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1. Introduction

We consider the energy functionals defined on the space: M(Ω), of the signed measures on the
measure space (Ω,A) which are of the following form

I(Q) =
∫

Ω

γ∗
(

dQ

dR

)
dR ∈ [0,+∞], Q ∈ M(Ω)

if Q is absolutely continuous with respect to a given nonnegative reference measure R, and
I(Q) = +∞ otherwise. The function γ∗ : IR → [0,∞] is the convex conjugate of a function γ, hence
it is convex and closed. With the special choice: γ(x) = ex−x−1, we get γ∗(x) = (x+1) log(x+1)−x

and I(P − R) is the Kullback information of P with respect to R which is sometimes called the
Boltzmann-Shannon entropy.
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Let A : M(Ω) → X be a linear operator on M(Ω) with its values in a vector space X ; A(Q) = xo

is the expression of a linear constraint. We are concerned with the minimum energy problem

(1.1) inf {I(Q) ; Q ∈ M(Ω), A(Q) = xo} .

Notice that a solution to (1.1) is absolutely continuous with respect to R. Such a minimization
problem is sometimes called a maximum entropy problem: −I may be seen as an entropy.

The classical moment constraint:
∫

Ω

ak dQ = xo
k, ak : Ω → IR, 1 ≤ k ≤ n corresponds to X = IRn

and A(Q) =
(∫

Ω
ak dQ

)
1≤k≤n

. In this paper, we consider its infinite dimensional analogue which
is formally specified by

(1.2)
(∫

Ω

a(t, ω)Q(dω)
)

t∈T

:= A(Q) = (xo
t )t∈T ∈ X = XT

where T is an index set, X is a vector space and a is an X-valued function defined on T ×Ω. Seen
as an equation in the variable Q where a and xo are given parameters, (1.2) is a Fredholm integral
equation. The formal Fenchel dual problem associated with (1.1) is

sup
{
〈y, xo〉 −

∫

Ω

γ(A∗y) dR ; y ∈ Y
}

where Y is a vector space in duality with X , A∗ is the formal adjoint of A and A∗y is a measurable
function for any y ∈ Y. In this paper, it is proved that, under some assumptions,

(1.3) inf {I(Q) ; Q ∈ M(Ω), A(Q) = xo} = sup
y∈Y

{
〈y, xo〉 −

∫

Ω

γ(A∗y) dR

}

and that if this value is finite, the infimum is attained. As a consequence, we get a variational
criterion for the existence of a solution to (1.2), under the additional constraint: I(Q) < ∞, which
implies in particular that Q is absolutely continuous with respect to R.

It appears that when the domain of the function γ is a proper subset of IR, (1.3) doesn’t hold
anymore. This situation will also be taken into account; in order that a dual equality holds, one
must extend the energy functional I from M(Ω) to some linear forms which are not measures
anymore and are singular with respect to the reference measure R. This phenomenon is already
known, see for instance [5] and [21].

In [6], it is proved that (1.3) holds when γ is finite everywhere and A is a continuous operator from
L1(Ω, R) to a normed space X . Such an equality had already been obtained by R. T. Rockafellar
([35], Theorem 23) in the case where f 7→ ∫

Ω
γ(f) dR is everywhere finite and continuous on some

reflexive Orlicz space built on (Ω,A, R).

In the present paper, using standard Fenchel duality techniques developped in [35], (1.3) (and
its extension when γ achieves the value +∞) together with the primal attainment are obtained,
essentially assuming that for some vector space Y (dually paired with X ) which separates X , the
range A∗Y is a function space and

∀y ∈ Y, ∃λ > 0 such that
∫

Ω

γ(λA∗y) dR +
∫

Ω

γ(−λA∗y) dR < ∞.
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Let us note that a characterization of the primal solution is stated in [27] under the stronger
assumption: ∀y ∈ Y,

∫
Ω

γ(A∗y) dR < ∞.

The marginal problems are of type (1.2). Let us first describe the simplest one in order to give an
illustration. Considering a product measure space Ω = Ω1 ×Ω2, one wishes to find some measures
Q on Ω which are absolutely continuous with respect to R and whose marginals Q1 on Ω1 and Q2

on Ω2 are given. The constraint is Q1 = ν1 ∈ M(Ω1), Q2 = ν2 ∈ M(Ω2) which corresponds to
A(Q) = (Q1, Q2) ∈ X = M(Ω1) ×M(Ω2). Marginal problems of type (1.1) are considered in [10],
[4] and [9]. See also [3] for a close related problem.

