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BINS AND BALLS: LARGE DEVIATIONS OF THE EMPIRICAL

OCCUPANCY PROCESS

STÉPHANE BOUCHERON, FABRICE GAMBOA AND CHRISTIAN LÉONARD

Abstract. In the random allocation model, balls are sequentially inserted
at random into n exchangeable bins. The occupancy score of a bin denotes
the number of balls inserted in this bin. The (random) distribution of occu-
pancy scores de�nes the object of this paper: the empirical occupancy measure
which is a probability measure over the integers. This measure-valued random
variable packages many useful statistics. This paper characterizes the Large
Deviations of the �ow of empirical occupancy measures when n goes to in�nity
while the number of inserted balls remains proportional to n. The main result
is a Sanov-like theorem for the empirical occupancy measure when the set of
probability measures over the integers is endowed with metrics that are slightly
stronger than the total variation distance. Thanks to a coupling argument, this
result applies to the degree distribution of sparse random graphs.

1. Introduction
Consider the following classical model in random combinatorics. At each time

k = 1, 2, . . . , a ball is thrown into one bin among n. Let {1, . . . , n} denote the
set of bins. The set Ωn = {1, . . . , n}{1,2,... } of all sequences in {1, . . . , n} is the
natural space for the realizations of this experiment. For any k ≥ 1, the canonical
projection Bn

k : ω = (ωl)l≥1 ∈ Ωn 7→ ωk ∈ {1, . . . , n} is the random variable: �name
of the bin into which the kth ball is thrown�.

To make things easier, it is assumed that at time k = 0, all the bins are empty.
The score of bin α at time k ≥ 0 is de�ned by

Sn
k (α) =

k∑

l=1

1{Bn
l =α},

with the convention that Sn
0 = 0. Let us consider the time-scaling k = bntc, 0 ≤

t ≤ T where bsc is the integer part of s. We are interested in the time-rescaled
evolution of the joint empirical distribution of the scores. This is described by the
following empirical occupancy process from [0, T ] to the set P(N) of all probability
measures on N :

Xn
t =

1
n

n∑
α=1

δSn
bntc(α) =

∑

i≥0

Xn
t (i)δi ∈ P(N), 0 ≤ t ≤ T

where δ stands for the Dirac measure and Xn
t (i) is the proportion of bins with

score i after bntc ball allocations. It should be clear that (Xn
· ) satis�es a law of
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large numbers (see Proposition 2.3). We are interested in the large deviations of
the measure-valued process Xn

· as n tends towards in�nity.
The ambitions of this paper consist �rst in providing with results of wide appli-

cability through the contraction principle and second in establishing a Sanov-like
theorem in a dependent context. Moreover, the asymptotic behavior of the random
allocation model is interesting because random allocations models arise naturally in
many applications running from algorithm analysis [29] to statistics and statistical
learning theory [6]. In this paper, we illustrate our main result by deriving a large
deviation principle (ldp) for the degree distribution of sparse random graphs. This
complements recent results by McKay and Wormald on moderate deviations [18].

1.1. The limitations of Poisson approximation. The random allocations phe-
nomenon is intimately connected with questions in Poisson approximation [1]. For
any �xed t, Xn

t may be considered as the empirical measure of n identically dis-
tributed independent Poisson random variables conditioned on the fact that their
sum is equal to bntc. Let us denote by Y n

t the empirical measure of n independent
Poisson random variables with parameter t. By the Sanov theorem [9], Y n

t satis-
�es a ldp in P(N) with good rate function H(ν | pt)

∆=
∑

i∈N ν(i) log ν(i)
pt(i)

(here
(pt(i))i∈N is the Poisson distribution with mean t). As the probability that the
sum of n independent Poisson random variables with parameter t is equal to bntc
is of order 1/

√
n, we immediately get the following ldp upper bound for Xn

t :

lim sup
n→∞

1
n

logP(Xn
t ∈ C) ≤ − inf

ν∈C
H(ν | pt) ,

which by the way proves that, for �xed t, Xn
t satis�es a law of large numbers when

all bins are initially empty. A very natural question is whether the lower bound
also holds. Analyzing the asymptotic behavior of collections of dependent random
variables by conditioning collections of independent random variables is a standard
method in random combinatorics and statistical mechanics where it is related to
the relation between micro and macro-canonical ensembles. This approach is all
the more attractive as in the case of integer partitions pro�les, the ldp can be
recovered from the analysis of a system of independent random variables using a
coupling argument [8]. In the language of statistical mechanics, random integer
partitions correspond to Bose-Einstein statistics while the random allocations we
are interested in, correspond to Maxwell-Boltzmann statistics [11].

In the case of random allocations, conditioning a collection of independent Pois-
son random variables has often been used to obtain Central Limit Theorems for
Xn

t for �xed t (see [19, 22, 23, 24] and references therein). But the depoissonization
arguments used in those papers which essentially go back to [2], required ingenuity.
Facing technical di�culties in such a situation should not be surprising since at
the Central Limit Theorem scale, the empty bin statistics Y n

t (0) and Xn
t (0) behave

di�erently, they have di�erent variances (see for example [14]). Therefore in this
paper, we do not use the depoissonization approach, we characterize the ldp for the
�ow of empirical occupancy measures by taking advantage of its simple dynamical
behavior.

1.2. Related works. Random allocations, urns models, or occupancy problems
constitute basic objects in random combinatorics, statistics and theoretical com-
puter science [13, 29]. Up to our knowledge, random allocations problems have
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mostly been investigated by two kinds of methods: combinatorial analysis and prob-
abilistic techniques using characteristic functions. The combinatorial approach is
illustrated in the Russian monograph [14]: in a �rst step appropriate generating
functions are constructed and in a second step, asymptotic analysis is carried out us-
ing techniques from complex analysis. Such approaches provide results of unrivaled
precision, but tend to be rather involved when dealing with in�nite-dimensional ran-
dom variables. Up to our knowledge, the probabilistic approach has heavily used
the fact that multinomial random variables can be regarded as conditioned Poisson
random variables (see for example [19, 22, 23, 24]), and few investigations have
taken advantage of the simple structure of the allocation process and particularly
of the underlying martingale structure [3].

1.3. Outline of the paper. The paper is organized as follows. Further de�nitions
are �rst introduced in Section 2. The main result of the paper, Theorem 2.9, is
stated at the end of this section. The ldp upper-bound is proved in Section 3
where a variational representation of the rate function is established. Thanks to
Orlicz spaces techniques, the non-variational representation of the rate function is
established in Section 4. The ldp lower bound is established in Section 5 thanks
to the classical change of measure argument. The di�culty lies in the construction
of a rich collection of absolutely continuous change of measures. In Section 6, the
ldp for the �ow of empirical occupancy measures is shown to hold with the same
rate function when the topology is strengthened. In Section 7, a coupling argument
allows to derive the ldp for the degree distribution of sparse random graphs from
Theorem 2.9.

2. Main results
2.1. The model. Let us �rst re�ne the model description.

The kinetics of the process is as follows. If the kth ball is allocated into a bin
the score of which is Sn

k−1(B
n
k ) = i, then:

Xn
k/n(i + 1) = Xn

(k−1)/n(i + 1) + 1/n

Xn
k/n(i) = Xn

(k−1)/n(i)− 1/n

Xn
k/n(j) = Xn

(k−1)/n(j), j 6∈ {i, i + 1}

and the value of the process remains constant on the time interval [k/n, (k +1)/n).
For any i ≥ 0, each realization of Xn(i) stands in the space D([0, T ],R) of right
continuous left limited (càdlàg) paths from [0, T ] to R. The sample path space of
Xn is DP

∆= D([0, T ],P(N)) : the set of all ν : [0, T ] 7→ P(N) such that ν(i) ∈
D([0, T ],R) for all i ≥ 0.
Let us endow DP with its canonical �ltration (Ft)0≤t≤T where Ft = σ(πs; 0 ≤ s ≤ t)
is generated by the canonical projections πs : ν ∈ DP 7→ νs ∈ P(N) and the σ-�eld
on P(N) is induced by the usual product σ-�eld on RN. Similarly, Ωn is endowed
with the natural �ltration (An

t )0≤t≤T where An
t = σ(Bn

k ; 1 ≤ k ≤ bntc). The σ-
�elds on Ωn and DP are An

T and FT . Clearly, Xn
t = Xn◦πt, Xn is an (An

t )-adapted
process and the canonical process π is (Ft)-adapted.

It is assumed that the bins are chosen uniformly and indepently at each time.
This means that the probability measure Pn on Ωn is the product of the uniform
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distribution on {1, . . . , n} :

Pn(dω) =
⊗

1≤k≤bnTc


 1

n

∑

1≤α≤n

δα(dωk)




2.2. A larger class of models. In this section, we describe slightly more genral
allocation schemes, and state the corresponding laws of large numbers. This will
be useful when deriving the ldp lower bound and when interpreting our large
deviation results. In this larger class of models, the choice of the bin Bn

k+1 at time
k + 1 depends on the whole empirical distribution Xn

k/n at time k. Let us take a
continuous function λ on [0, T ]× N such that:
i) λ has range included in [a,∞) for some a > 0 and
ii) there exists some integer M such that λ(t, i) = 1 for all i ≥ M and all t.
Conditionally on An

k/n, the probability of choosing a bin with score i is
Qn(Sn

k (Bn
k+1) = i | An

k/n) = λ(k/n, i)Xn
k/n(i)/〈λk/n, Xn

k/n〉 (2.1)
where 〈λk/n, Xn

k/n〉 =
∑

j≥0 λ(k/n, j)Xn
k/n(j). Let us remark that as inf λ ≥ a > 0,

we have 〈λk/n, Xn
k/n〉 > 0. The choice of the bin, among those of score i is uniform.

