ (∆,∇ are respectively the
Laplacian and the gradient on M) is µ-reversible and the corresponding Dirichlet form is
given by

Eµ(g, g) =

∫
M

|∇g|2 dµ, g ∈ D(Eµ) = H1(X , µ)

where H1(X , µ) is the closure of C∞b (M) (the space of infinitely differentiable functions f on

M with |∇nf | bounded for all n) with respect to the norm
√
µ(|g|2 + |∇g|2). It also matches

with the space of these g ∈ L2(M) such that ∇g ∈ L2(M → TM ;µ) in distribution. In
this case, if ν = fµ with 0 < f ∈ C1(M), then

I(ν|µ) =

∫
X
|∇
√
f |2 dµ =

1

4

∫
X

|∇f |2

f
dµ =

1

4
IF (f |µ) (2.2)

where IF (f |µ) is the classical Fisher information of the probability density f .
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Feynman-Kac semigroup. The derivation of the large deviation results for Lt as t tends to
infinity is intimately related to the Feynman-Kac semigroup

P u
t g(x) := Exg(Xt) exp

(∫ t

0

u(Xs) ds

)
. (2.3)

When u is bounded, (P u
t ) is a strongly continuous semigroup of bounded operators on L2(µ)

whose generator is given by Lug = Lg + ug, for all g ∈ D2(Lu) = D2(L).
It is no surprise that this semigroup also plays a role in the present investigation.

2.2. Characterizations of TcI. Recall that Kantorovich’s duality theorem (see [42]) states
that for any ν, µ ∈M1(X ) so that Tc(ν, µ) < +∞,

Tc(ν, µ) = sup
(u,v)∈Φc

∫
u dν −

∫
v dµ (2.4)

where Φc := {(u, v) ∈ (bB)2 : u(x) − v(y) ≤ c(x, y), ∀(x, y) ∈ X 2}. This motivates us to
introduce as in [24]

TΦ(ν, µ) = sup
(u,v)∈Φ

∫
u dν −

∫
v dµ (2.5)

where Φ ⊂ (bB)2 (non-empty) satisfies

(A1) u ≤ v for all (u, v) ∈ Φ ;
(A2) For all ν1, ν2 ∈M1(X ), there exists (u, v) ∈ Φ such that

∫
u dν1 −

∫
v dν2 ≥ 0.

Note that for (A1) and (A2) to be satisfied when Φ = Φc, it is enough that c(x, x) = 0
for all x. The main result of this section is the following generalization of Theorem 1.1.

Theorem 2.4. Let ((Xt)t≥0,Pµ) be a stationary ergodic Markov process with the sym-
metrized Dirichlet form (E ,D(E)), Φ be as above and α : [0,∞)→ [0,∞] be a left continuous
increasing function such that α(0) = 0. Consider the following properties:

(a) The following transportation inequality holds

α(TΦ(ν, µ)) ≤ I(ν|µ), ∀ν ∈M1(X ) (TΦI)

(b) For all (u, v) ∈ Φ and all λ, t ≥ 0

‖P λu
t ‖L2(µ) ≤ et[λµ(v)+α~(λ)] (2.6)

where P λu
t is the Feynman-Kac semigroup (2.3) and α~ is defined at (1.3).

(b′) For all (u, v) ∈ Φ and all λ ≥ 0

lim sup
t→∞

1

t
logEµ exp

(
λ

∫ t

0

u(Xs) ds

)
≤ λµ(v) + α~(λ)

(c) For any initial measure β � µ with dβ/dµ ∈ L2(µ) and for all (u, v) ∈ Φ and
r, t > 0,

Pβ
(

1

t

∫ t

0

u(Xs) ds ≥ µ(v) + r

)
≤
∥∥∥∥dβdµ

∥∥∥∥
2

e−tα(r) (2.7)

(c′) For all (u, v) ∈ Φ and for any r ≥ 0, there exists β ∈ M1(X ) such that β � µ,

dβ/dµ ∈ L2(µ) and lim supt→∞
1
t

logPβ
(

1
t

∫ t
0
u(Xs) ds ≥ µ(v) + r

)
≤ −α(r)

We have
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(1) (a)⇒ (b)⇒ (b′) and (a)⇒ (c)⇒ (c′).
(2) If α is convex, then (a)⇔ (b).
(3) If (Pt) is symmetric on L2(µ), then (a)⇔ (c)⇔ (c′).

If furthermore α is convex, (a), (b), (b′), (c) and (c′) are equivalent.

Its proof is postponed to the end of the paper. From Theorem 2.4 we derive easily

Corollary 2.5 (The inequalities W1I(c) and W2I(c)). Let c > 0 and let (Xt) be a µ-
reversible and ergodic Markov process such that

∫
d2(x, x0) dµ(x) < +∞.

(1) The statements below are equivalent:
(a) The following W1I(c) inequality holds true:

W 2
1 (ν, µ) ≤ 4c2 I(ν|µ), ∀ν ∈M1(X ); (W1I(c))

(b) For all Lipschitz function u on X with ‖u‖Lip ≤ 1 and all λ, t ≥ 0,

‖P λu
t ‖L2(µ) ≤ exp

(
t[λµ(u) + c2λ2]

)
;

(c) For all Lipschitz function u on X with ‖u‖Lip ≤ 1, µ(u) = 0 and all λ ≥ 0,

lim sup
t→+∞

1

t
logEµ exp

(
λ

∫ t

0

u(Xs) ds

)
≤ c2λ2;

(d) For all Lipschitz function u on X , r > 0 and β ∈M1(X )such that dβ/dµ ∈ L2(µ),

Pβ
(

1

t

∫ t

0

u(Xs) ds ≥ µ(u) + r

)
≤
∥∥∥∥dβdµ

∥∥∥∥
2

exp

(
− tr2

4c2‖u‖2
Lip

)
.

(2) The statements below are equivalent:
(a) The following W2I(c) inequality holds true:

W 2
2 (ν, µ) ≤ 4c2I(ν|µ), ∀ν ∈M1(X ); (W2I(c))

(b) For any v ∈ bB, ‖P
1

4c2
Qv

t ‖L2(µ) ≤ e
t

4c2
µ(v), ∀t ≥ 0 where Qv(x) = inf

y∈X
{v(y) + d2(x, y)}

is the so-called “inf-convolution” of v;

(c) For any u ∈ bB, ‖P
1

4c2
u

t ‖L2(µ) ≤ e
t

4c2
µ(Su), ∀t ≥ 0 where Su(y) = sup

x∈X
{u(y)− d2(x, y)}

is the so-called “sup-convolution” of u.

Notation. The best constants c > 0 in W1I(c) and W2I(c) will be denoted respectively by
cW1I(µ) and cW2I(µ).

Remarks 2.6.