This problem can be extended with an infinite number of marginals. Let E be a state space and
let Ω = E[0,1] be the space of the E-valued paths ω = (ωt)0≤t≤1. If Q is a probability measure on
Ω, let Qt ∈ M(E) stand for its marginal at time t : the law of ωt under Q. The problem can be
stated as follows:

(1.4) “Does there exist Q ∈ M1(E[0,1]) such that Q ¿ R and Qt = νt, ∀0 ≤ t ≤ 1 ?”

The constraint Qt = νt,∀0 ≤ t ≤ 1, where (νt)0≤t≤1 is a given flow of probability measures on E,

corresponds to A(Q) = (Qt)0≤t≤1 ∈ X = M(E)[0,1]. Such problems of reconstruction of absolutely
continuous (w.r.t. R) laws with given marginal flows appear naturally in the statistical mechanics
of large dynamical particle systems (see [14], [19], [7]).

If (νt)t∈[0,1] is given by the square modulus of a solution to the Schrödinger equation and R is the
Wiener measure, (1.4) is a problem which was addressed by E. Nelson (see [31]). A positive answer
to this question is fundamental for the construction of stochastic mechanics. A related problem
has first been solved with a positive answer by E. Carlen in [8], using partial differential equation
techniques.

The intermediate problem where the only initial and final marginal laws are constrained: Q0 = ν0,

Q1 = ν1 is related to the construction of Schrödinger bridges (see [1], [13],[17], [18], [19], [30],[37]).
It is also a Fredholm equation of type (1.2).

In the above reconstruction problems motivated by physical questions, the relevant energy
functional is the Kullback information. In [7], [9],[14], [15], [19] and [21], the dual equalities are
by-products of large deviation principles (see [16]).

In Section 2, an abstract dual equality is derived along the usual lines of the Fenchel duality
theory (see [35]). Some basic estimates which have already been used in [25] and [26] are also
needed.

In Section 3, this abstract equality is applied to energy functionals. Orlicz spaces are very well
designed for this purpose.

In Section 4, our main general result is stated in Theorem 4.1. It is a direct corollary of the main
results of Sections 2 and 3.

Then, Theorem 4.1 is applied to typical Fredholm equations in Section 5. In particular, an
example of constrained diffusion process is developed.

Finally, in Section 6, we investigate several marginal problems for stochastic processes, which
have the flavour of the question (1.4).
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2. An abstract dual equality
All the vector spaces are real. Let U be a vector space and Φ : U → [0,∞] be a real extended
function which satisfies

(2.1) Φ is convex, Φ(U) ⊂ [0,∞] and Φ(0) = 0.

Let U∗ be the algebraic dual space of U. We define the convex conjugate of Φ for the duality (U,U∗)
by:

Φ∗ : ` ∈ U∗ 7→ sup
u∈U

{〈`, u〉 − Φ(u)} ∈ [0,∞].

It is easy to check that (2.1) also holds for Φ∗.

Assumption (2.1) is a normalization condition: it doesn’t imply a great loss of generality. Indeed,
let Φ be bounded below by an affine function and Φ(0) < ∞. Its convex envelope: cv(Φ), satisfies
∂cv(Φ)(0) 6= ∅. Let us define Φo(u) = cv(Φ)(u) − [〈`o, u〉 + cv(Φ)(0)] with `o in ∂cv(Φ)(0). Then,
Φo satisfies (2.1) and Φ∗(`) = Φ∗o(`− `o)− cv(Φ)(0).

In order to state the linear constraints on U∗, let us introduce the linear operator

A : ` ∈ U∗ 7→ A` ∈ X

on U∗ with its values in the algebraic dual space X = Y∗ of some vector space Y. We consider the
(primal) minimization problem

(P) inf {Φ∗(`) ; ` ∈ U∗, A` = xo}

where xo ∈ X specifies the linear constraint. Let us state now two regularity assumptions on Φ :

(2.2) Φ is σ(U,U∗)-lower semicontinuous,

(2.3) Φ∗ has σ(U∗, U)-compact level sets.