Note that if Xn
k/n(i; ω) = 0, then one cannot allocate the (k + 1)th ball in a bin

with score i :, the product form λX in (2.1) enforces this minimal consistency in
the model. It is worth noting that under Qn, for any d ≥ M the Rd-valued process
formed by the projection of Xn

. on its �rst d coordinates is a Markov process.
Indeed:

〈λk/n, Xn
k/n〉 = 1 +

M∑

i=0

(λk/n(i)− 1)Xn
k/n(i), (2.2)

and hence for d ≥ M , the law of the d-dimensional projection of Xn at time
(k + 1)/n only depends on the value of the d-dimensional projection of Xn at time
k/n. Under Qn, Xn is a projective limit of vector-valued Markov processes.
We shall see later (see Lemma 3.3) that the laws Qn of Xn under Qn are uniformly
tight in DP endowed with the topology of uniform convergence. Therefore we
will only need to check that all converging subsequences have the same limit and
this can be done by checking that converging subsequences of �nite-dimensional
distributions have the same limit. Because of the preceding remark it will even be
enough to check this for the laws of d-dimensional projections of Xn with d ≥ M .
This point will be checked in Section 5.3.

Convention. Here and below, it is assumed that the value of all functions at
score i = −1 is 0 : Xn

t (−1), νt(−1), `ν
t (−1), · · · = 0.

Proposition 2.3 (Law of large numbers). Let Qn be speci�ed by (2.1) and assume
that inft,i λ(t, i) > 0, that λ is continuous and that there exists an integer M such
that λ(t, i) = 1 for i ≥ M and t ≥ 0. Then the sequence (Xn) converges in law in
DP endowed with the topology of uniform convergence towards the process X with
X0 distributed according to δ0 and X· being the unique solution ν of

dνt

dt
(i) = `ν

t (i− 1)νt(i− 1)− `ν
t (i)νt(i) (2.4)

with initial condition X0 = δ0 where `ν
t (i) = λ(t, i)/

∑
j≥0 λ(t, j)νt(j).

In particular with Qn = Pn the limiting path is ν = p : the time-marginal �ow of
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the Poisson process with parameter 1, given by

dpt

dt
(i) = pt(i− 1)− pt(i) (2.5)

Note that the special case of Pn is obtained with `ν ≡ 1, and that then
∑

i≥0 `ν
t (i)νt(i) =

1 for all t.
As mentioned in the introduction, we assume in the whole paper that for all n

the initial distribution Xn
0 is almost surely the Dirac mass (δ) at 0. This is only

for the sake of simplicity. Actually, our main results still hold when the initial
empirical occupancy measures satisfy a law of large number and an ldp and if the
limiting initial occupancy distribution is su�ciently integrable.

2.3. Large deviation principle. Let X be a Hausdor� topological space endowed
with some σ-�eld. A rate function on X is a function I : X 7→ [0,∞] which is lower
semicontinuous. It is said to be a good rate function if in addition, its level sets
{I ≤ a} are compact. A sequence (Xn)n≥1 of random elements in X is said to
satisfy the large deviation principle with rate function I if the sequence (Pn)n≥1 of
the corresponding laws on X satis�es the following

(1) Upper bound : For any measurable closed subset C of X ,

lim sup
n→∞

1
n

log Pn(C) ≤ − inf
x∈C

I(x)

(2) Lower bound : For any measurable open subset G of X ,

lim inf
n→∞

1
n

log Pn(G) ≥ − inf
x∈G

I(x)

2.4. The topologies. Considering P(N) as a subset of summable sequences `1(N),
it is naturally endowed with the induced topologies of the pointwise convergence
and of the norm topology. A metric for the pointwise topology is given for any
π, ρ ∈ P(N), by

∑
i≥0 2−i|π(i) − ρ(i)|, π, ρ ∈ P(N), while the norm on `1 induces

the metric of the total variation

‖π − ρ‖ =
∑

i≥0

|π(i)− ρ(i)|, π, ρ ∈ P(N) (2.6)

In fact, these topologies are equivalent. Clearly, the convergence in total variation
implies the pointwise convergence. But the converse also holds, due to the domi-
nated convergence theorem.
In this article, we shall not use the Skorokhod topology. The space DP is endowed
with the topology of uniform convergence associated with the norm

‖ν − µ‖ = sup
0≤t≤T

‖νt − µt‖, ν, µ ∈ DP .

This makes DP a nonseparable complete metric space. Note that FT is smaller
than the Borel σ-�eld of DP . This is the reason why only measurable closed and
open sets are considered in the above statement of a ldp.
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2.5. The rate function. It will be convenient to associate with each path ν ∈ DP
the relaxed measure on [0, T ]× N :

ν̄(dtdz) = νt(dz)dt

A path ν ∈ DP is said to be absolutely continuous if for each i ∈ N, there exists
ν̇(i) in L1([0, T ], dt) such that νt(i) − ν0(i) =

∫
[0,t]

ν̇s(i) ds. For each absolutely
continuous path ν, let us de�ne vν , ν̄-almost everywhere by:

vν
t (j) ∆= −

∑

i≤j

ν̇t(i) for j ≥ 0 . (2.7)

Let P be a probability measure and Q a non-negative measure on some measure
space. The relative entropy of Q with respect to P is de�ned by:

H(Q|P ) =
{
EQ log dQ

dP if Q is a probability measure and Q ¿ P
∞ otherwise.

with the convention 0 log 0 = 0.
We are now in a position to de�ne the rate function I, for any ν ∈ DP :

I(ν) ∆=
{ ∫

[0,T ]
H(vν

t |νt)dt if ν is absolutely continuous
∞ otherwise. (2.8)

Note that for any ν satisfying I(ν) < ∞, dt-almost everywhere vν
t is a probabil-

ity measure on N. Moreover, simple algebraic manipulations show that the time-
derivative of the mean score is 1 dt-almost everywhere:

∑

i

i ν̇t(i) = 1 .

The �niteness of the rate function warrants that balls are allocated with unit in-
tensity.

2.6. The main results. The main result of the paper is the following theorem.

Theorem 2.9. The sequence (Xn)n≥1 satis�es the ldp on DP with the good rate
function I.

As the identities (2.7) are equivalent to:
ν̇t(i) = vν

t (i− 1)− vν
t (i) for i ≥ 0 , (2.10)

and as I(ν) = 0 if and only if vν = ν, ν̄-almost everywhere, we obtain that I(ν) = 0
if and only if for almost every t, ν̇t(i) = νt(i − 1) − νt(i), for νt-almost all i ≥ 0.
Hence ν = p, which is in agreement with (2.5) in Proposition 2.3.
The rate function may actually be further interpreted:

Proposition 2.11. The function I is a convex rate function.
Let ν ∈ DP , then I(ν) < ∞ if and only if ν is absolutely continuous and there exists
a measurable RN-valued process `ν which is de�ned ν̄-almost everywhere, such that

(1) the following master equation is satis�ed ν̄-almost everywhere:
ν̇t(i) = `ν

t (i− 1)νt(i− 1)− `ν
t (i)νt(i), i ≥ 0 (2.12)

(2) (`ν
t (i)νt(i))i≥0 de�nes a probability on N, for dt-almost every t

(3)
∫
[0,T ]

[
∑∞

i=0 νt(i) `ν
t (i) log `ν

t (i)] dt < ∞ .
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Alternative expressions for I(ν) are

I(ν) =
∫

[0,T ]×N
`ν log `ν dν̄ =

∫

[0,T ]

[ ∞∑

i=0

νt(i) `ν
t (i) log `ν

t (i)

]
dt

=
∫

[0,T ]

H(`ν
t νt | νt) dt ,

where `ν is any process satisfying the above properties 1, 2 and 3.

Proof. The convexity and the lower semicontinuity of I is a direct consequence of
its variational representation obtained in Proposition 4.4.

If I(ν) < ∞, then dt-almost everywhere vν
t is a probability measure on N which

is absolutely continuous with respect to νt. Let `ν
t = dvν

t

dνt
be its Radon-Nykodym

derivative. Clearly, property 2 holds. As

I(ν) =
∫

[0,T ]

H(vν
t | νt) dt =

∫

[0,T ]

〈`ν
t log `ν

t , νt〉 dt , (2.13)

property 3 is satis�ed. Finally, property 1 is given by (2.10).
Conversely, let `ν

t satisfy conditions 1, 2 and 3. Let us set vν
t = `ν

t νt. Then, (2.12)
is (2.10) which is equivalent to (2.7). Finally, conditions 2 and 3 with (2.13) imply
that I(ν) is �nite.
The alternative expressions for I(ν) follow from (2.13). ¤

Let ν be an absolutely continuous path. If νt(i) > 0, (2.12) gives `ν
t (i) =

[−∑
j≤i ν̇t(j)]/νt(i), so that `ν

t (i) is uniquely de�ned up to ν̄-a.e. equality on
{(t, i); νt(i) > 0}. On the other hand, (2.12) and (2.13) are insensitive to the values
of `ν on the complementary set {(t, i); νt(i) = 0}. Therefore,

`ν
t (i) =

{
[−∑

j≤i ν̇t(j)]/νt(i) if νt(i) > 0
1 if νt(i) = 0

(2.14)

is a useful measurable inversion formula for `ν .

2.7. Examples. Let us take T = 1 to make things easier. By Proposition 2.3, we
have the weak law of large numbers: Xn → p where p is given by (2.5). By the
upper bound of the large deviation principle in Theorem 2.9 and Borel-Cantelli's
lemma, this convergence holds almost surely (considering an appropriate space
Ω =

∏
n≥1 Ωn and so on): we have a strong law of large numbers.

In particular, considering the �nal time t = T = 1, we obtain that almost surely, the
limiting proportion of bins with a score at least equal to 4 is limn→∞Xn

1 ({4, 5, . . . })
= p1({4, 5, . . . }) = e−1

∑∞
i=4 1/i! ≈ 0.019 and one may ask for the rate of conver-

gence to zero of Pn(Xn
1 ({4, 5, . . . }) ≥ 0.03) as n tends to in�nity. The answer is

given by Theorem 2.9, indeed by convexity:

lim
n→∞

1
n

logPn(Xn
1 ({4, 5, . . . }) ≥ 0.03) = − inf{I(ν); ν, ν1({4, 5, . . . }) ≥ 0.03}

since inf{I(ν); ν, ν1({4, 5, . . . }) ≥ 0.03} = inf{I(ν); ν, ν1({4, 5, . . . }) > 0.03} (this
identity requires some work). As inf{I(ν); ν, ν1({4, 5, . . . }) ≥ 0.03} < ∞ (this
also requires some work) and I has compact level sets, there is at least one ν∗ in
D([0, 1],P(N)) such that I(ν∗) = {I(ν); ν, ν1({4, 5, . . . }) ≥ 0.03} < ∞.
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More generally, let A be a measurable subset of DP such that I(int(A)) =
I(cl(A)) < ∞, where I(B) stands for inf{I(ν); ν ∈ B}. Then, we have

lim
n→∞

1
n

logPn(Xn ∈ A) = −I(A).