(i) The best constants cW1I(µ) and cW2I(µ) depend on the metric d and the Dirichlet form
E . Of course cW1I(µ) ≤ cW2I(µ).

(ii) The above corollary may be seen as the counterpart of Bobkov-Götze’s characteriza-
tions of WpH (p = 1, 2) for Markov processes.

The following simple example illustrates difference between W1I and W2I.

Example 2.7. (Bernoulli distribution). Let µ be the Bernoulli distribution on X = {0, 1}
with µ({1}) = p ∈ (0, 1). Consider the Dirichlet form E(g, g) = (g(1)−g(0))2. By Theorem
3.1-(a) in §3, we see that

pqW1(ν, µ)2 ≤ I(ν|µ)
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where W1 is built with the trivial metric. The constant pq is sharp. However µ does not
satisfy any W2I(c) as is easily seen with ν = µε = (1 + εg)µ.

2.3. Relations between W2I, Poincaré and log-Sobolev inequalities. In the rest of
the paper we are interested in two particular cases of TcI: W1I(c) and W2I(c) introduced
at Corollary 2.5.
Notation (Spectral gap). As usual, one says that µ satisfies a Poincaré inequality if

Varµ(g) ≤ c E(g, g), ∀g ∈ D2(L) (2.8)

for some finite c ≥ 0 and a Dirichlet form E which is closable in L2(µ). We denote cP(µ)
the best constant c in the above Poincaré inequality. It is the inverse of the spectral gap of
L.

The following result is just a reformulation of the work of Otto-Villani [37].

Proposition 2.8. In the framework of Riemannian manifold in Remarks 2.3, the followings
hold.

(a) If the log-Sobolev inequality below

H(ν|µ) ≤ 2c I(ν|µ), ∀ν

is satisfied, then µ satisfies W2I(c).
(b) W2I(c) implies the Poincaré inequality with constant c, i.e., cW2I(µ) ≥ cP(µ).
(c) Assume that the Bakry-Emery curvature Ric + HessV is bounded from below by K ∈ R,

where Ric is the Ricci curvature and HessV is the Hessian of V. If W2I(c) holds with
cK ≤ 1 (this is possible by Part (a) and Bakry-Emery’s criterion in the case K > 0),
then we have the following log-Sobolev inequality

H(ν|µ) ≤ 2(2c− c2K) I(ν|µ), ∀ν

Proof. Before the proof, let us remind the reader that I = IF/4 where IF is I in Otto-
Villani’s paper [37].
• (a). The proof is direct, as by [37] or [5] a logarithmic Sobolev inequality implies the

W2H (sometimes called T2) inequality so that W2(ν, µ) ≤
√

2cH(ν|µ) ≤ 2c
√
I(ν|µ) which

is the announced conclusion.
• (b). The proof follows from the usual linearization procedure. Set µε = (1 + εg)µ for
some smooth and compactly supported g with

∫
g dµ = 0, we easily get

limε→0 I(µε|µ)/ε2 = 1
4
E∇(g, g) and by Otto-Villani [37, p.394], there exists r such that∫

g2 dµ ≤
√
E∇(g, g)W2(µε,µ)

ε
+ r

ε
W 2

2 (µε, µ). Using now W2I(c) we get∫
g2 dµ ≤ 2c

√
E∇(g, g)

√
I(µε|µ)

ε2
+

4rc2

ε
I(µε|µ).

Letting ε→ 0 gives the result.
• (c) is a direct application of the HWI inequality [37, Th.3] in the Euclidean case and [5]

for a general Riemannian manifold: H(ν|µ) ≤ 2W2(ν, µ)
√
I(ν|µ)− K

2
W 2

2 (ν, µ). �

2.4. Tensorization of TcI. Assume that µi ∈M1(Xi) satisfies

αi(Tci(ν, µi)) ≤ Ii(ν|µi), ∀ν ∈M1(Xi) (2.9)
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where Ii(ν|µi) is the Fisher-Donsker-Varadhan information related to the Dirichlet form
(Ei,D(Ei)), and αi is moreover convex. On the product space X (n) :=

∏n
i=1Xi equipped

with the product measure µ := ⊗ni=1µi, consider the sum-cost function

⊕i ci(x, y) :=
n∑
i=1

c(xi, yi), ∀x, y ∈ X (n) (2.10)

and the inf-convolution of (αi)

α12 · · ·2αn(r) := inf

{
n∑
i=1

α(ri); ri ≥ 0,
n∑
i=1

ri = r

}
. (2.11)

It also shares the following properties of every αi : it is increasing, left continuous and
convex on R+ with α(0) = 0 (see [24]). Define the sum-Dirichlet form of ⊕iEi by

D(⊕iEi) :=

{
g ∈ L2(µ) : gi ∈ D(Ei), for µ-a.e. x̂i and

∫
X (n)

n∑
i=1

Ei(gi, gi) dµ < +∞

}

⊕iEi(g, g) :=

∫
X (n)

n∑
i=1

Ei(gi, gi) dµ, g ∈ D(E) (2.12)

where gi(xi) := g(x1, · · · , xi, · · · , xn) with x̂i := (x1, · · · , xi−1, xi+1, · · · , xn) fixed.

Theorem 2.9. Assume (2.9) for each i = 1, · · · , n with αi moreover convex. Define c, α, E
respectively by (2.10), (2.11) and (2.12). Let I⊕iEi(ν|µ) be the Fisher-Donsker-Varadhan
information associated with (⊕iEi,D(⊕iEi)). Then

α12 · · ·2αn(T⊕ci(ν, µ)) ≤ I⊕iEi(ν|µ), ∀ν ∈M1

(
X (n)

)
. (2.13)

This result is similar to [24, Corollary 5], but the proof will be different. It is based on
the following sub-additivity result for the transportation cost of a product measure, which
is different from Marton’s original result [33] where an ordering of sites is required.

Lemma 2.10. Let µ = ⊗ni=1µi. Given a probability measure ν on
∏n

i=1Xi, let νi be the
regular conditional distribution of xi knowing x̂i. Then with the cost function c given at
(2.10), T⊕ci(µ, ν) ≤ Eν

∑n
i=1 Tci(µi, νi).

Notation. The expectation Eν simply means integration with respect to ν.

Proof. Let (Zi = (Xi, Yi))i=1,··· ,n be a sequence of random variables valued in
∏n

i=1X 2
i

defined on some probability space (Ω,F ,P), realizing T⊕ci(µ, ν), i.e., the law of X =
(Xi)i=1,··· ,n is µ = ⊗ni=1µi, the law of Y = (Yi)i=1,··· ,n is ν and E

∑
i ci(Xi, Yi) = T⊕ci(µ, ν).

For each i fixed, construct a couple of r.v. (X̃i, Ỹi) so that its conditional law given
(Zj)j 6=i is a coupling of (µi(dxi), νi(dxi|Yj, j 6= i) and P-a.s.,

E[ci(X̃i, Ỹi)|Zj, j 6= i] = Tci(µi, νi(·|Yj, j 6= i)).