Notice that without any assumptions, Φ∗ is σ(U∗, U)-lower semicontinuous: it admits σ(U∗, U)-
closed level sets. In order to state the dual problem associated with (P), let us introduce the adjoint
operator of A :

A∗ : y ∈ Y 7→ A∗y ∈ U∗∗

which is defined on Y, with its values in the algebraic bidual U∗∗ of U, for any y ∈ Y, by:
〈A∗y, `〉U∗∗,U∗ = 〈y, A`〉Y,X . The canonical imbedding U ⊂ U∗∗ is done. The following assumption
on the regularity of A :

(2.4) A∗(Y) ⊂ U

will appear to be crucial for our results. The Fenchel dual problem associated with (P):

(D) sup {〈y, xo〉 − Φ(A∗y) ; y ∈ Y}
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is meaningful if (2.4) holds. The aim of this section is to prove in Theorem 2.3 the dual equality:
inf (P) = sup (D), under the assumptions (2.1), (2.2), (2.3) and (2.4).

Let us first establish some preliminary results in Lemmas 2.1 and 2.2. We introduce the perturbation

F : U∗ ×X → [0,∞] defined for all ` ∈ U∗, x ∈ X by

F (`, x) := Φ∗(`) + δ(A` + x | xo)

where δ(x | xo) =
{

0 if x = xo

+∞ if x 6= xo is the convex indicator of xo. We also define the optimal value

function θ : X → [0,∞], for any x ∈ X , by

θ(x) := inf
`∈U∗

F (`, x) = inf{Φ∗(`) ; ` ∈ U∗, A` = xo − x}

so that (P) is inf{F (`, 0) ; ` ∈ U∗} and its value is inf (P) = θ(0).

Lemma 2.1. If (2.1), (2.3) and (2.4) hold, then θ is a σ(X ,Y)-closed convex function.

Proof. The assumption (2.4) implies that A is σ(U∗, U)-σ(X ,Y)-continuous. Indeed, for any
y ∈ Y, the function ` ∈ U∗ 7→ 〈y,A`〉 = 〈`, A∗y〉 is σ(U∗, U)-continuous, since A∗y ∈ U.

But, by (2.3), Φ∗ has σ(U∗, U)-compact level sets and we have just seen that ` 7→ xo − A` is
σ(U∗, U)-σ(X ,Y)-continuous. Hence, the function x ∈ X 7→ θ(x) = inf{Φ∗(`) ; xo − A` = x} has
σ(X ,Y)-compact level sets. For this standard argument, see for instance ([16], Theorem 4.2.1.(a)).
In particular, θ is σ(X ,Y)-lower semicontinuous.

On the other hand, as F is convex on U∗ × X , x 7→ θ(x) = inf`∈U∗ F (`, x) is also convex (see [35],
Theorem 1).

Finally, as Φ∗ ≥ 0 (by (2.1)), we have θ ≥ 0 : θ is bounded below by an affine function, and since
θ(xo) = 0 : θ is not identically equal to +∞. This completes the proof of the lemma.

Now, let us introduce the Lagrangian K : U∗×Y →]−∞,∞], which is defined for any ` ∈ U∗, y ∈ Y,

by
K(`, y) : = inf

x∈X
{〈y, x〉+ F (`, x)}

= Φ∗(`) + 〈y, xo〉 − 〈A`, y〉
and the dual objective function g : Y → [−∞,∞[, defined for any y ∈ Y, by

g(y) := inf
`∈U∗

K(`, y).

In the general theory (see [35]), the dual problem is sup{g(y) ; y ∈ Y}. Taking the following Lemma
2.2 into account, its expression is given by (D) above.

Lemma 2.2. If (2.1), (2.2) and (2.4) hold, then

g(y) = 〈y, xo〉 − Φ(A∗y), y ∈ Y.

Proof. For any y ∈ Y,

inf
`∈U∗

K(`, y) = 〈y, xo〉 − sup
`∈U∗

{〈`, A∗y〉 − Φ∗(`)}

= 〈y, xo〉 − Φ∗∗(A∗y)
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with A∗y ∈ U (by (2.4)), where Φ∗∗ : U → [0,∞] is the convex conjugate of Φ∗ for the duality
(U,U∗). As Φ is bounded below by an affine function (Φ ≥ 0), Φ∗∗ is the convex σ(U,U∗)-lower
semicontinuous regularized of Φ. Because of the assumptions (2.1) and (2.2), Φ is closed. Therefore,
we have: Φ∗∗ = Φ, which completes the proof of the lemma.