In addition, suppose that there exists a unique ν∗ in A such that I(ν∗) = I(A).
Then,

lim
n→∞

Pn(Xn ∈ · | Xn ∈ A) = δν∗(·) . (2.15)

Indeed, let U be any open neighbourhood of ν∗. By Theorem 2.9, we have

lim sup
n→∞

1
n

logPn(Xn ∈ U c | Xn ∈ A)

≤ lim sup
n→∞

1
n

logPn(Xn ∈ U c ∩A)− lim inf
n→∞

1
n

logPn(Xn ∈ A)

≤ −[I(U c ∩ cl(A))− I(int(A))] .

As I has compact level sets, there exists some compact subset K such that I(U c ∩
cl(A)) = I(K∩U c∩cl(A)) and there is some νU in the compact set K∩U c∩cl(A) such
that I(K ∩ U c ∩ cl(A)) = I(νU ). As it is assumed that I(int(A)) = I(ν∗) < I(νU ),
the desired result is proved with an exponential rate of convergence.

3. The upper bound
3.1. Statement of the upper bound. As we will resort to duality arguments,
let us �rst de�ne a set of test functions. Let g be a real function on N (a sequence
of real numbers), we set Dg(j) ∆= g(j + 1) − g(j), for all j ≥ 0. For any function
G : [0, T ]×N→ R, let us denote for all j ∈ N, G(j) : t ∈ [0, T ] 7→ Gt(j) and for all
0 ≤ t ≤ T, Gt = (Gt(j))j≥0. The set of relevant test functions is

G ∆=
{

G : [0, T ]× N→ R; sup
t,j

|DGt(j)| < ∞, G(j) ∈ C, ∀j ∈ N
}

where C is the space of all the functions f : [0, T ] 7→ R which are absolutely
continuous and such that f(T ) = 0. For any G in G, we will denote by Ġt the
generalized derivative of Gt with respect to t , i.e.:

Gt(j) = −
∫

[t,T ]

Ġs(j)ds, t ∈ [0, T ], j ∈ N .

Let us also introduce the notation ν̇(G). For all G ∈ G and ν ∈ DP :

ν̇(G) ∆= −〈G0, ν0〉 −
∫

[0,T ]

〈Ġt, νt〉 dt (3.1)

The main result of the section is the following variational formulation of the large
deviation upper bound.

Proposition 3.2. For any closed measurable subset C of DP we have

lim sup
n→∞

1
n

logPn(Xn ∈ C) ≤ − inf
ν∈C

sup
G∈G

{
ν̇(G)−

∫

[0,T ]

log〈exp(DGt), νt〉 dt

}
.
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Proof. In Lemma 3.7 the upper bound is proved for C measurable convex and
compact. One removes the convexity restriction by means of a standard argument
which is described in the proof of the upper bound of [28, Theorem 4.1]. Note that
this argument still works in our context, since our space is locally convex and its
topology is generated by measurable balls. In Lemma 3.3, it is shown that the laws
of the Xn's are compactly supported. Combining these results, the upper bound
holds for all measurable closed subsets. ¤

3.2. Compactness considerations. The following result shows that we should
not be distracted by exponential tightness issues.

Lemma 3.3. There exists a compact subset K of DP such that for all n ≥ 1 and
all ω ∈ Ωn, Xn(ω) belongs to K.

Proof. We take advantage of the simple form of the sample paths of Xn(ω). Let xn

be any realization of Xn. As for any t and n,

sup
t≤r,s<t+1/n

‖xn
s − xn

r ‖ = 2/n ,

we have for any 0 ≤ t < t+δ ≤ T, supt≤r,s<t+δ ‖xn
s −xn

r ‖ ≤ (1+nδ)2/n = 2/n+2δ.
On the other hand, for any t, the mean score per bin is

∑
i≥0 ixn

t (i) ≤ t. Hence,
for all t ≤ T, xn

t belongs to the relatively compact subset of P(N) consisting of
the probability measures with their �rst moment bounded above by T. As P(N) is
complete, this relatively compact subset is totally bounded.

As in the proof of Ascoli-Arzela's theorem, it follows from these considerations
that for any ε > 0, one can build a �nite collection of open balls of DP with radius
ε which covers ∪n≥1{Xn(ω); ω ∈ Ωn}. This means that it is a totally bounded set
in the complete metric space DP . Therefore, its closure is compact.

In order to build this open covering, choose the centers of the ε-balls as piecewise
constant paths (being constant on small enough intervals) with their values in a
�nite subset of P(N) (the set of the centers of small balls �nitely covering the above
totally bounded subset of P(N)). ¤

3.3. Exponential martingale. We introduce a family of exponential martingales
ZG,n which will allow us, by means of Lemma 3.4 below, to derive in Lemma 3.7
the upper bound for compact convex subsets.
For any G in G and n ≥ 1, let us de�ne the process ZG,n by

1
n

log ZG,n
t

∆= 〈Gt, X
n
t 〉 − 〈G0, X

n
0 〉 −

∫

[0,t]

〈Ġs, X
n
s 〉 ds

−
bntc∑

k=0

1
n

log
∑

j≥0

Xn
k/n(j) exp

(
DG k+1

n
(j)

)

Note that since DG is bounded, there exists c ≥ 0 such that |G(i)| ≤ c(1+ i) for all
i ∈ N. As for all 0 ≤ t ≤ T,

∑
i≥0 iXn

t (i) ≤ T, it follows that all the terms in the
de�nition of ZG,n are well de�ned and that it is a bounded process.

Lemma 3.4. For any G ∈ G and n ≥ 1, (ZG,n
t )0≤t≤T is a Pn-martingale with

respect to the �ltration (An
t )0≤t≤T . In particular, EPnZG,n

T = 1.
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Proof. It is enough to check that for any 0 ≤ t ≤ t + h ≤ T :

EPn

(
ZG,n

t+h/ZG,n
t | An

t

)
= 1.

We have
1
n

log[ZG,n
t+h/ZG,n

t ] = 〈Gt+h, Xn
t+h〉 − 〈Gt, X

n
t 〉 −

∫

[t,t+h]

〈Ġs, X
n
s 〉 ds

−
bn(t+h)c∑

k=bntc+1

1
n

log
∑

j

Xn
k
n
(j) exp

(
DG k+1

n
(j)

)
(3.5)

If bn(t + h)c = bntc, the right-hand side vanishes and there is nothing to prove.
Using cascade conditioning, all other cases reduce to bn(t + h)c = bntc + 1. Fur-
thermore, it is enough to consider the case bntc = nt and 1/n ≤ h < 2/n. Let
k
n ≤ t < k+1

n ≤ t + h, then:

〈Gt+h, Xn
t+h〉 − 〈Gt, X

n
t 〉 =

∫

[t,t+h]

〈Ġs, X
n
s 〉 ds + 〈G k+1

n
, Xn

k+1
n

〉 − 〈G k+1
n

, Xn
k
n
〉 .

Hence the right-hand side of (3.5) reduces to

〈G k+1
n

, Xn
k+1

n

〉 − 〈G k+1
n

, Xn
k
n
〉 − 1

n
log

∑

j≥0

Xn
k
n
(j) exp

(
DG k+1

n
(j)

)
.

As
EPn

[
exp

(
n[〈G k+1

n
, Xn

k+1
n

〉 − 〈G k+1
n

, Xn
k
n
〉]

)
| An

t

]
=

∑

j≥0

Xn
k
n
(j) exp DG k+1

n
(j) ,

the proof is completed. ¤

3.4. Compact convex subsets. Establishing the ldp upper bound for convex
compact sets is now straightforward thanks to the following general min-max the-
orem due to Sion [27], see also [9, Exercice 2.2.38].

Theorem 3.6. (Sion,1958) Let K(θ, y) be convex and lower semicontinuous in y
and concave and upper semicontinuous in θ. Let C be a compact convex set, then:

inf
y∈C

sup
θ
K(θ, y) = sup

θ
inf
y∈C

K(θ, y).

This theorem may be applied in the following context. Let C ⊂ DP be a convex
and compact set, let the function K(G, ν) for G ∈ G and ν ∈ DP be de�ned as

K(G, ν) ∆= ν̇(G)−
∫

[0,T ]

log〈exp(DGt), νt〉dt.

Let us denote by Kn(G, ν) the following discretized version of K:

Kn(G, ν) ∆= ν̇(G)−
bnTc∑

k=0

1
n

log〈exp(DG k+1
n

), ν k
n
〉.

The functions K and Kn are convex with respect to ν thanks to the concavity of
log, and concave with respect to G thanks to Hölder's inequality and the fact that
log is increasing. The continuity (hence the lower semicontinuity) with respect to
ν and the upper semicontinuity with respect to G follow from the de�nition of G.
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Lemma 3.7. Let C be a measurable convex compact subset of DP , then

lim sup
n→∞

1
n

logPn (Xn ∈ C) ≤ − inf
ν∈C

sup
G∈G

K(G, ν) .

Proof. By an exponential Markov inequality, for any G ∈ G:
Pn (Xn ∈ C) ≤ Pn

(
enKn(G,Xn) ≥ inf

ν∈C
enKn(G,ν)

)

≤ EPn

(
enKn(G,Xn)

)
/ inf

ν∈C
enKn(G,ν)

As EPnenKn(G,Xn) = EPnZG,n
T , by Lemma 3.4 we have EPnenKn(G,Xn) = 1, so that

Pn (Xn ∈ C) ≤ exp
(− n inf

ν∈C
Kn(G, ν)

)
.