Obviously (Xj, j 6= i; X̃i) and (Yj, j 6= i; Ỹi) (more precisely their joint law) constitute a

coupling of (µ, ν). Thus E
∑

j cj(Xj, Yj) ≤ E[
∑

j 6=i cj(Xj, Yj) + ci(X̃i, Ỹi)] or Eci(Xi, Yi) ≤
Eci(X̃i, Ỹi) = ETci(µi, νi(·|Yj, j 6= i)). Consequently

T⊕ci(µ, ν) = E
n∑
i=1

Tci(Xi, Yi) ≤ E
n∑
i=1

Tci(µi, νi(·|Yj, j 6= i)) =

∫ n∑
i=1

Tci(µi, νi) dν.
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�

The following additivity property of the Fisher information will be needed. It holds even
in the dependent case.

Lemma 2.11. Let ν, µ be probability measures on
∏n

i=1Xi such that I(ν|µ) < +∞, let µi,
νi be the regular conditional distributions of xi knowing x̂i under µ, ν. Then

I⊕iEi(ν|µ) = Eν
∑
i

Ii(νi|µi). (2.14)

Proof. Let f = dν/dµ. Then dνi/dµi = f/µi(f) = fi/µi(fi), ν-a.s. (recalling that fi is the
function f of xi with x̂i fixed). For ν-a.e. x̂i fixed,

Ii(νi|µi) = Ei

(√
fi

µi(fi)
,

√
fi

µi(fi)

)
=

1

µi(fi)
Ei(
√
fi,
√
fi)

(for µi(fi) is constant with x̂i fixed). We obtain

Eν
n∑
i=1

Ii(νi|µi) = Eµf
n∑
i=1

1

µi(fi)
Ei(
√
fi,
√
fi) = Eµ

n∑
i=1

Ei(
√
fi,
√
fi)

= ⊕iEi(
√
f,
√
f) = I⊕iEi(ν|µ),

which completes the proof. �

The above additivity is different from the super-additivity of the Fisher information for
product measure obtained by E. Carlen [9].

Proof of Theorem 2.9. Without loss of generality we may assume that I(ν|µ) < +∞. For
simplicity write α = α12 · · ·2αn. By Lemma 2.10, Jensen’s inequality and the definition
of α,

α(T⊕ci(ν, µ)) ≤ α

(
Eν

n∑
i=1

Tci(νi, µi)

)
≤ Eνα

(
n∑
i=1

Tci(νi, µi)

)

≤ Eν
n∑
i=1

αi(Tci(νi, µi)) ≤ Eν
n∑
i=1

Ii(νi|µi).

The last quantity is equal to I⊕Ei(ν|µ), by Lemma 2.11. �

As an example of application, let (X i
t)t≥0, i = 1, · · · , n be n Markov processes with the

same transition semigroup (Pt) and the same symmetrized Dirichlet form E on L2(µ), and
conditionally independent once (X i

0)i=1,··· ,n is fixed. Then Xt := (X1
t , · · · , Xn

t ) is a Markov
process with the symmetrized Dirichlet form given by

⊕nE(g, g) =

∫ n∑
i=1

E(gi, gi)µ(dx1) · · ·µ(dxn)

which is the n-fold sum-Dirichlet form of E .

Corollary 2.12. Assume that µ satisfies TcI on X with α convex. Then µ⊗n satisfies

nα

(
T⊕nc(ν, µ

⊗n)

n

)
≤ I⊕nE(ν|µ⊗n), ∀ν ∈M1(X n). (2.15)
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In particular for all (u, v) ∈ Φc, for all initial measure β on X n with dβ/dµ⊗n ∈ L2(µ⊗n)
and for any t, r > 0,

Pβ

(
1

n

n∑
i=1

1

t

∫ t

0

u(X i
s) ds ≥ µ(v) + r

)
≤
∥∥∥∥ dβ

dµ⊗n

∥∥∥∥
2

e−ntα(r). (2.16)

Proof. As α2n(r) = nα(r/n), (2.15) follows from Theorem 2.9. Noting that for u, v ∈ Φc,
(
∑n

i=1 u(xi),
∑n

i=1 v(xi)) as a couple of functions on X n belongs to Φ⊕nc, we obtain (2.16)
by Theorem 2.4. �

The tensorization of WpI in the dependent Gibbs measure case is carried out in Gao and
Wu [21].

3. Poincaré inequality implies Hoeffding’s deviation inequality

The purpose of this section is to establish

Theorem 3.1. Let ((Xt),Pµ) be a stationary ergodic Markov process.

(a) The Poincaré inequality

Varµ(g) ≤ cP E(g, g), ∀g ∈ D2(L) (3.1)

implies

‖ν − µ‖2
TV ≤ 4cP I(ν|µ), ∀ν ∈M1(X ) (3.2)

and for u ∈ bB so that ‖u‖∞ ≤ 1, µ(u) = 0,∫
ud(ν − µ) ≤

√
4cPI(ν|µ)

(
Varµ(u) +

√
2cPI(ν|µ)

)
. (3.3)

In particular for every initial probability measure β � µ with dβ/dµ ∈ L2(µ) and for
all u ∈ bB with µ(u) = 0 and Varµ(u) = σ2, t, r, ε > 0,

Pβ
(

1

t

∫ t

0

u(Xs) ds ≥ r

)
(3.4)

≤
∥∥∥∥dβdµ

∥∥∥∥
2

exp

(
− t

cP

max

[
r2

δ(u)2
, ε(ε+ σ2)

(√
1 +

r2

2ε(ε+ σ2)2δ(u)2
− 1

)])
where δ(u) := supx,y∈X |u(x)− u(y)| is the oscillation of u.

(b) Conversely, assume that (Xt,Pµ) is reversible and (E ,D(E)) is quasi-regular ([34]), if
there is some left-continuous and increasing α : R+ → R+ with α(1/2) > 0 such that

α (‖ν − µ‖TV) ≤ I(ν|µ), ∀ν ∈M1(X ), (3.5)

then the Poincaré inequality (3.1) holds with cP ≤ 4/α(1/2).

Remarks 3.2. (i) Let d(x, y) = 1x 6=y (the trivial metric) and Φ = {(u, u); δ(u) ≤ 1}.
Then 1

2
‖ν − µ‖TV = W1(ν, µ) = TΦ(ν, µ). Hence (3.2) is exactly the inequality TΦI or

W1I(c) with 4c2 = cP. (3.4) is a direct consequence of (3.2) and Theorem 2.4.
(ii) Lezaud [30] proved a better deviation inequality using the asymptotic variance V (u) =

limt→∞
1
t
VarPµ

(∫ t
0
u(Xs)ds

)
in the central limit theorem instead of Varµ(u), which is

sharp in the moderate deviation scale (r very small), nevertheless his proof involves
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Kato’s theory of perturbation of operators and difficult combinatorial techniques. Our
result (3.3) is similar to Cattiaux-Guillin [10].