We are now ready to state the main result of the section.

Theorem 2.3. We assume (2.1), (2.2), (2.3) and (2.4). The dual equality

inf{Φ∗(`) ; ` ∈ U∗, A` = xo} = sup
y∈Y

{〈y, xo〉 − Φ(A∗y)}

holds. If this value is finite, then (P) admits at least a solution.

Proof. The last statement is a direct consequence of (2.3).
Let us prove inf (P) = sup (D). For any y ∈ Y,

g(y) = inf{〈y, x〉+ F (`, x) ; ` ∈ U∗, x ∈ X}
= inf

x∈X
{〈y, x〉+ θ(x)}

= (−θ)∗(y) (concave conjugate of − θ).

It follows that −g∗ = θ∗∗, where g∗ is the concave conjugate of g and θ∗∗ is the convex biconjugate
of θ for the duality (X ,Y). But, by Lemma 2.1, θ is a σ(X ,Y)-closed convex function, so that:
θ∗∗ = θ. In particular, for x = 0 we get: −g∗(0) = θ(0). This means that

− inf
y∈Y

{〈y, 0〉 − g(y)} = inf{Φ∗(`) ; A` = xo − 0}

which, taking Lemma 2.2 into account, is the desired dual equality.

3. A dual equality for energy functionals
In the present section, we are going to apply the results of Section 2 to the case where Φ∗ is an
energy functional which is the convex conjugate of an integral functional Φ.

Let (Ω,A) be a measure space and R be a σ-finite measure on A. Let γ : IR → [0,∞] be a function
which satisfies

(3.1) γ is convex, lower semicontinuous, γ(IR) ⊂ [0, +∞], γ(0) = 0, γ is not identically equal
to zero and ]− α, +α[⊂ dom γ for some α > 0.

In the sequel, R-a.e. equal functions are identified. We define the function space

U :=
{

u : Ω → IR ; measurable such that there exists(3.2)

λ > 0 with
∫

Ω

γ(λu) dR +
∫

Ω

γ(−λu) dR < ∞
}
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Let us denote
γo(t) = max(γ(t), γ(−t)), t ∈ IR.

As it is a Young function, one can define the Orlicz space Lγo = Lγo(Ω,A, R) by

Lγo = {u : Ω → IR ; measurable such that ‖u‖γo < ∞} with

‖u‖γo = inf
{

a > 0 ;
∫

Ω

γo

( |u|
a

)
dR ≤ 1

}

We have

(3.3) U = Lγo .

It is assumed that 0 stands in the interior of dom γ to avoid the trivial situation: U = {0}.
In contrast with Lγo , its subspace

(3.4) Mγo =
{

u : Ω → IR ; measurable such that: ∀λ ≥ 0,

∫

Ω

γo(λ|u|) dR < ∞
}

will be considered in the proof of Theorem 3.4 below. It is a vector subspace of Lγo . The spaces
Lγoand Mγo are endowed with the Orlicz norm ‖ · ‖γo . Notice that if γo does not satisfy the ∆2-
condition (it is the case when γ is given by (5.5)), it may happen that Mγo is a proper subset of
Lγo . Let us define

(3.5) Φ : u ∈ U 7→
∫

Ω

γ(u) dR ∈ [0,∞].

It is a convex integral functional and γ is a normal integrand in the sense of Rockafellar (see [33],
[34]).

Lemma 3.1. With U and Φ defined by (3.2) and (3.5), under the assumption (3.1), the conditions

(2.1), (2.2) and (2.3) hold.

Proof. Clearly, (2.1) is true.

Let us show (2.2). Let γ∗o be the convex conjugate of γo and Lγ∗o be the associated Orlicz space. By
([33], Theorem 2), the functionals v ∈ Lγ∗o 7→

∫
Ω

γ∗(v) dR ∈ [0,∞] and Φ : u ∈ Lγo 7→
∫
Ω

γ(u) dR ∈
[0,∞] are convex conjugates to each other. In particular, Φ is lower semicontinuous for the topology
σ(Lγo , Lγ∗o ) and a fortiori for σ(Lγo , U

∗), since Lγ∗o ⊂ U∗.