We may now optimize with respect to G ∈ G:

Pn (Xn ∈ C) ≤ inf
G

exp
(
−n inf

ν∈C
Kn(G, ν)

)
= exp

(
−n sup

G∈G
inf
ν∈C

Kn(G, ν)
)

.

Letting n tend to in�nity, one obtains

lim sup
n

1
n

logPn (Xn ∈ C) ≤ − lim inf
n

sup
G

inf
ν∈C

Kn(G, ν) .

It remains to prove that
lim inf

n
sup
G∈G

inf
ν∈C

Kn(G, ν) ≥ sup
G

inf
ν∈C

K(G, ν) . (3.8)

As DG is bounded and t-continuous and ν is right continuous, Kn converges point-
wise towards K. For any G ∈ G, Kn(G, ·) is a sequence of pointwise converging
continuous convex functions on a complete metric space. Hence, its converges uni-
formly towards K(G, ·) on the compact set C as n tends to in�nity (see Theorem
A.1 in the Appendix, for a proof of this result).
Let us take ε > 0. For any n and G, let νG,n ∈ C be such that Kn(G, νG,n) ≤
infν∈C Kn(G, ν) + ε. Because of the above uniform convergence, for any G, there
exists nG ≥ 1 such that for all n ≥ nG : infν∈C Kn(G, ν) ≥ Kn(G, νG,n) − ε ≥
K(G, νG,n)− 2ε ≥ infν∈C K(G, ν)− 2ε. Hence,

sup
G∈G

lim inf
n→∞

inf
ν∈C

Kn(G, ν) ≥ sup
G∈G

inf
ν∈C

K(G, ν)

As, lim infn→∞ supG∈G ≥ supG∈G lim infn→∞, this proves (3.8).
Now applying Sion's minimax Theorem 3.6, the right hand side in (3.8) is iden-

ti�ed with infν∈C supG∈G K(G, ν) and the proof is completed. ¤

4. The rate function
Our goal in this section is to prove that the rate function appearing in Proposition

3.2 is equal to the rate function I de�ned at (2.8).
This identi�cation is stated in Proposition 4.4 below. It will be proved using the

Riesz representation theorem in Orlicz spaces. Using Riesz representation theorem
in L2 would have been appropriate if we were facing a Gaussian situation, but the
bins and balls model resort from the Poisson approximation problem. Orlicz spaces
constitute a tailor-made framework to provide with non-variational representations
of the rate function in such a case [15]. For the sake of completeness, let us �rst
recall some basic facts about Orlicz spaces which are the extensions of the classical
Lp spaces.
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4.1. Orlicz spaces. A Young function θ is an even, convex, [0,∞]-valued function
satisfying θ(0) = 0, lims→+∞ θ(s) = +∞ and θ(s0) < +∞ for some s0 > 0. Let µ
be a nonnegative bounded measure on the measurable space (Σ,A). Consider the
following vector spaces:

Lθ =
{

f : Σ → R, ∃a > 0,

∫

Σ

θ
(f

a

)
dµ < ∞

}

Mθ =
{

f : Σ → R, ∀a > 0,

∫

Σ

θ
(f

a

)
dµ < ∞

}

where µ-almost everywhere equal functions are identi�ed. Consider the following
Luxemburg norm on Lθ:

‖f‖θ = inf
{

a > 0,

∫

Σ

θ
(f

a

)
dµ ≤ 1

}
(4.1)

(Lθ, ‖.‖θ) is a Banach space called the Orlicz space associated with θ. Mθ is a
subspace of Lθ. If θ is a �nite function, it is the closure of the space of step
functions

∑n
i=1 ai1Ai

under ‖ · ‖θ. For references, see [25]. Let θ∗ be the convex
conjugate of the Young function θ:

θ∗(t) = sup
s∈R

{st− θ(s)}

As θ∗ is also a Young function, one can consider the Orlicz space Lθ∗ .
Hölder's inequality holds between Lθ and Lθ∗ : For all f ∈ Lθ and g ∈ Lθ∗ ,

fg ∈ L1(µ) and
∫

Σ

|fg| dµ ≤ 2‖f‖θ‖g‖θ∗ (4.2)

By inequality (4.2), any g in Lθ∗ de�nes a continuous linear form on Lθ for the
duality bracket 〈f, g〉 =

∫
fg dµ. In the general case, the topological dual space

of (Lθ, ‖.‖θ) may be larger than Lθ∗ . Nevertheless, we always have the following
result:

Theorem 4.3. Let θ be a �nite Young function and θ∗ its convex conjugate. The
topological dual space of Mθ can be identi�ed, using the previous duality bracket,
with Lθ∗ : M ′

θ ' Lθ∗ .

For a proof of this result, see for instance [16, Section 4].
In the sequel, the relevant Young functions are τ and τ∗ de�ned by:

τ(x) ∆= exp(|x|)− |x| − 1

τ∗(x) = (|x|+ 1) log(|x|+ 1)− |x| .

4.2. Variational representation of the rate function.
Proposition 4.4. For every ν ∈ DP , we have

I(ν) = sup
G∈G

{
ν̇(G)−

∫

[0,T ]

log〈exp(DGt), νt〉 dt

}
.

Proof. Let us take ν in DP . By (4.1), for any G ∈ G, we have

‖DG‖τ,ν̄ = inf

{
a > 0;

∫

[0,T ]×N
τ(DG/a) dν̄ ≤ 1

}
.
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We de�ne K(ν) ∆= supG∈G K(G, ν) = supG∈G
{

ν̇(G)− ∫
[0,T ]

log〈exp(DGt), νt〉 dt
}

,

so that for any a > 0 and G ∈ G : ν̇(G/a) ≤ K(ν) +
∫
[0,T ]

log〈exp(DGt/a), νt〉 dt .

Subtracting
∫
[0,T ]

〈νt, DGt/a〉 dt from both sides:

ν̇(G)−
∫

[0,T ]

〈νt, DGt/a〉 dt ≤ K(ν) +
∫

[0,T ]

[log〈exp(DGt/a), νt〉 − 〈DGt/a, νt〉] dt

(a)

≤ K(ν) +
∫

[0,T ]

〈exp(DGt/a)−DGt/a− 1, νt〉 dt

(b)

≤ K(ν) +
∫

[0,T ]

〈τ(DGt/a), νt〉 dt ,

where (a) comes from log x ≤ x− 1, and (b) from
ex − x− 1 ≤ exp |x| − |x| − 1 = τ(x). (4.5)

Choosing a = ‖DG‖τ,ν̄ , we obtain:

ν̇(G)−
∫

[0,T ]×N
DGdν̄ ≤ [K(ν) + 1]‖DG‖τ,ν̄ .

As an analogue inequality can be proved while replacing G by −G, and as by
Hölder's inequality (4.2):

∣∣ ∫
[0,T ]×NDGdν̄

∣∣ ≤ 2‖1‖τ∗,ν̄‖DG‖τ,ν̄ = 2Tτ∗(1)‖DG‖τ,ν̄ ,

we have:
|ν̇(G)| ≤ [K(ν) + 1 + 2Tτ∗(1)]‖DG‖τ,ν̄ .

Let us �rst prove that if K(ν) < ∞, then K(ν) = I(ν). Now, take ν such that
K(ν) < ∞. The above estimate implies that for all F,G in G, if DF = DG then
ν̇(F ) = ν̇(G). It also implies that ν̇ is a continuous linear form on Mτ (ν̄). By the
Riesz representation theorem (Theorem 4.3), there exists `ν in Lτ∗(ν̄) such that

ν̇(G) =
∫

[0,T ]

〈`ν
t DGt, νt〉 dt, ∀G ∈ G . (4.6)

It follows that

K(ν) = sup
G∈G

{
ν̇(G)−

∫

[0,T ]

log〈exp(DGt), νt〉 dt

}

(a)
= sup

G∈G

{∫

[0,T ]

(
〈`ν

t DGt, νt〉 − log〈exp(DGt), νt〉
)

dt

}

(b)
=

∫

[0,T ]

sup
g∈`∞

{〈g, `ν
t νt〉 − log〈eg, νt〉} dt

(c)
=

∫

[0,T ]

H(`ν
t νt | νt) dt .

Equation (a) follows from (4.6). In identity (b), assuming g = DGt ∈ `∞, [26,
Theorem 2] is used to exchange the supremum and the integral (we face a convex
conjugate of a convex integral functional). Equation (c) is the variational represen-
tation of the relative entropy [9, Lemma 6.2.13]. Notice that if K(ν) < ∞, then
equation (c) implies that dt-almost everywhere `ν

t νt de�nes a probability measure
on N which is absolutely continuous with respect to νt.
Because of Proposition 2.11, to complete the proof of the identity K(ν) = I(ν)
when K(ν) < ∞, it remains to check that the master equation (2.12) is satis�ed.
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Choosing Gϕ,i
t (j) = ϕt1{i}(j) where ϕ is continuously di�erentiable and ϕT = 0,

with (3.1) we have:

ν̇(Gϕ,i) = −〈Gϕ,i
0 , ν0〉 −

∫

[0,T ]

〈Ġϕ,i
t , νt〉 dt

= −ϕ0ν0(i)−
∫

[0,T ]

ϕ̇tνt(i) dt

and equation (4.6) leads us to

ν̇(Gϕ,i) =
∫

[0,T ]×N
ϕD1{i}`ν dν̄

=
∫

[0,T ]

ϕt[`ν
t (i− 1)νt(i− 1)− `ν

t (i)νt(i)] dt.

Since these identities hold for all ϕ and i, the master equation (2.12) is satis�ed
and we have shown that K(ν) = I(ν) whenever K(ν) < ∞.

Finally if I(ν) < ∞, by Proposition 2.11 we have (2.12) which is equivalent
to (4.6) by the above-described computation. Now, according to the computa-
tion following (4.6), we obtain that K(ν) = I(ν). This completes the proof of the
proposition. ¤

A simple corollary of Proposition 2.11 is the following:
Corollary 4.7. If ν satis�es I(ν) < ∞, then for all 0 ≤ s ≤ t ≤ T :

‖νt − νs‖ ≤ 2(t− s) .