Proof of Theorem 3.1. • (a). (3.4) follows by (3.2) and (3.3) by Theorem 2.4. We first
prove the transportation inequality (3.2). To this end recall the following known inequality
in statistics (see Gibbs and Su [22]) 1

4
‖ν − µ‖2

TV ≤ d2
H(ν, µ)[2− d2

H(ν, µ)] where d2
H(ν, µ) =

1
2

∫
(1 −

√
f)2dµ = 1 − µ(

√
f) is the square of the Hellinger distance between ν = fµ and

µ. The above right-hand side is exactly 1− [µ(
√
f)]2 = Varµ(

√
f). In other words we have

for every µ-probability density f, i.e. f ≥ 0 and µ(f) = 1,

‖fµ− µ‖2
TV ≤ 4Varµ(

√
f). (3.6)

Now for every probability density f so that
√
f ∈ D(E), we have by (3.6) and the assumed

Poincaré inequality, 1
4
‖ν − µ‖2

TV ≤ Varµ(
√
f) ≤ cPE(

√
f,
√
f) = cPI(ν|µ) which is (3.2).

For (3.3) it is enough to prove that if ‖u‖∞ ≤ 1, µ(u2) ≤ σ2(≤ 1), then for every
probability density f∫

u(fdµ− dµ) ≤

√
4Varµ(

√
f)

(
σ2 +

√
2Varµ(

√
f)

)
(3.7)

Indeed by Cauchy-Schwarz inequality∫
u(fdµ− dµ) ≤

√∫
(
√
f − 1)2dµ

∫
u2(
√
f + 1)2dµ

=

√
4Varµ(

√
f)

∫
u2(
√
f + 1)2dµ/µ[(

√
f + 1)2]

which gives us (3.6) (again). By (3.6) and the fact that δ(u2) ≤ 1,

∫
u2(
√
f + 1)2dµ/µ[(

√
f + 1)2] ≤ µ(u2) +

√
4Varµ

(√
(
√
f + 1)2/µ[(

√
f + 1)2]

)
≤ σ2 +

√
2Varµ(

√
f)

which yields (3.7).
• (b). This converse part is based on the capacity-measure method, recalled below.

We begin with the definition of the capacity of a set: given D ∈ B and a measurable
A ⊂ D, the capacity Capµ(A,D) (w.r.t. the Dirichlet form E with the Dirichlet boundary
condition on Dc) is defined as

Capµ(A,D) := inf{E(g, g), 1A ≤ g̃ ≤ 1D quasi-everywhere, g ∈ D(E)},

(see [34] for the notion “quasi-everywhere” and the quasi-continuous version g̃ of g ∈ D(E));
if now A satisfies µ(A) ≤ 1/2,

Capµ(A) := inf{Capµ(A,D); A ⊂ D, µ(D) ≤ 1/2}.

The capacity-measure method says that the Poincaré inequality is equivalent to

µ(A) ≤ κCapµ(A), ∀A ∈ B, µ(A) ≤ 1/2.
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and the best constant κ verifies (see for example [4] for a nice review of capacity-measure
characterization of various functional inequalities)

κ ≤ cP ≤ 4κ. (3.8)

Notice that (3.5) applied to ν = g2

µ(g2)
µ for g ∈ D(E)) reads

µ(g2)α

(∫
| g2

µ(g2)
− 1|dµ

)
≤ E(g, g). (3.9)

If now A ⊂ D and µ(D) ≤ 1/2, we have for any g ∈ D(E) satisfying 1A ≤ g ≤ 1D∫
| g2

µ(g2)
− 1|dµ ≥

∫
Dc
| g2

µ(g2)
− 1|dµ = µ(Dc) ≥ 1/2

so that (3.9) implies that if µ(A) ≤ 1/2, µ(A) ≤ Capµ(A)/α(1/2). By (3.8), this yields the
desired result: cP ≤ 4/α(1/2). �

Note that W1I for the trivial metric implies W1I for any bounded metric. So our next
purpose is to obtain W1I for unbounded metrics. Our study is naturally separated into two
sections. Next Section 4 is concerned with estimating sharply cW1I under strong dissipative
conditions. In Section 5, Lyapunov function conditions for W1I or more general TΦI are
taken into consideration.

4. Spectral gap in the space of Lipschitz functions implies W1I for
diffusion processes

4.1. General observations. Let ((Xt),Pµ) be a reversible ergodic Markov process with
generator L, Dirichlet form (E ,D(E)) and with continuous sample paths valued in some
separable complete metric space (X , d) (called Markov diffusion). We assume that (E ,D(E))
is given by the carré-du-champs Γ : D(E) × D(E) → L1(µ) (symmetric, bilinear definite
nonnegative form):

E(h, h) =

∫
X

Γ(h, h) dµ, ∀h ∈ D(E). (4.1)

The continuity of sample paths of (Xt) implies that Γ is a differentiation (cf. Bakry [1]),
that is: for all (hk)1≤k≤n ⊂ D(E), g ∈ D(E) and F ∈ C1

b (Rn),

Γ(F (h1, · · · , hn), g) =
n∑
i=1

∂iF (h1, · · · , hn)Γ(hi, g).

Theorem 4.1. Assume that
∫
X d

2(x, x0) dµ(x) < +∞ and for any g ∈ CLip(X , d) bounded
with µ(g) = 0, then g ∈ D(E) and√

Γ(g, g) ≤ σ‖g‖Lip, µ-a.s. (4.2)

and there is some h ∈ D2(L) such that −Lh = g (µ-a.e.) and a µ-continuous version h̃ of
h satisfying

‖h̃‖Lip ≤ C‖g‖Lip (4.3)

where σ,C > 0 are fixed constants. Then for any g ∈ CLip(X , d) and any convex function
φ on R,

Eµφ
(∫ t

0

g(Xs) ds

)
≤ Eµφ(B2σ2C2‖g‖2Lipt

) (4.4)
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where B is a standard Brownian Motion. In particular

Eβ exp

(
λ

∫ t

0

g(Xs) ds

)
≤ ‖dβ

dµ
‖2e

λ2(σC)2‖g‖2Lipt, ∀λ ∈ R, t > 0. (4.5)

and µ satisfies W1I(σC) on (X , d). Furthermore let V (g) = limt→∞
1
t
VarPµ

(∫ t
0
g(Xs)ds

)
and cP = cP(µ) ≤ C, we have for all λ ∈ R, t > 0, p > 1 (and 1/p+ 1/q = 1),

Eβ exp

(
λ

∫ t

0

g(Xs) ds

)
≤ ‖dβ

dµ
‖2 exp

(
t

[
λ2

2
pV (g) +

λ4

4
p2qcP(σC)4‖g‖4

Lip

])
. (4.6)

Remarks 4.2.