Let us show (2.3). As sup{Φ(u) ; ‖u‖γo ≤ 1
2} ≤ 1, one can apply ([26], Lemma 2.1 and Corollary

2.2) and (3.3) to deduce that

(3.6) dom Φ∗ ⊂ L′γo

and that Φ∗ has σ(U∗, U)-compact level sets.

Now, we wish to give an explicit expression for Φ∗. In order to do this, the inclusion (3.6) suggests us
to state a representation of L′γo

. We recall this description which has been derived in ([28], Theorem
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4.7), see also ([24], Theorem 2.2) in case γ is finite. Any continuous linear form ` on Lγo is relatively
bounded. Hence, it admits a decomposition in nonnegative and nonpositive parts: ` = `+−`− with
`+ = ` ∨ 0 and `− = (−`) ∨ 0 (for the natural order relation on the dual of an ordered space). We
define |`| = `+ + `−. With the usual integral duality bracket, Hölder’s inequality in Orlicz spaces,
yields: Lγ∗o ⊂ L′γo

. As a definition, a form ` ∈ L′γo
is said to be singular with respect to Lγ∗o , if:

|`| ∧ v = 0,∀v ∈ Lγ∗o , v ≥ 0. Let us denote Ls
γo

the space of all these singular forms. Then, any
` ∈ L′γo

is uniquely decomposed as

(3.7) ` = `ac + `s

with `ac ∈ Lγ∗o and `s ∈ Ls
γo

. In other words, L′γo
is the direct sum

L′γo
= Lγ∗o ⊕ Ls

γo
.

In ([28], Propositon 4.6), it is proved that any singular form with respect to Lγ∗o is singular with
respect to R, according to the following definition.

A relatively bounded linear form: `, on Lγo is said to be singular with respect to R if there exists
an R-localizing sequence (Ωp)p≥1 and a nonincreasing sequence (Ak)k≥1 in A such that:

lim
k→∞

R(Ak) = 0 and 〈|`|, 1I(Ωp\Ak)〉 = 0, ∀p, k ≥ 1.

In the above definition, a sequence (Ωp)p≥1 in A was said to be R-localizing if it is nondecreasing,⋃

p≥1

Ωp = Ω and R(Ωp) < ∞, ∀p ≥ 1. As a definition, since R is σ-finite, such a sequence exists. If

R is bounded, ` is singular with respect to R if and only if the above conditions are satisfied with
Ωp = Ω, ∀p ≥ 1.

We adopt the excessive integral notation: 〈`, u〉L′γo
,Lγo

=
∫
Ω

u d`. Incidentally, one can make this
definition meaningful: ` can be represented as an additive set function on A (not necessarily σ-
additive) (see [32]). We also denote `ac = d`ac

dR ·R with d`ac

dR ∈ Lγ∗o .

Proposition 3.2. We assume (3.1). The convex conjugate Φ∗ of Φ for the duality (U,U∗), when

U and Φ are specified by (3.2) and (3.5), is given for any ` ∈ U∗, by

Φ∗(`) =

{ ∫
Ω

γ∗
(

d`ac

dR

)
dR + sup{〈`s, u〉 ; u ∈ U, Φ(u) < ∞} if ` ∈ L′γo

+∞ otherwise

where ` ∈ L′γo
is decomposed as in (3.7).

Proof. See ([28], Proposition 5.1). See also ([24], Theorem 2.6) in case γ is finite.

Let us describe now, the linear constraints. We take a function ϕ : Ω → X on Ω with its values in
the algebraic dual space X of a vector space Y. We also suppose that

(3.8) for all y ∈ Y, ω ∈ Ω 7→ 〈y, ϕ(ω)〉 ∈ IR is measurable and there exists λ > 0 such that∫

Ω

γ
(
λ〈y, ϕ(ω)〉

)
R(dω) +

∫

Ω

γ
(
− λ〈y, ϕ(ω)〉

)
R(dω) < ∞.
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In other words: ∀y ∈ Y, 〈y, ϕ(·)〉 ∈ Lγo = U. This allows us to define the linear operator
A : U∗ → X , for all ` ∈ U∗, by

(3.9.a) 〈y,A`〉Y,X :=
〈
`, 〈y, ϕ(·)〉

〉
U∗,U

, ∀y ∈ Y

that is: A∗y = 〈y, ϕ(·)〉 ∈ U,∀y ∈ Y, which is (2.4). To signify (3.9.a), we denote