As a matter of fact, the e�ective domain of the rate function I is included in the
compact subset of DP mentioned in Lemma 3.3.

5. The lower bound
In this section we prove the following lower bound.

Proposition 5.1. For any open measurable subset U of DP we have

lim inf
n→∞

1
n

logPn(Xn ∈ U) ≥ − inf
ν∈U

I(ν) .

Following a classical pattern, the proof is carried out using (exponential) changes
of measure. Without loss of generality, one can assume that I(U) < ∞. The nth

change of measure associated with a path ν ∈ U satisfying I(ν) < ∞, is the twisted
probability measure Qν,n de�ned by (2.1) with λ = `ν , provided that `ν is regular
enough. The changes of measure are used through the following device. For any
ε > 0, we have

1
n

logPn (Xn ∈ U) =
1
n

logEQν,n

(
dPn

dQν,n
1{Xn∈U}

)
(5.2)

≥ inf
ξ∈V

1
n

log
dPn

dQν,n
(ξ) +

1
n

logQν,n (Xn ∈ V )

≥ 1
n

log
dPn

dQν,n
(ν)− ε− ε

for any small enough neighborhood V of ν with V ⊂ U and any large enough n,
provided that Qν,n satis�es the three following properties:
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• (α) For any open neighborhood V of ν, limn
1
n logQν,n(Xn ∈ V ) = 0.

• (β) Pn is absolutely continuous with respect to Qν,n.
• (γ) The map ξ ∈ V 7→ dP n

dQν,n (ξ) is continuous at ν.

Here and in the sequel, Pn and Qν,n stand for the probability laws on DP of Xn

under Pn and Qν,n.
The sole �niteness of I(ν) does not ensure that these three properties are satis-

�ed. Therefore we will focus on a subset of the e�ective domain of I : DI , that will
be called the set of nice ν's.
5.1. The nice ν's. Property (α) will follow from the law of large numbers in
Proposition 2.3. Property (β) will be easily checked if bounds are imposed on ν.
Property (γ) will be checked if ν and `ν are su�ciently regular. We will assume
that ν is nice according to the following de�nition.
De�nition 5.3. A path ν ∈ DP is said to be nice if

(1) ν belongs to DI : i.e. I(ν) < ∞
(2) For all t > 0 and i ∈ N, νt(i) > 0.
(3) There exists M ≥ 0 such that for all i ≥ M and all 0 ≤ t ≤ T, `ν

t (i) = 1
and there exists β > 0 such that for all t > 0 and i ∈ N, `ν

t (i) ≥ β.
(4) For all i ∈ N, `ν(i) is C2 with respect to t.

Under condition 2, formula (2.14) allows to determine `ν
t (i) as a function of ν for

all i, while condition 4 allows its determination for all t > 0 and not only dt-almost
everywhere.

Let ν be nice, the nth twisted probability measure associated with it, is Qν,n

de�ned by (2.1) with λ = `ν . For all n ≥ 1, under Qν,n, Xn is still a Markov
process (as pointed out in Section 2.2) .
The main property of ν and Qν,n when ν is nice, is stated in the following lemma.
Lemma 5.4 (Nice ν's are really nice.). For any nice ν,

sup
V

lim inf
n

Qν,n-essinfξ∈V

(
1
n

log
dPn

dQν,n
(ξ)

)
≥ −I(ν),

where the supremum is taken over all open measurable neighborhoods V of ν.
This lemma together with (5.2) leads to the desired lower bound for any open

measurable neighbourhood of any nice ν. In order to extend this result to the general
case, the following density result will be needed.
Lemma 5.5 (Nice ν's are dense). For each ν in DI , there exists a sequence
(νm)m≥1 of nice sample paths such that limm→∞ sup0≤t≤T ‖ν − νm‖ = 0 and
limm→∞ I(νm) = I(ν).

The proofs of these lemmas are postponed after the proof of Proposition 5.1, at
Sections 5.4 and 5.5.
5.2. Proof of the lower bound. With Proposition 2.3, Lemma 5.4 and Lemma
5.5 in hand, we can give a proof of lower bound.
Proof of Proposition 5.1. Let U be any open measurable subset of DP with I(U) < ∞.
For any ε > 0, let ν∗ ∈ U be such that I(ν∗) < I(U) + ε. By Lemma 5.5,
there exists a sequence of nice sample paths (νm)m≥1 converging to ν∗ in U such
that I(νm) converges towards I(ν∗). Hence, there exists a nice ν in U such that
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I(ν) < I(ν∗) + ε < I(U) + 2ε. Let Qν,n be the nth twisted probability law of Xn

associated with ν, then

lim inf
n

1
n

logPn(Xn ∈ U)

(a)

≥ sup
V : ν∈V⊂U

[
lim inf

n
Qν,n-essinfξ∈V

(
1
n

log
dPn

dQν,n
(ξ)

)
+ lim inf

n

1
n

log Qν,n(V )
]

(b)

≥ sup
V :ν∈V⊂U

lim inf
n

Qν,n-essinfξ∈V

(
1
n

log
dPn

dQν,n
(ξ)

)

(c)

≥ −I(ν)
≥ −I(U)− 2ε .

where (a) follows from (5.2), (b) follows from Proposition 2.3 and (c) from Lemma
5.4. ¤

5.3. Proof of Proposition 2.3. The argument relies on the di�usion approx-
imation techniques due to Kurtz (see [10] and references therein). As limiting
distributions are degenerate, it is enough to rely on the following lemma which is
an immediate consequence of Corollary 4.2 in [10, page 355].

Lemma 5.6. Let Y n be a sequence of Rd-valued Markov chains with initial con-
dition distributed according to µ, if the �rst-order di�erential equation dy

dt = b(y, t)
has a unique solution in C1([0, T ],Rd) for any initial condition y0 in the support of
µ, then if

i) lim
n

sup
‖y‖<r,t<T

nP{|Y n
k+1 − Y n

k | > ε | Y n
k = y, k = bntc} = 0

and if the sequences

bn(y, t) ∆= nE[Y n
k+1 − Y n

k | Y n
k = y, k = btnc]

and
an(y, t) ∆= nE[(Y n

k+1 − Y n
k )†(Y n

k+1 − Y n
k ) | Y n

k = y, k = btnc]
satisfy for each r and T :

ii) lim
n

sup
‖y‖≤r,t≤T

|an(y, t)| = 0

and
iii) lim

n
sup

‖y‖≤r,t≤T

|bn(y, t)− b(y, t)| = 0

then the sequence of piecewise constant processes t 7→ Y n
bntc converges in distribution

towards the process Y such that Y0 is distributed according to µ and for each y0 in
the support set of µ, if Y0 = y0, Y· is the unique solution of dy

dt = b(y, t) with initial
condition y0.

Proof of Proposition 2.3. In Lemma 3.3, it is stated that the sequence (Qν,n)n≥1 is
tight in DP . Using observation 2.2 on page 4, it is thus enough to check the three
conditions of Lemma 5.6 for the d-dimensional projections of Xn for all d > M .
Condition (i) is trivially enforced.
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The limiting ordinary di�erential equation is:

dξt(i)
dt

=
1

〈`t, ξt〉 [`
ν
t (i− 1) ξt(i− 1)− `ν

t (i)ξt(i)], i ∈ N .

Because ν is assumed to be nice, `ν
t (i) is bounded from below by β. Hence the

limiting di�erential equation satis�es the local Lipschitz condition and has a unique
solution.

Now we have to check conditions ii) and iii). For all i ∈ N : the ith coordinate
of bn(x, t) equals:

nEQν,n

[
Xn

t+ 1
n
(i)−Xn

t (i)
∣∣Xn

t = x
]

=
1

〈`t, x〉 [`
ν
t (i− 1)x(i− 1)− `ν

t (i)x(i)] .

Hence condition iii) is enforced.
The conditional covariation matrix is symmetric tridiagonal. The diagonal terms

satisfy:

nEQν,n

[
Cov(Xn

t+ 1
n
−Xn

t )[i, i] | Xn
t = x

]
=

`t(i)x(i) + `t(i− 1)x(i− 1)
n〈`t, x〉

The o�-diagonal terms satisfy:

nEQν,n

[
Cov(Xn

t+ 1
n
−Xn

t )[i, i + 1] | Xn
t = x

]
= −`t(i)x(i)

n〈`t, x〉 .

The sum of the absolute values of the coe�cients of an(x, t) is upper bounded by
4/n, which warrants condition ii). ¤

5.4. Proof of Lemma 5.4. Let us �rst prove two preliminary results stated in
Lemmas 5.7 and 5.8.

In this section, `ν is related to ν through equation (2.14), Qν,n is de�ned by (2.1)
and Qν,n is the corresponding law of Xn. Let us �rst derive an alternative form of
the log-likelihood dQν,n

dP n . For any ξ ∈ DP , let us denote the distribution function of
ξt by:

Fξ(t, i)
∆=

∑

j≤i

ξt(j)

and

Iν,n(ξ) ∆=
∑

i≥0

Fξ(0, i) log `ν
0(i)−

∑

i≥0

Fξ(T, i) log `ν
T (i)

+
bnTc−1∑

k=1

1
n

∑

i≥0

Fξ(
k

n
, i)

log `ν
k
n

(i)− log `ν
k−1

n

(i)

1/n
−
bnTc∑

k=0

1
n

log〈`ν
k
n
, ξ k

n
〉 .