(i) Let C0
Lip be the Banach space of those g ∈ CLip with µ(g) = 0, equipped with ‖ · ‖Lip.

Hence the best constant C in (4.3) is exactly

‖(−L)−1‖C0
Lip
.

By the spectral decomposition we always have (cf. [48, Proof of Lemma 4.3])

C = ‖(−L)−1‖C0
Lip
≥ ‖(−L)−1‖L2(µ)

⋂
{g∈L2(µ);µ(g)=0} = cP(µ).

But the converse is false: the symmetric exponential measure µ = 1
2
e−|x|dx on R

satisfies the Poincaré inequality but the associated Dirichlet form E(g, g) =
∫
R g
′2dµ

does not have spectral gap in C0
Lip w.r.t. the Euclidean metric.

(ii) The concentration inequality (4.5) and its equivalent W1I(σC) are sharp, as seen for
one-dimensional Ornstein-Uhlenbeck process. The estimate (4.6) for p close to 1 is
sharp in the moderate deviation scale (λ very small) and extends the result of Lezaud
[30] to unbounded g.

(iii) Klein-Ma-Privault [28] developed convex concentration inequality (4.4) for semimartin-
gales instead of St(g), by means of a forward-backward martingale calculus, but their
result cannot be applied directly here.

(iv) In [27], Joulin obtained a similar result for Markov processes with jumps.

Proof of Theorem 4.1. Let Φ = {(g, g); ‖g‖Lip ≤ 1, g bounded}. Then W1(ν, µ) = TΦ(ν, µ)
by Kantorovich-Rubinstein’s theorem. Let us verify that (b′) of Theorem 2.4 holds.
For any g ∈ CLip with ‖g‖Lip ≤ 1, let h ∈ CLip

⋂
D2(L) such that −Lh = g. Hence

Mt(h) := h(Xt)− h(X0) +

∫ t

0

g(Xs) ds and M∗
t (h) := h(X0)− h(Xt) +

∫ t

0

g(Xs) ds

have the same law under Pµ by the reversibility of ((Xt),Pµ). Consequently from Lyons-
Meyer-Zheng’s forward-backward martingale decomposition

St(g) :=

∫ t

0

g(Xs) ds =
1

2
(Mt(h) +M∗

t (h)), (4.7)

it follows that for any convex function φ on R, Eµφ(St(g)) ≤ 1
2
Eµ[φ(Mt(h) + φ(M∗

t (h))] =
Eµφ(Mt(h)). AsMt(h) is a (forward) continuous martingale, Mt(h) = Bτt where (Bt) is some

Brownian motion with respect to another time-changed filtration (F̂t), and τt = 〈M(h)〉t
is a (F̂t)-stopping time (a well known result). Since by our conditions (4.2) and (4.3),

〈M(h)〉t = 2
∫ t

0
Γ(h, h)(Xs) ds ≤ 2(σC)2t, by Jensen’s inequality we obtain for all convex
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function φ on R that Eµφ(St(g)) ≤ Eφ(Bτt) = Eφ(E[B2(σC)2t|F̂τt) ≤ Eφ(B2(σC)2t), which is
(4.4). Applying this to φ(x) = eλx, we get (4.5) for β = µ. Hence Theorem 2.4-(b′) holds
with Φ = {(g, g); ‖g‖Lip ≤ 1, g bounded} and α(r) = r2/(4(σC)2), and Theorem 2.4 also
gives us (4.5) for β.

For (4.6), it is enough to show it for β = µ by Theorem 2.4 and for g with ‖g‖Lip = 1.
By Hölder’s inequality,

EµeλSt(g) ≤ EµeλMt ≤
(
Eµ exp

(
λpMt −

λ2p2

2
〈M〉t

))1/p(
Eµ exp

(
λ2pq

2
〈M〉t

))1/q

where Mt = Mt(h). Since exp
(
λpMt − λ2p2

2
〈M〉t

)
is an exponential martingale, its expec-

tation is 1. To estimate the last term above we use the analogue of (3.2) at Theorem 3.1,
given by Theorem 2.4(b). Denoting δ(Γ(h, h)) = ‖Γ(h, h)‖∞ ≤ σC and 2µ(Γ(h, h)) = V (g),
this provides us with

Eµ exp

(
λ2pq

2
〈M〉t

)
≤ exp

(
t

[
λ2pqµ(Γ(h, h)) +

λ4p2q2

4
· cP‖Γ(h, h)‖2

∞

])
= exp

(
t

[
λ2

2
pqV (g) +

λ4p2q2

4
· cP(σC)4

])
where (4.6) follows. �

Remarks. Using results from [16], one can be even more precise in the one dimensional case.
Using the metric induced by the carré-du-champ operator of the diffusion, and conditions
on Feller’s scale and speed functions, we get sharp constant on the spectral gap for Lipschitz
functions. It will be developped in [25].

5. Lyapunov function conditions

5.1. We will use in this section general conditions on the generator of the process, known
as Lyapunov function conditions, for deriving W1I or more generally TΦI where Φ =
{(u, u); |u| ≤ φ} with φ unbounded. To state properly the Lyapunov function condition,
it is necessary to enlarge the domain of the generator. In this section, the Markov process
((Xt),Pµ) is reversible and its sample paths are Pµ-càdlàg (possibly with jumps).

A continuous function h is said to be in the µ-extended domain De(L) of the gener-
ator of the Markov process ((Xt),Pµ) if there is some measurable function g such that∫ t

0
|g|(Xs) ds < +∞,Pµ-a.s. and

Mt(h) := h(Xt)− h(X0)−
∫ t

0

g(Xs)ds

is a local Pµ-martingale. It is obvious that g is uniquely determined up to µ-equivalence.
In such case one writes h ∈ De(L) and Lh = g.

The Lyapunov condition can now be stated:

(H) There exist a continuous function U : X → [1,+∞) in De(L), a nonnegative function
φ and a constant b > 0 such that

−LU
U
≥ φ− b, µ-a.s.
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When the process is irreducible and the constant b is replaced by b1C for some “small set”
C, then it is well-known that the existence of a positive bounded φ such that infX\C φ > 0
in (H) is equivalent to Poincaré inequality (see [2], for instance).

Lyapunov conditions are widely used to study the speed of convergence of Markov chains
[36] or Markov processes [18], large or moderate deviations and essential spectral radii
[47, 48]. More recently, they have been used to study functional inequalities as weak
Poincaré inequality [2] or super-Poincaré inequality [12]. See Wang [43] on weak and super
Poincaré inequalities.