(3.9.b) A` =
∫

Ω

ϕd`

(3.10) Remark. Any linear operator A : U∗ 7→ X such that the range A∗Y is included in the space
M of the measurable functions on Ω (without R-a.e. equality) can be written in the form (3.9).
Indeed, in this situation, the Dirac measures δω, ω ∈ Ω, act on M and for any y ∈ Y, one gets:
A∗y(ω) = 〈A∗y, δω〉M,M∗ = 〈y,B(δω)〉Y,X where B : M∗ → X is the adjoint of A∗ : Y → M and
it is sufficient to take ϕ(ω) = B(δω), ω ∈ Ω.

We have just checked that with U and Φ given by (3.2) and (3.5), the assumptions of Theorem 2.3
are satisfied. Taking Proposition 3.2 into account, we have proved the following result.

Theorem 3.3. We assume that γ satisfies (3.1) and that ϕ satisfies (3.8). Then, for any xo ∈ X ,

we have

inf
{ ∫

Ω

γ∗
(

d`ac

dR

)
dR + sup

{
〈`s, u〉 ; u ∈ Lγo ,

∫

Ω

γ(u) dR < ∞
}

; `ac, `s such that

`ac ¿ R,
d`ac

dR
∈ Lγ∗o , `s ∈ Ls

γo
,

∫

Ω

ϕd(`ac + `s) = xo
}

= sup
y∈Y

{
〈y, xo〉 −

∫

Ω

γ
(
〈y, ϕ(ω)〉

)
R(dω)

}
.

If the value is finite, the infimum is attained.

Remark. In the case where dom γ is a proper subset of IR and R is a bounded measure, we have:
Lγo = L∞ and Lγ∗o = L1.

Let us consider the following strengthening of (3.8):

(3.11) ∀y ∈ Y,

∫

Ω

γo(〈y, ϕ(ω)〉) R(dω) < ∞.

Notice that under (3.11), (3.1) becomes:

(3.12) γ is convex finite nonnegative, γ(0) = 0 and γ is not identically equal to zero.

Theorem 3.4. We assume that γ satisfies (3.12) and that ϕ satisfies (3.11). Then, for any xo ∈ X ,

we have

inf
{ ∫

Ω

γ∗(v) dR ; v ∈ Lγ∗o such that

∫

Ω

ϕv dR = xo
}

= sup
y∈Y

{
〈y, xo〉 −

∫

Ω

γ
(
〈y, ϕ(ω)〉

)
R(dω)

}
.
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If the value is finite, the infimum is attained.

Proof. Following the proof of Theorem 3.3 with U = Mγo (see (3.4)) instead of Lγo (assump-

tion (3.11) yields (2.4)), we obtain the dual equality of Theorem 3.3 with sup
{
〈`s, u〉 ; u ∈

Lγo ,
∫
Ω

γ(u) dR < ∞
}

replaced by sup
{
〈`s, u〉 ; u ∈ Mγo ,

∫
Ω

γ(u) dR < ∞
}

= 0, since Mγo is
in the kernel of any singular form.

Remark. If R is bounded or if R is unbounded and (γ(t) = 0 ⇔ t = 0), we have M ′
γo

= Lγ∗o so that:
` ∈ M ′

γo
⇒ `s = 0. However, this theorem still holds when R is unbounded and γ(to) = 0 for some

to 6= 0.

About generalized projections. It can be shown that the absolutely continuous part of the
minimizer of Theorem 3.3 is the generalized D-projection, in the sense of Csiszár ([11], [12]), of
R on the linear set {Q ∈ M(Ω) ;

∫
Ω

ϕdQ = xo}. Also using Orlicz spaces, it is proved in ([12],
Theorem 3) that (3.11) is a sufficient condition for the D-projection to exist. This also follows
directly from Theorem 3.4.

It is of interest to notice that the infimum of Theorem 3.3 may not be attained at a measure (if the
singular part of the minimizer is not equal to zero). Therefore, the statements of Theorems 3.3 and
3.4 shed light on the discovery by I. Csiszár that the generalized D-projection may not share the
constraint, see for instance ([11], Example 3.2): this may happen for some xo when ϕ satisfies (3.8)
but not (3.11). These considerations, together with the form of the minimizers, will be developed
in a forthcoming paper.