Lemma 5.7. For any nice ν, 1
n log dQν,n

dP n (Xn) = Iν,n(Xn).
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Proof. The result follows from

log
dQν,n

dPn
(Xn)

=
bnTc−1∑

k=0

∞∑

i=0

1{Sn
k (Bn

k+1)=i} log
( `ν

k
n

(i)

〈`ν
k
n

, Xn
k
n

〉
)

(a)
=

bnTc−1∑

k=0

∞∑

i=0

log `ν
k
n
(i)

∑

j≤i

n[Xn
k
n
(j)−Xn

k+1
n

(j)]−
bnTc−1∑

k=0

log〈`ν
k
n
, Xn

k
n
〉

(b)
= n

∑

i≥0

log `ν
0(i)

∑

j≤i

Xn
0 (j)− n

∑

i≥0

log `ν
T (i)

∑

j≤i

Xn
T (j)

+n

bnTc−1∑

k=0

1
n

∑

i≥0

log `ν
k
n

(i)− log `ν
k−1

n

(i)

1/n

∑

j≤i

Xn
k
n
(j)−

bnTc∑

k=0

log〈`ν
k
n
, Xn

k
n
〉 ,

where (a) comes from the identity

1{Sn
k (Bn

k+1)=i} = n
∑

j≤i

(
Xn

k
n
(j)−Xn

k+1
n

(j)
)

.

and (b) is Abel's transformation. ¤

Let us now de�ne for all ξ ∈ DP ,

Iν(ξ) ∆=
∑

i≥0

Fξ(0, i) log `ν
0(i)−

∑

i≥0

Fξ(T, i) log `ν
T (i)

+
∫

[0,T ]

[
∑

i≥0

Fξ(t, i)∂t log `ν
t (i)] dt−

∫

[0,T ]

log〈`ν
t , ξt〉 dt .

Lemma 5.8. For any nice ν, we have: Iν(ν) = I(ν).

Proof. For any nice ν, we have

Iν(ν) =
∑

i≥0

Fν(0, i) log `ν
0(i)−

∑

i≥0

Fν(T, i) log `ν
T (i)

+
∫

[0,T ]

[
∑

i≥0

Fν(t, i)∂t log `ν
t (i)] dt−

∫

[0,T ]

log〈`ν
t , νt〉 dt

(a)
=

∑

i≥0

[
Fν(0, i) log `ν

0(i)− Fν(T, i) log `ν
T (i) +

∫

[0,T ]

Fν(t, i)∂t log `ν
t (i) dt

]

(b)
=

∑

i≥0

∫

[0,T ]

−∂tFν(t, i) log `ν
t (i) dt

(c)
=

∑

i≥0

∫

[0,T ]

`ν
t (i)νt(i) log `ν

t (i) dt

(d)
=

∫

[0,T ]

〈`ν
t log `ν

t , νt〉 dt

(e)
= I(ν)
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where (a) follows from Fubini's theorem and log〈`ν
t , νt〉 = 0 for all t, by 2) in

Proposition 2.11, (b) follows from an integration by parts (`ν is t-di�erentiable),
(c) is a direct consequence of the de�nition of `ν , see (2.14), (d) is Fubini's theorem
again and (e) is stated in Proposition 2.11. ¤

We are now in a position to prove Lemma 5.4

Proof of Lemma 5.4, nice νs are really nice. Let us prove that for any ε > 0, there
exists an open neighborhood V of ν such that:

lim inf
n

inf{−Iν,n(ξ); ξ ∈ V } ≥ inf{−Iν(ξ); ξ ∈ V } − ε. (5.9)

Recall that:

Iν,n(ξ) =
∑

i≥0

Fξ(0, i) log `ν
0(i)−

∑

i≥0

Fξ(T, i) log `ν
T (i)

+
bnTc−1∑

k=1

1
n

∑

i≥0

Fξ(
k

n
, i)

log `ν
k
n

(i)− log `ν
k−1

n

(i)

1/n
−
bnTc∑

k=0

1
n

log〈`ν
k
n
, ξ k

n
〉 .

The third summand on the right-hand side may be decomposed as A + B + C
with :

A =
bnTc−1∑

k=1

1
n

∑

i

Fξ(
k

n
, i)

[ log `ν
k
n

(i)− log `ν
k−1

n

(i)

1/n
− ∂t log `ν

k−1
n

(i)
]

B =
bnTc−1∑

k=1

1
n

∑

i

[Fξ(
k

n
, i)− Fν(

k

n
, i)] ∂t log `ν

k−1
n

(i)

C =
bnTc−1∑

k=1

1
n

∑

i

Fν(
k

n
, i) ∂t log `ν

k−1
n

(i).

- Control of A. Thanks to 4. in De�nition 5.3,

∣∣∣∣∣
log `ν

k
n

(i)− log `ν
k−1

n

(i)

1/n
− ∂t log `ν

k−1
n

(i)

∣∣∣∣∣ ≤
K

n

where K stands for any non-negative constant in this proof. As |Fξ| ≤ 1, |A| ≤ K/n.
- Control of B. Thanks to 4. in De�nition 5.3, supt,i |∂t log `ν

t (i)| ≤ K, and it is
possible to �nd an open neighborhood V of ν such that supt,i |Fξ(t, i)−Fν(t, i)| ≤ ε
for all ξ in V . Therefore, |B| ≤ Kε.
- Control of C. As a Riemann series (note that ∂t log `ν

t is continuous thanks to 4.
in De�nition 5.3), limn C =

∫ T

0

∑
i Fν(t, i)∂t log `ν

t (i) dt.
In order to control the fourth summand of the right-hand side of Iν,n(ξ), note

that for all 0 ≤ t ≤ T , |〈`ν
t , νt〉 − 〈`ν

t , ξt〉| ≤ ‖νt − ξt‖. Indeed, thanks to 3. in
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De�nition 5.3:
〈`ν

t , ξt〉 =
∑

i<M

`ν
t (i)ξt(i) +

∑

i≥M

`ν
t (i) ξt(i)

=
∑

i<M

`ν
t (i)νt(i) +

∑

i≥M

ξt(i)

= 1−
∑

i≥M

`ν
t (i) νt(i) +

∑

i≥M

ξt(i)

= 1−
∑

i≥M

[νt(i)− ξt(i)] .

Therefore, for any ε > 0, there exists an open neighborhood V of ν such that:

sup
ξ∈V

∣∣∣∣∣∣

bnTc∑

k=0

1
n

[
log〈`ν

k
n
, ξ k

n
〉 − log〈`ν

k
n
, ν k

n
〉
]
∣∣∣∣∣∣
≤ Kε (5.10)

Combining the above arguments we have proved (5.9).
Note that (5.10) with the continuity of ξ 7→ Fξ implies that Iν is continuous at

ν. Therefore:
sup
V

inf{−Iν(ξ); ξ ∈ V } = −Iν(ν) (5.11)

Observing by Lemma 5.7 that Qν,n and Pn are mutually absolutely continuous
measures and that :

Qν,n-essinfξ∈V

(
1
n

log
dPn

dQν,n
(ξ)

)
≥ inf{−Iν,n(ξ); ξ ∈ V } ,

one completes the proof of the lemma combining this inequality, (5.9), (5.11) and
Lemma 5.8. ¤

5.5. Proof of Lemma 5.5, Nice ν's are dense. To prove Lemma 5.5, we de�ne
two parametrized regularization procedures: see (5.12) and (5.19). Their relevant
properties are stated in Lemmas 5.13 and 5.20. The proof of Lemma 5.5 which is
a straightforward consequence of these preliminary results, is postponed after their
proofs, at the end of this section.

The �rst regularization proceed by time-extension, mixing, and convolution by
the following kernel

ζε(s) ∆=
{

2
ε (1− s

ε ) for 0 ≤ s ≤ ε
0 otherwise

Remember that pt denotes the Poisson distribution with parameter t, it satis�es
(2.5).
As the convolution by the regularizing kernel ζε depends on sample paths up to
time T + ε, we �rst introduce a time-extension ν̃ of ν. For any ν in DI , let ν̃ be
de�ned by:

ν̃
∆=

{
ν̃t = νt for t ∈ [0, T ]
dν̃t

dt (i) = ν̃t(i− 1)− ν̃t(i) for t > T and i ≥ 0

and let να,ε
t be de�ned for all t ≥ 0 by:

να,ε ∆= ζε ∗ να, where να
t

∆= (1− α)ν̃t + αpt (5.12)
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that is: να,ε
t =

∫∞
0

ζε(s)να
t+s ds.

The paths ν̃, να and να,ε belong to D([0,∞),P(N)). Notice that the restriction of
να,ε to [0, T ] satis�es condition 2 in the De�nition 5.3 of nice ν's and that να,ε

. (i)
and `να,ε

. (i) are in�nitely di�erentiable with respect to t for all i (see (2.14)). Let
Ĩ be de�ned by:

Ĩ(ν̃) ∆=
∫

[0,∞)

H(vν̃
t | ν̃t) dt ,

where vν̃
t is de�ned by (2.7). The following lemma summarizes the main properties

of the regularized sample path να,ε.

Lemma 5.13. If I(ν) < ∞, the following statements hold:

Ĩ(να) ≤ I(ν), (5.14)
Ĩ(ν̃(·+ s)) ≤ I(ν), ∀s ≥ 0, (5.15)

Ĩ(να,ε) ≤ Ĩ(να), (5.16)

lim
α↓0,ε↓0

sup
t≤T

‖να,ε
t − νt‖ = 0 (5.17)

lim
α↓0,ε↓0

Ĩ(να,ε) = I(ν) . (5.18)

Proof. Note that as pt(i) > 0 for all t > 0, i ∈ N, for all α > 0 we have να
t (i) > 0,

να,ε
t (i) > 0, and thus `α,ε

t (i) is uniquely de�ned by (2.14).
As ν̃t = νt and `ν̃

t = `ν
t for t ≤ T and `ν̃

t = 1 for t > T , we have:

Ĩ(ν̃) = I(ν) +
∫

[T,∞)

〈1 log 1, ν̃s〉 ds = I(ν).