Theorem 5.1. Assume that µ satisfies a Poincaré inequality with best constant cP < ∞
and that the Lyapunov condition (H) holds. Suppose moreover that φ ∈ L2(µ), that is
‖φ‖2 := (

∫
φ2 dµ)1/2 <∞. Then for any p ∈ [1,+∞), we have

αp,R
(
‖φ1/p(ν − µ)‖TV

)
≤ I(ν|µ), ∀ν (5.1)

where R = 21/q
(

3
cP

+ 6b+ 2
√

2‖φ‖2

)1/p

, 1/p+ 1/q = 1 and

αp,R(r) =

{
r2/(R2cP), if 0 ≤ r ≤ R;

rp/(RpcP), if r > R.
(5.2)

In particular, if moreover d(x, x0) ≤ Cφ1/p, ∀x ∈ X for some x0 ∈ X , then

αp,R(W1(ν, µ)/C) ≤ I(ν|µ). (5.3)

Remarks 5.2. Since ‖φ(ν − µ)‖TV = supu:|u|≤φ
∫
u d(ν − µ), the inequality (5.1) in this

theorem may be regarded as TΦI in Theorem 2.4 with Φ = {(u, u);u ∈ bB, |u| ≤ φ1/p}.
Since

W1(ν, µ) = sup
f :‖f‖Lip≤1

∫
f d[ν − µ] ≤ inf

x0∈X
‖d(·, x0)(ν − µ)‖TV , (5.4)

one sees that the W1I inequality (5.3) is a direct consequence of (5.1).

An important feature of this result is: (1/t)
∫ t

0
u(Xs)ds has different concentration be-

haviors according to different p so that |u| ≤ Cφ1/p, by (5.1).
The explicit constants in the inequalities of this theorem, produced by the Lyapunov

function condition (H), are in general far from being optimal, but are sharp in order, as
will be seen for the Ornstein-Uhlenbeck process at Example 5.5.

Example 5.3. (M/M/∞ queue). In this example X = N, µ is the Poisson measure with
mean λ > 0 and the Dirichlet form is

E(h, h) =
∑
n∈N

(h(n+ 1)− h(n))2µ(n)

The associated generator is

Lh(n) = λ(h(n+ 1)− h(n)) + n(h(n− 1)− h(n)), ∀n ≥ 0

(with the convention that h(−1) = h(0)). Let U(n) = ecn where c > 0. We have

−LU
U

(n) = n(1− e−c)− (ec − 1).
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Thus condition (H) is satisfied with φ(n) := (n + 1)(1 − e−c) and b = ec + e−c − 2, and it
is well known that cP(µ) = λ. Noting ‖φ‖2 = (1− e−c)

√
λ2 + 3λ+ 1, we have by Theorem

5.1 that for the distance d(m,n) := |
√
m−

√
n|,

W1(ν, µ)2 ≤ K(c)I(ν|µ), ∀ν ∈M1(N), c > 0

where K(c) = 2
1−e−c

[
3 (1 + 2(ec + e−c − 2)λ) + 2

√
2(1− e−c)

√
λ2 + 3λ+ 1λ

]
. By Theorem

2.4, this gives the Gaussian deviation inequality for any observable u so that |u(n + 1) −
u(n)| ≤ C|

√
n+ 2−

√
n+ 1| or |u(n)| ≤ C

√
1 + n. Furthermore if |u(n)| ≤ C[(1−e−c)(1+

n)]1/p, we have by (5.2) and Theorem 2.4

Pβ
(

1

t

∫ t

0

u(Xs)ds > µ(u) + r

)
≤
∥∥∥∥dβdµ

∥∥∥∥
2

exp (−tαp,R(Cr)) , ∀t, r > 0.

See Joulin [26] and Liu-Ma [31] for previous studies on deviation inequalities of this model.
Note that they only obtain Poisson tail for observable u so that |u(n + 1) − u(n)| ≤
C|
√
n+ 2−

√
n+ 1|.

Corollary 5.4. Let µ = e−V dx/Z be a probability measure where V ∈ C∞(X ) is bounded
from below and |∇V |2 ∈ L2(µ). Let L = ∆−∇V · ∇ be the generator of the diffusion (Xt)
on the non-compact connected complete Riemannian manifold X . Assume that

γ := lim sup
d(x,x0)→∞

∆V (x)

|∇V |2(x)
< 1 (5.5)

and for some p ≥ 1, d(x, x0) ≤ C(1 + |∇V |2(x))1/p, ∀x ∈ X . Then for every δ ∈ (0, (1 −
γ)2/4), the Lyapunov function condition (H) is satisfied with φ = δ(1+ |∇V |2(x)) and some
b = b(δ) > 0, and cP = cP(µ) < +∞. If moreover φ is in L2(µ), then w.r.t. the Riemannian
metric d,

αp,R(W1(ν, µ)/C) ≤ I(ν|µ), ∀ν ∈M1(X ). (5.6)

where αp,R is given in (5.2). In particular for every Lipschitz function u with ‖u‖Lip ≤ 1
and any initial law β with dβ/dµ ∈ L2(µ),

Pβ
(

1

t

∫ t

0

u(Xs)ds > µ(u) + r

)
≤
∥∥∥∥dβdµ

∥∥∥∥
2

exp (−tαp,R(Cr)) , ∀t, r > 0. (5.7)

Proof. For any 0 < δ < (1 − γ)2/4 let ε ∈ (0, 1 − γ) so that δ = (1 − γ − ε)2/4 (or

γ + ε = 1− 2
√
δ). Choose λ =

√
δ we have λ− λ2 = (γ + ε)λ+ δ. For U = eλV , we have

−LU
U

= −λLV − λ2|∇V |2 = (λ− λ2)|∇V |2 − λ∆V ≥ δ(1 + |∇V |2)− b

where b := δ +
√
δ supX

(
∆V − (1− 2

√
δ)|∇V |2

)
is finite under our assumption (5.5).

Thus (H) is satisfied with φ = δ(1 + |∇V |2) which is in L2(µ). On the other hand our
assumptions imply that φ tends to infinity at infinity. Hence (1−L)−1 is compact on L2(µ)
and cP(µ) <∞. The statement now follows directly from Theorem 5.1. �

In the example below the constant C may change from one place to other.

Example 5.5. Let X = Rn, V (x) = a|x|β where β > 1, a > 0. Then (5.5) is verified with
γ = 0 and then (H) is satisfied with φ = δ(1 + |∇V |2) ∼ C|x|2(β−1) when |x| large (though

V is not C2 at x = 0, one can choose U = eλṼ where Ṽ ∈ C2(Rn) and Ṽ (x) = V (x) for
|x| > 1 in the proof of Corollary 5.4), where 0 < δ < 1/4.
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(i) If β ≥ 3/2, then the condition in Corollary 5.4 is verified with p = 2(β − 1) ≥ 1, so
we have (5.7) for Lipschitz observable u with p = 2(β − 1) (we can prove that (5.7)
is false once p > 2(β − 1)). Then we have Gaussian behavior for small r, and even a
super-Gaussian tail for large r whenever β > 2.