4. Some abstract inverse problems
In this section, Theorems 3.3 and 3.4 are applied to a general class of inverse problems. We shall
specialize our investigations in Sections 5 and 6, where Fredholm integral equations and marginal
problems for stochastic processes will be considered.

An abstract result. In addition to (Ω,A, R) and the function γ, we consider a measure space
(T, T , ρ) where ρ is a nonnegative measure on T and a pair (X,Y ) of vector spaces in duality, Y

separating X. We are going to describe the linear constraint with the functions a : T ×Ω → X and
xo : T → X. Its formal expression is

(4.1) ` ∈ L′γo
is subject to

∫

Ω

a(t, ω) `(dω) = xo
t , for ρ-a.e. t ∈ T.

To do this, let us introduce the following spaces Y and X o. We consider a vector space Y of functions
y : T → Y and a vector space X o of functions x : T → X. We denote y = (yt)t∈T ∈ Y ⊂ Y T and
x = (xt)t∈T ∈ X o ⊂ XT . We assume that

(4.2) for any x ∈ X o and y ∈ Y, t ∈ T 7→ 〈yt, xt〉 ∈ IR is measurable and
∫

T

|〈yt, xt〉| ρ(dt) < ∞.

In other words: ∀x ∈ X o, y ∈ Y, 〈y·, x·〉 ∈ L1(T, ρ).
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This property allows us to define a dual bracket between Y and X o, by

(4.3) 〈y, x〉Y,Xo =
∫

T

〈yt, xt〉 ρ(dt).

One identifies X o as a subset of X = Y∗. We want Y to separate X o. Therefore, in X o, x and x′ are
identified if: 〈y, x− x′〉Y,Xo = 0, ∀y ∈ Y. We assume that the function a : T ×Ω → X appearing in
(4.1) satisfies the following conditions:

for any ω ∈ Ω, the function a(·, ω) : t 7→ a(t, ω) belongs to X o and
for any y ∈ Y, the function 〈y, a(·)〉Y,Xo : ω 7→ ∫

T
〈yt, a(t, ω)〉 ρ(dt) is measurable

and
(4.4.∃) there exists λ > 0 such that:

∫

Ω

γo

(
λ〈y, a(·)〉Y,Xo

)
dR < ∞

or
(4.4.∀) for any λ > 0,

∫

Ω

γo

(
λ〈y, a(·)〉Y,Xo

)
dR < ∞

In other words, under (4.4.∃) (resp. (4.4.∀)): ∀y ∈ Y, 〈y, a(·)〉Y,Xo ∈ U = Lγo (resp. ∈ U = Mγo).

We are now ready to reformulate correctly (4.1) by:

(4.5) ∀y ∈ Y,

∫

Ω

[∫

T

〈yt, a(t, ω)〉 ρ(dt)
]

`(dω) =
∫

T

〈yt, x
o
t 〉 ρ(dt)

where xo ∈ X o and the left hand side means:
〈
`, 〈y, a(·)〉Y,Xo

〉
L′γo

,Lγo

when ` isn’t a measure. As

a corollary of Theorems 3.3 and 3.4, we get the following result.

Theorem 4.1. Let us suppose that γ satisfies the condition (3.1) and that (X,Y ), (T, T , ρ), X o,

Y and a satisfy the previous assumptions (in particular (4.2) and (4.4)).

Case 1. Suppose that (4.4.∀) holds. Then, for any xo ∈ X o, we have:

inf
{∫

Ω

γ∗(v) dR ; v ∈ Lγ∗o such that : ∀y ∈ Y,

∫

T×Ω

〈yt, a(t, ω)〉v(ω)R(dω)ρ(dt)

=
∫

T

〈yt, x
o
t 〉 ρ(dt)

}

= sup
y∈Y

{∫

T

〈yt, x
o
t 〉 ρ(dt)−

∫

Ω

γ
( ∫

T

〈yt, a(t, ω)〉 ρ(dt)
)

R(dω)
}

.