The convexity of Ĩ implies the inequalities (5.14) and (5.16).
The same remarks imply that time-shifting may only decrease the rate function,
that is: (5.15).
The convergence (5.17) follows from

sup
t≤T

‖να,ε
t − νt‖

= sup
0≤t≤T

||
∫ ∞

0

((1− α)ν̃t+s + αpt+s) ζε
s ds− νt||

≤ sup
0≤t≤T

(1− α)||
∫ ∞

0

(ν̃t+s − ν̃t)ζε
s ds||+ α||

∫ ∞

0

(pt+s − ν̃t)ζε
s ds||

≤ sup
0≤t≤T

(1− α)||
∫ ∞

0

(ν̃t+s − ν̃t)ζε
s ds||+ 2α (as ‖ν̃t+s − ν̃t‖ ≤ 2s)

≤
∫ ε

0

2s ζε
sds + 2α

≤ ε + 2α,

where the penultimate inequality is a consequence of Corollary 4.7.
Proof of (5.18). Now we identify να,ε with its restriction to [0, T ]. Inequalities

(5.14) and (5.16) imply that I(να,ε) ≤ I(ν) for all α, ε > 0. On the other hand, as
I is lower semi-continuous, with (5.17), we obtain lim infα,ε I(να,ε) ≥ I(ν). Hence,
limα,ε I(να,ε) = I(ν). ¤
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The second regularization procedure operates directly on `ν . For any integer M,
let us de�ne ΦM by ΦM `ν

t (i) = `ν
t (i) for i ≤ M, t ≥ 0, and ΦM `ν

t (i) = 1 for all
i > M and t ≥ 0. The associated sample path νM is de�ned by:

ν̇M
t (i) = [ΦM `ν

t (i− 1)]νM
t (i− 1)− [ΦM `ν

t (i)]νM
t (i) . (5.19)

Lemma 5.20. If I(ν) < ∞ and `ν
. (i) is t-continuous for all i ≥ 0, the following

statements hold:
lim

M→∞
sup
t≤T

‖νt − νM
t ‖ = 0 (5.21)

lim
M→∞

I(νM ) = I(ν) . (5.22)

Proof. Thanks to the t-continuity of `ν
. (i) for all i, supt,i ΦM `ν

t (i) < ∞. By con-
struction, for any i ≤ M, νM

t (i) = νt(i) for all t. It follows that
I(ν)− I(νM )

=
∫

[0,T ]

[ ∑

i≤M

(νt(i)− νM
t (i))`ν(t, i) log `ν(t, i) +

∑

i>M

νt(i)`ν
t (i) log `ν

t (i)
]
dt

=
∫

[0,T ]

[ ∑

i>M

νt(i)`ν
t (i) log `ν

t (i)
]
dt.

Letting M tend to in�nity, by dominated convergence, the right-hand side vanishes
and (5.22) is established.
Let us prove (5.21).

∑

i≥0

|νM
t (i)− νt(i)|

=
∑

i

∣∣∣∣∣
∫

[0,t]

(ν̇M
s (i)− ν̇(i)) ds

∣∣∣∣∣

=
∑

i>M

∣∣∣∣∣
∫

[0,t]

(νM
s (i− 1)− νM

s (i)− `ν
s (i− 1)νs(i− 1) + `ν

s (i)νs(i)) ds

∣∣∣∣∣

≤ 2
∫

[0,t]

∑

i>M

|νM
s (i)− νs(i))| ds + 2

∑

i>M

|
∫

[0,t]

[`ν
s (i)− 1]νs(i)| ds

≤ 2
∫

[0,t]

∑

i≥0

|νM
s (i)− νs(i)| ds + hM (t) ,

where hM (t) ∆= 2
∑

i>M

∫
[0,t]

(`ν
s (i) + 1)νs(i) ds. Applying Gronwall's lemma:

∑

i≥0

|νM
t (i)− νt(i)| ≤ hM (t) + 2

∫ t

0

hM (s)e2(t−s) ds

Let us now remember that according to Dini's lemma, a sequence of continuous
functions decreasing pointwise towards 0 on the compact interval [0, T ] is also
uniformly convergent. Therefore to establish (5.21), it remains to note that hM

decreases pointwise to 0 as M tends to ∞. ¤
Proof of Lemma 5.5. Let ν be in DI . First apply the regularization (5.12). Then,
apply the second regularization (5.19) to να,ε for α, ε small enough. The resulting
path is a nice path and the desired result follows from Lemmas 5.12 and 5.19. ¤
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5.6. What's in a large deviation. The characterization of the ldp enables to
investigate twisted allocation processes. Let us give a simple example. Assume that
at time 0, all bins are empty and that at time t, `t(i) = θ+i

1+t , where θ > 0. Let νt

be the unique solution of the system:
ν̇t(i) = `t(i− 1)νt(i− 1)− `t(i)νt(i) .

Little calculus establishes:

νt(i) =
(

θ

t + θ

)θ Γ(θ + i)
Γ(θ)Γ(i + 1)

(
t

t + θ

)i

,

which simpli�es to

νt(i) =
1

1 + t

(
t

1 + t

)i

,

when θ = 1. Hence when θ = 1, νt is a geometric distribution with expectation
t., in the general case it is a the Pascal distribution of parameter θ, t

1+t (see for
example [11] p. 166). The rate function is �nite at ν,, for example for θ = 1 :

I(ν) =
∫ T

0

dt

[∑

i

1 + i

(1 + t)2
log

(
1 + i

1 + t

)(
t

1 + t

)i
]

≤
∫ T

0

dt

[∑

i

(1 + i)2

(1 + t)3

(
t

1 + t

)i
]

≤
∫ T

0

dt

[
1 + 3t + 2t2

(1 + t)2

]

≤ 2T − ln(1 + T ).

Hence, twisting the allocation probability may modify the integrability properties
of the typical sample path. For example, if X is geometrically distributed then
X log X does not have any more exponential moments.

6. Stronger topologies
One may wonder whether stronger topologies could be considered. Recall that

Xn
t is very similar to the empirical measure of a Poisson random variable with

parameter t. The latter satis�es the ldp with respect to the total variation distance
with the good rate function H(· | pt). And it is not reasonable to think of test
functions that could be larger than i log i. As a matter of fact, if ν has �nite
relative entropy with respect to any Poisson distribution then 〈i log i, ν〉 < ∞. But
the distribution ν(i) ∝ 1

i2 log2+δ(i)
with δ > 0 has �nite relative entropy with respect

to any Poisson distribution although 〈i log1+ε(i), ν〉 = ∞ as soon as ε ≥ δ (see [17]
for approaches to extension of Sanov's theorem).

Let p be strictly larger than 1 and let H be the class of sequences de�ned by:

H = {G = (G(i))i∈N : |G(0)| = 1 and for i ≥ 1, |DG(i]| ≤ log
1
p (i)}.

If G ∈ H then |G(i)| ≤ i log1/p(i). In this section we consider the following
metric on DP :

dH(ν, ν′) ∆= sup
s∈[0,T ]

sup
G∈H

(〈G, νs〉 − 〈G, ν′s〉) . (6.1)
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Theorem 6.2. The sequence
(
Xn

)
satis�es the ldp with good rate function I on

DP equipped with the topology de�ned by the metric dH.

The proof of Theorem 6.2 proceeds according to the following steps. The lower-
semi-compactness of I under metric dH and the exponential equivalence between
(Xn) and the linearly interpolated process (X̂n) are established. Finally the expo-
nential tightness of (X̂n) is established using an exponential Martingale argument.
The theorem follows from the inverse contraction principle [9, theorem 4.2.4].

Lemma 6.3. I is a good rate function under the topology induced by metric dH.

Proof. The convexity and the lower-semi-continuity of I still hold. It is enough to
prove that the �niteness of I(ν) (say I(ν) ≤ α for some α > 0), implies both an
upper bound on the modulus of continuity under metric dH and that there exists
a compact set Kα of P(N) such that νt ∈ Kα.

Let ν ∈ DP be such that I(ν) < ∞. For any G ∈ H,

〈G, νt − νs〉 (a)
=

∫

[s,t]

〈`ν
u DG, νu〉 du

(b)
=

∫

[0,T ]

〈1[s,t]DG`ν
u, νu〉 du

(c)

≤
[∫

[0,T ]

〈1[s,t], `
ν
uνu〉du

]1/q

×
[∫

[0,T ]

〈|DG|p, `ν
uνu〉 du

]1/p

(d)

≤ |t− s|1/q ×
∫

[0,T ]

〈v, `ν
uνu〉du (6.4)

where we set v(0) = 1 and for i ≥ 1, v(i) = log(i). Indeed, (a) follows from
Proposition 2.11, (b) is immediate, (c) follows from Hölder's inequality and (d)
from the de�nition of H. Now

∫

[0,T ]

〈v, `ν
uνu〉du

(a)

≤
∫

[0,T ]

〈(i− 1)i∈N, νu〉 du +
∫

[0,T ]

〈`ν
u log `ν

u, νu〉 du

(b)

≤ 〈(i), ν0〉T +
T 2

2
+ I(ν) , (6.5)

where (a) follows from the application of Young's inequality in the duality between
τ and τ∗, i.e. xy ≤ τ(x) + τ∗(y), and (b) from Proposition 2.11 again. Combining
inequalities (6.4) and (6.5), we get:

sup
G∈H

〈G, νt − νs〉 ≤
(T 2

2
+ 〈i, ν0〉T + I(ν)

)1/p(t− s)1/q . (6.6)

To check the compact containment property under metric dH, it is enough to check
that if I(ν) < ∞ and 〈φ, ν0〉 < ∞ where φ(i) = (i log i), then:

〈(i log i)i∈N, νt〉 ≤ 〈i log i, ν0〉+ I(ν) + e(
t2

2
+ (1 + 〈i + 1, ν0〉)t).
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As I(ν) < ∞, by Proposition 2.11:
d〈φ, νt〉

dt

(a)
= 〈Dφ`ν

t , νt〉
(b)

≤
∑

νt(i) (`ν
t (i) log `ν

t (i)− (`ν
t (i)− 1))

+
∑

νt(i) (eDφ(i) −Dφ(i)− 1)

+
∑

νt(i) Dφ(i)

(c)

≤ 〈φ(`ν
t ), νt〉+ e (t + 1 + 〈i + 1, ν0〉),

where inequality (b) follows from Young's inequality in the duality between τ and
τ∗, and inequality (c) follows from Dφ(i) ≤ 1+log(i+1), 〈`ν , ν〉 = 1 and 〈i+1, νt〉 =
〈i + 1, ν0〉.

Integration with respect to t �nishes the proof. ¤

In the sequel, X̂n denotes the linearly interpolated version of Xn:

X̂n
t

∆= Xn
bntc

n

+
(
t− bntc

n

)(
Xn
dnte

n

−Xn
bntc

n

)
.