(ii) Let β ∈ (1, 3/2). Then for ψ = (1 + |x|)β−1, we have by Theorem 5.1(5.1), ‖ψ(ν −
µ)‖2

TV ≤ CI(ν|µ). Then the Gaussian deviation inequality holds true for the observ-
able u satisfying |u| ≤ C(1 + |x|)β−1.

(iii) Let β = 2 (Ornstein-Uhlenbeck process). (5.1) holds with φ(x) = δ(1 + |x|2) and so
does (5.3) with p = 2. They are both correct in order. Indeed for any p ∈ [1,+∞)
fixed, if ψ(x)� |x|2/p ∼ Cφ1/p at infinity with µ(ψ) < +∞, one cannot hope that

αp,R(‖ψ(ν − µ)‖TV ) ≤ I(ν|µ), ∀ν
for some R > 0, since by Theorem 2.4, this would imply that

Pµ
(∫ 1

0

ψ(Xs)ds > µ(ψ) + r

)
≤ e−αp,R(r), ∀r > 0

which is impossible for large r.

For this example and for the empirical mean with unbounded u, only Gaussian con-
centration inequality is known and that is only in the case β = 2 (cf. Djellout and al.
[15]).

5.2. Proof of Theorem 5.1. The starting point is the following large deviation result.

Lemma 5.6. For every continuous function U ≥ 1 in De(L) such that −LU/U is µ-a.e.
lower bounded, ∫

−LU
U
g2 dµ ≤ E(g, g), ∀g ∈ D(E). (5.8)

When U is bounded, this is contained in Deuschel-Stroock [14, Lemme 4.2.35].

Proof. For any initial law β,

Nt = U(Xt) exp

(
−
∫ t

0

LU
U

(Xs)ds

)
is a local Pβ-martingale. Indeed, denoting At := exp

(
−
∫ t

0
LU
U

(Xs)ds
)

, Itô’s formula is

dNt = At [dMt(U)+LU(Xt) dt]−LUU (Xt)AtU(Xt) dt = At dMt(U) where M(U) is a local Pβ-
martingale. As (Nt) is nonnegative, it is also a Pβ-supermartingale. Choosing β := U−1 µ/Z
with 0 < Z = µ(U−1) ≤ 1, one sees that for all t ≥ 0

Eβ exp

(
−
∫ t

0

LU
U

(Xs)ds

)
≤ EβNt ≤ β(U) = 1/Z < +∞.

Let un := min{−LU/U, n}. The previous estimation implies that

F (un) := lim sup
t→∞

1

t
logEβ exp

(∫ t

0

un(Xs)ds

)
≤ 0.

On the other hand by the lower bound of large deviation in [46, Theorem B.1, Corollary
B.11] and Laplace-Varadhan principle, as in the proof of (c′)⇒ (a) in Theorem 2.4, F (un) ≥
sup{ν(un) − I(ν|µ); ν ∈ M1(E)}. Thus

∫
undν ≤ I(ν|µ), which yields (by letting n → ∞

and monotone convergence)
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∫
−LU
U

dν ≤ I(ν|µ), ∀ν ∈M1(E). (5.9)

This is equivalent to (5.8) by the fact that E(|h|, |h|) ≤ E(h, h) for all h ∈ D(E).
Note that one was allowed to apply the large deviation lower bound [46, Theorem B.1]

under Pβ since β is absolutely continuous with respect to µ. In addition, in the symmetric
case, [46, Corollary B.11] states that the large deviation rate function is I(·|µ); it doesn’t
depend on β under the underlying assumption that Pµ is ergodic. As this lower bound
holds for the topology of probability measures weakened by all bounded measurable test
functions (sometimes called τ -topology), one can apply the Laplace-Varadhan principle to
the continuous bounded function ν 7→ ν(un). �

Lemma 5.7. In the framework of Theorem 5.1, for all a ≥ 2 and ν ∈M1(X ),

‖φ(ν − µ)‖TV ≤ (1 + 2bcP)
a+ 1

a− 1
I(ν|µ) + a

√
2‖φ‖2

√
cP I(ν|µ). (5.10)

Proof. We may assume that ν = fµ with
√
f ∈ D(E) (trivial otherwise). For any a ≥ 2,

define h : R→ R+ by

h(t) =


0 if t ≤ 1;√

a+1
a−1

(t− 1) if t ∈ [1, a];
√
t2 − 1 if t ≥ a.

It is easy to see that ‖h‖Lip ≤
√

a+1
a−1

. Decompose

‖φ(ν − µ)‖TV =

∫
φ|f − 1|dµ =

∫
φh2(

√
f)dµ+

∫
φ[|f − 1| − h2(

√
f)]dµ.

First consider the last term. Since t2−1−h2(t) ≤ a(t−1) for t ∈ [1, a], and = 0 for t ≥ a ≥ 2,∫
φ[|f − 1| − h2(

√
f)]dµ =

∫
φ[1{f≤1}(1 − f) + 1{1≤f≤a2}a(

√
f − 1)]dµ ≤ a

∫
φ|1 −

√
f |dµ

which is not greater than a‖φ‖2‖1−
√
f‖2 = a‖φ‖2

√
2
√

1− µ(
√
f) ≤ a‖φ‖2

√
2Varµ(

√
f) ≤

a
√

2cP‖φ‖2

√
I(ν|µ).

We turn now to bound the crucial first term by means of (5.8):∫
φh2(

√
f)dµ ≤

∫ (
−LU
U

+ b

)
h2(
√
f)dµ

≤ E(h(
√
f), h(

√
f)) + b‖h‖2

Lip

∫
(
√
f − 1)2dµ

≤ ‖h‖2
LipE(

√
f,
√
f) + 2b‖h‖2

LipVarµ(
√
f)

≤ (1 + 2bcP)
a+ 1

a− 1
I(ν|µ).

Substituting these two estimates into our previous decomposition, we obtain (5.10). �

Proof of Theorem 5.1. As noticed in Remarks 5.2, (5.3) follows directly from (5.1). Note
that if p = 1, (5.1) is a direct consequence of Lemma 5.7 (5.10) with a = 2. It remains to
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show (5.1) in the case p > 1. Noting that
∫
|f − 1|dµ ≤ 2 min{1,

√
cPI(ν|µ)} by Theorem

3.1, we have by Hölder’s inequality and (5.10) with a = 2,

‖φ1/p(ν − µ)‖TV ≤
(∫
|f − 1|dµ

)1/q (∫
φ|f − 1|dµ

)1/p

≤ 21/q min{1,
√
cPI(ν|µ)

1/q
}
(

3 (1 + 2bcP) I(ν|µ) + 2
√

2‖φ‖2

√
cPI(ν|µ)

)1/p

which entails immediately the desired (5.1). �

6. Proof of Theorem 2.4

The proof of this result is similar to [24, Theorems 2 and 15]’s ones. It takes advantage
of large deviation results previously obtained by L. Wu. Namely,

- the identification of the rate function in the symmetric case and the large deviation lower
bound are taken from [46] and

- the non-asymptotic Cramér’s upper bounds which are used in [24] are replaced by the
following result.