By Theorem 4.2.13 in [9], the exponential equivalence between Xn and X̂n warrants
that X̂n satis�es the ldp with good rate function I under the topology induced by
the total variation distance.
Lemma 6.7. Xn and X̂n are exponentially equivalent under the topology de�ned
by metric dH.

Let us denote by Ln(k) ∆= Sn
k−1(B

n
k ) the occupancy score at time k−1

n of the bins
where the kth allocation takes place at time k

n .
Proof. As:

∑

i≥0

G(i)[Xn
k/n(i)−Xn

(k+1)/n(i)] =
1
n

DG(Ln(k) ≤ 1
n

log1/p(Ln
k ) ,

we have

P
[
sup
t≤T

sup
G∈H

〈G, Xn
t − X̂n

t 〉 ≥ η

]
≤ P

[
sup

k≤nT

1
n

log Ln(k) ≥ η

]

≤ nTP
[
Ln
bnTc ≥ enη

]
.

But at time T = k/n, ess-sup
(
Sn

k−1(B
n
k )

)
is smaller than nT . Hence:

∀η, ∀n, enη > nT ⇒ sup
t≤T

sup
G∈H

〈G,Xn
t − X̂n

t 〉 < η.

So for all η > 0:

lim
1
n

logP
[
sup
t≤T

sup
G∈H

〈G,Xn
t − X̂n

t 〉 ≥ η

]
= −∞ .

¤
It remains to show that (X̂n) also satis�es the ldp with the good rate function I

with respect to the topology de�ned by (6.1). By the inverse contraction principle
[9], it is enough to check the exponential tightness.
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Lemma 6.8. The sequence (X̂n) is exponentially tight under the topology induced
by metric dH.

In the proof, we will use the following inequality obviously obtained from Cauchy-
Schwartz one. Let q(i) be a probability on N having �nite expectation. Then for
some universal constant C we have,

∑

i≥0

q(i)3/4 ≤ C
(∑

i≥0

i q(i)
)1/2

< ∞ . (6.9)

Proof. Indeed, in view of Lemma 6.3, it is enough to check that for any α > 0,

lim sup
n

1
n

logP
{

I(X̂n) > α
}

< 0 .

Note �rst that:

I(X̂n) =
bnTc∑

k=0

1
n

log
1

Xn
k−1(L

n
k )

Denote by Zm the following quantity:

Zm
∆=

m∏

k=0

[X̂n
k−1(S

n
k−1(B

n
k ))]−1/4

∑
i≥0[X̂

n
k−1(i)]3/4

.

One may check that Zm is an Am-martingale. This entails:

EPn


exp


n

4
I(X̂n)−

bntc∑

k=1

log[
∑

i≥0

(Xn
k−1

n

(i))3/4]





 = EPn [Z1] . (6.10)

Now

Z1 =
[Xn

0 (Sn
0 (Bn

1 ))]−1/4

∑
i[X

n
0 (i)]3/4

≤ [Xn
0 (Sn

0 (Bn
1 ))]−1/4 = [ν0(Sn

0 (Bn
1 ))]−1/4 ,

thus using the initial remark:
EPn [Z1] ≤

∑

i

[ν0(i)]3/4 < ∞.

On the other hand, by ( 6.9) and recalling 〈(i)i∈N, X̂n
T 〉 ≤ 〈(i)i∈N, X̂n

0 〉+ T
∑

i≥0

[X̂n
T (i)]3/4 ≤ C(〈i, X̂n

0 〉+ T )1/2 ∆= K,

thus:

ZbnTc ≥ K−bnTc
bnTc∏

k=1

[Xn
k−1(S

n
k−1(B

n
k ))]−1/4 . (6.11)

Finally:

P
{

I(X̂n) ≥ α
}

= P
{

K−bnTc exp(
n

4
I(X̂n)) ≥ K−bnTc exp(

nα

4
)
}

≤ P
{

ZbnTc ≥ K−bnTc exp(
nα

4
)
}

≤ EPn [Z1] KbnTc exp(−nα

4
)
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As EPnZ1 < ∞,

lim sup
n

1
n

logP
{

I(X̂n) > α
}
≤ −

[
−T log K +

α

4

]

which is negative for su�ciently large α. ¤

7. An application to random graphs
The charm of probabilistic approaches pertains partly to their robustness: the

validity of a limit theorem often extends to models that are variants of the original
model. This is illustrated in this section: Theorem 2.9 is used to characterize the
Large Deviations of the degree sequence of sparse random graphs.

In the Erdös-Rényi G(n, btnc) model for random graphs, btnc edges are inserted
at random among n vertices. When t remains �xed while n tends to in�nity, the
model deals with sparse random graphs (with average degree 2t). The degree of
vertex i after k = bntc edge insertions is denoted Un

i (k). Any (random) graph
de�nes an empirical probability measure V n(k) on N:

V n
t

∆=
1
n

n∑

i=1

δUn
i (btnc) .

This empirical measure is called the degree distribution of the graph, it is one of the
fundamental objects of study in random graph theory [4].

If vertices are identi�ed with bins and edge extremities with balls, the degree
distribution may be regarded as a conditioned empirical occupancy measure. Sev-
eral papers [21, 5, 7] actually describe the random graph generation process as a
conditioned allocation process: balls are allocated by pairs, and two balls belonging
to the same pair may not be allocated in the same bin (to prevent the formation of
self-loops), and the pair of balls corresponding to edge k may not be allocated into
a pair of bins i and i′ which has already received a pair a balls previously.

The conditioning approach is fruitful when establishing upper bounds, but it runs
into di�culties when trying to prove ldp. Hence, we will resort on coupling and
exponential approximation arguments to derive an ldp for the degree distribution
of sparse random graphs. We indeed establish the following ldp for the degree
distribution:

Theorem 7.1. In the G(n, btnc) random graph model, the empirical degree distri-
bution satis�es a ldp with the good rate function:

I ′(µ) ∆= inf
{

I(ν) : ν ∈ DP([0, 2t],P(N)), ν2t = µ

}

The theorem is a consequence of the following coupling lemma and Theorem in
[9, theorem 4.2.13.].

Lemma 7.2. There exists a sequence of probability spaces over which one may de-
�ne a random variable

(
Y n

t

)
t≤T

distributed like
(
Xn

t

)
and another random variable(

Wn
t

)
t≤T

distributed like
(
V n

t

)
t≤T

and such that for any ε > 0:

lim
n

1
n

logP
{

sup
t
‖Y n

2t −Wn
t ‖ > ε

}
= −∞ .
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Proof. The coupling space is de�ned as follows. After step k, 2k balls have been
inserted into the n bins and k edges have been inserted among the n vertices. At
step k+1, a couple of indices (i, i′) is picked uniformly at random, a ball is inserted
into bin i and another ball is inserted into bin i′ (both bins may be identical).
If i 6= i′ and if the edge {i, i′} had not been inserted previously then the edge
{i, i′} is inserted, otherwise a new couple of indices is picked at random until the
couple de�nes a new edge, then this edge is inserted into the random graph under
construction.

Notice that the probability that the pair of bins that receive the two balls
at step k di�ers from the pair of vertices adjacent to the kth edge is equal to
1
n + (1− 1

n ) 2k
n(n−1) ≤ 1

n (1 + 2T ). Let ∆n denote the total number of steps with
index less than nT at which the insertion in the random allocation process and the
insertion in the graph construction process di�er. It is worth noting that

sup
t≤T

‖Y n
2t −Wn

t ‖ ≤
8∆n

n
. (7.3)

As Sn is a sum of independent Bernoulli random variables with success probability
( 1

n +(1− 1
n ) 2k

n(n−1) )k≤nT , E∆n ≤ T (1+T ) and Var(∆n) ≤ T (1+2T ). Now applying
Bernstein's inequality, we get:

P
{

∆n ≥ T (1 + T ) + s

}
≤ exp−

[
s2

2(T (1 + 2T ) + s/3)
.

]
. (7.4)

The lemma follows by combining inequalities (7.4) and (7.3). ¤

Note that the full ldp does not follow immediately if the graph process is con-
sidered as a conditioned allocation process as in [21, 5, 7]: the conditioning event
is not measurable with respect to the �ow of empirical occupancy measure. For
sparse random graphs, Theorem 7.1 complements the results reported in [18] where
events with polynomially small probability are characterized.

Appendix A
While proving Lemma 3.7, the following convergence result has been used. It is

probably a standard result, but we did not �nd references for it.
Theorem A.1. Let X be a complete metric vector space and (fn)n≥1 be a sequence
of numerical convex lower semicontinuous functions on X such that for all x ∈ X,
supn≥1 fn(x) < ∞.
If (fn)n≥1 converges pointwise to f : limn→∞ fn(x) = f(x) ∈ R for all x ∈ X, then
it also converges uniformly on any compact subset.
Proof. The argument essentially relies on Baire's and Dini's theorems.

Let us denote gn = supk≥n fk. Under our assumptions, (gn) is a sequence of
convex �nite lower semicontinuous functions on X. Since X is a complete metric
vector space, a consequence of Baire's theorem is that any convex �nite lower
semicontinuous function on X is continuous, see [12, Thm. 9, p. 112]. Therefore,
(gn) is a nonincreasing sequence of continuous functions converging pointwise to
lim supn fn = f. By Dini's theorem, (gn) converges uniformly on any compact
subset of X. In particular, f is continuous in restriction to any compact subset.

Let us denote hn the convex lower semicontinuous envelope of infk≥n fn. It de-
�nes a nondecreasing sequence of �nite convex lower semicontinuous functions on
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X which converges pointwise to the convex lower semicontinuous envelope f̄ of f.
By Dini's theorem again, (hn) converges uniformly on any compact subset to f̄ .
But, we have already seen that in restriction to any compact subset, f is continu-
ous. Hence, we have: f̄ = f on any compact and (hn) converges uniformly on any
compact subset to f.

As hn ≤ fn ≤ gn, we have proved that (fn) converges uniformly on any compact
subset. ¤
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