Lemma 6.1 (L. Wu [45]). For any u ∈ bB with µ(|u|) < +∞ and any t > 0, the following
statements hold true.

(1) Denoting

Λ(u) := sup

{∫
ug2 dµ− E(g, g); g ∈ D(E), µ(g2) = 1, µ(g2|u|) < +∞

}
, (6.1)

one has

‖P u
t ‖L2(µ) ≤ etΛ(u) (6.2)

and the equality holds in the symmetric case;
(2) For all r > 0,

Pβ
(

1

t

∫ t

0

u(Xs) ds− µ(u) ≥ r

)
≤
∥∥∥∥dβdµ

∥∥∥∥
2

exp

(
−t lim

δ↓0
Iu(µ(u) + r − δ)

)
(6.3)

where Iu(r) := inf {I(ν|µ); ν ∈M1(X ), ν(u) = r} , r ∈ R.

It is proved in [45, 46] that in the symmetric case, Iu(r) is exactly the rate function

governing the large deviation principle of 1
t

∫ t
0
u(Xs) ds for bounded u. In these papers no

mixing assumptions are required, this is in contrast with the usual assumptions for the
large deviation principle as discovered by Donsker and Varadhan [17] and reconsidered by
Deuschel and Stroock [14]. This relaxation of the usual assumptions is allowed by the
assumed restriction that the initial law is absolutely continuous with respect to the ergodic
measure µ.

Proof of Theorem 2.4. Part (1). As ν → I(ν|µ) is convex on M1(X ), so is Iu : R →
[0,+∞]. Since Iu(µ(u)) = 0, Iu is increasing on [µ(u),+∞). For all (u, v) ∈ Φ and all
λ ≥ 0, we have

Λ(λu) = I∗u(λ) (6.4)
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where I∗u is the convex conjugate of Iu. Indeed for λ ≥ 0, by (6.1)

Λ(λu) = sup{λ
∫
ug2 dµ− E(g, g); g ∈ D(E), µ(g2) = 1}

= sup{λ
∫
ug2 dµ− E(g, g); 0 ≤ g ∈ D(E), µ(g2) = 1}

= sup{λ
∫
u dν − I(ν|µ); ν ∈M1(X )} = sup

a∈R
{λa− Iu(a)}

where the second equality follows from the fact that E(|g|, |g|) ≤ E(g, g) for all g ∈ D(E).
Note also that TΦI implies that for any (u, v) ∈ Φ,

Iu(µ(v) + r) ≥ α̃(r), ∀r ∈ R (6.5)

where α̃(r) = α(r) for r ≥ 0 and = 0 for r ≤ 0. Indeed it is trivial for r ≤ 0 and for any
r ≥ 0 and ν ∈M1(X ) such that ν(u) = µ(v) + r, TΦI implies that

I(ν|µ) ≥ α(TΦ(ν, µ)) ≥ α(ν(u)− µ(v)) = α(r).

• (a)⇒ (b): Putting together (6.4) and (6.5) leads us to

Λ(λu) = sup
a∈R

[λa− Iu(a)] ≤ sup
r∈R

[λ(µ(v) + r)− α̃(r)]} = λµ(v) + α~(λ)

for all λ ≥ 0. Statement (b) now follows from inequality (6.2).

• (a) ⇒ (c): This follows from (6.3) and (6.5), noting that by (A1), µ(u) ≤ µ(v) for all
(u, v) ∈ Φ.

• (b)⇒ (b′) and (c)⇒ (c′): These implications are trivial.

Part (2). (b) ⇒ (a) in the case where α is convex. By (2.6), we have for (u, v) ∈ Φ fixed
and for any g ∈ D2(L), 〈P λu

t g, P λu
t g〉µ ≤ e2t(λµ(v)+α~(λ))〈g, g〉µ. Differentiating at time zero

we obtain 2〈g,Lg + λug〉µ = 2(λµ(g2u) − E(g, g)) ≤ 2(λµ(v) + α~(λ))µ(g2). Then for all
g ∈ D2(L), λ[µ(g2u)− µ(v)µ(g2)]− α~(λ)µ(g2) ≤ E(g, g). It can be extended to g ∈ D(E).

Now for any ν ∈M1(X ) such that I(ν|µ) < +∞, applying the above inequality to g =
√

dν
dµ

,

we get λ[ν(u)−µ(v)]−α~(λ) ≤ I(ν|µ). Taking the supremum over all λ ∈ R, as α assumed
to be convex and α~ = α̃∗ on [0,∞) (see the remark below (1.3)), we get

α̃(ν(u)− µ(v)) ≤ I(ν|µ)

and taking the supremum over all (u, v) ∈ Φ leads to the desired result.

Part (3). Let us assume from now on that the semigroup (Pt) is symmetric in L2(µ).
• (c′)⇒ (a) : By the large deviation lower bound in [46, Theorem B.1] and the identification
of the rate function in the symmetric case in [46, Corollary B.11], we have for any initial
probability measure β � µ,

lim inf
t→∞

1

t
logPβ

(
1

t

∫ t

0

u(Xs) ds ≥ µ(v) + r

)
≥ − inf{I(ν|µ); ν(u) > µ(v) + r}.

This together with (c′) implies that for any r ≥ 0, inf{I(ν|µ); ν(u) > µ(v)+r} ≥ α(r). Fix
now ν such that r0 = TΦ(ν, µ) > 0 (otherwise TΦI is obviously true.) Choosing a sequence
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(un, vn) ∈ Φ so that ν(un)− µ(vn) > r0 − 1/n, for all large enough n,

α(r0 − 1/n) ≤ I(ν|µ)

where TΦI follows by letting n→∞ and by the left-continuity of α.

• α is convex and (Pt) is symmetric. (b′) ⇒ (c′) with β = µ: The proof is standard and
consists in optimizing exponential upper bounds. So doing, one obtains by means of (b′) the
asymptotic upper bound (c′) with the convex envelope of α̃ instead of α̃. As α is assumed
to be convex, (c′) is proved. This completes the proof of the theorem. �
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des densités. High Dimensional Probability III (Sandjberg 2002), 95-102, Progresses in Probability,
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Informatique. Technopôle de Château-Gombert. 13453 Marseille, France

E-mail address: guillin@cmi.univ-mrs.fr

Christian Léonard. Modal-X. Université Paris Ouest. Bât. G, 200 av. de la République.
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Liming Wu. Laboratoire de Mathématiques Appliquées, CNRS-UMR 6620, Université
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