Case 2. Suppose that (4.4.∃) holds. Then, for any xo ∈ X o, we have:

inf
{∫

Ω

γ∗
(

d`ac

dR

)
dR+ sup

{
〈`s, u〉 ; u ∈ Lγo ,

∫
Ω

γ(u) dR < ∞
}

, `ac, `s such that :

`ac ¿ R, d`ac

dR ∈ Lγ∗o , `s ∈ Ls
γo

and ` = `ac + `s satisfies (4.5)
}

= sup
y∈Y

{∫

T

〈yt, x
o
t 〉 ρ(dt)−

∫

Ω

γ
( ∫

T

〈yt, a(t, ω)〉 ρ(dt)
)

R(dω)
}

.

In these two cases, if the value is finite, then the infimum is attained.
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Proof. Apply Theorems 3.3 and 3.4 with Y and X o dualy paired by (4.3) and

ϕ : ω ∈ Ω 7→ a(·, ω) ∈ X .

Notice that, by (4.4), we have: a(·, ω) ∈ X o. In the present situation, the condition (4.4.∃) is (3.8)
and (4.4.∀) is (3.11).

An important specific case. It is the case where ρ =
∑

t∈T

δt is the counting measure on T endowed

with the σ-field all its subsets,

Y = {(yt)t∈T ; yt = 0 for all but finitely many t ∈ T}
'

{(
(t1, yt1), . . . , (td, ytd

)
)

; d ≥ 1, t1, . . . , td ∈ T distinct
}

and

X o = XT .

Then, (4.2) is clearly satisfied, 〈y, x〉Y,Xo =
d∑

i=1

〈yti
, xti

〉, the constraint (4.5) is equivalent to

(4.6) ∀t ∈ T, θ ∈ Y,

∫

Ω

〈θ, a(t, ω)〉 `(dω) = 〈θ, xo
t 〉

and, thanks to the convexity of γ, the condition (4.4) is equivalent to

∀t ∈ T, θ ∈ Y, ω 7→ 〈θ, a(t, ω)〉 is measurable
and

(4.7.∃) there exists λ > 0 such that:
∫

Ω

γo

(
λ〈θ, a(t, ω)〉

)
R(dω) < ∞

or
(4.7.∀) for any λ > 0,

∫

Ω

γo

(
λ〈θ, a(t, ω)〉

)
dR < ∞.

We have just shown that in the present situation, Theorem 4.1 yields the following result.

Proposition 4.2. Let us suppose that γ satisfies the condition (3.1). Let us take a dual pairing

(X,Y ) of vector spaces such that Y separates X and a function a : T ×Ω → X which satisfies the

condition (4.7).

Case 1. Suppose that (4.7.∀) holds. Then, for any xo ∈ XT , we have:

inf
{ ∫

Ω

γ∗(v) dR ; v ∈ Lγ∗o such that : ∀t ∈ T, θ ∈ Y,

∫

Ω

〈θ, a(t, ω)〉v(ω)R(dω) = 〈θ, xo
t 〉

}

=sup

{
d∑

i=1

〈θi, x
o
ti
〉 −

∫

Ω

γ

(
d∑

i=1

〈θi, a(ti, ω)〉
)

R(dω) ; d ≥ 1, t1, . . . , td ∈ T, θi . . . , θd ∈ Y

}
.

Case 2. Suppose that (4.7.∃) holds. Then, for any xo ∈ XT , we have:

inf
{ ∫

Ω
γ∗

(
d`ac

dR

)
dR+ sup{〈`s, u〉 ; u ∈ Lγo ,

∫
Ω

γ(u) dR < ∞}, `ac, `s such that :

`ac ¿ R, d`ac

dR ∈ Lγ∗o , `s ∈ Ls
γo

and ` = `ac + `s satisfies (4.6)
}

=sup

{
d∑

i=1

〈θi, x
o
ti
〉 −

∫

Ω

γ

(
d∑

i=1

〈θi, a(ti, ω)〉
)

R(dω) ; d ≥ 1, t1, . . . , td ∈ T, θi . . . , θd ∈ Y

}
.
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In these two cases, if the value is finite, then the infimum is attained.

Remark. In the special case where T is finite, and X = Y = IRd which corresponds to finitely
many constrained moments, these dual equalities have been obtained, when Ω is compact, in [21]
via large deviations techniques.

Some criteria of existence. It is clear that Theorem 4.1 provides variational criteria of existence
of solutions to the considered inverse problems. The following situation, is particularly tractable.
It has been introduced in [15] and then exploited in [21], [22], [29] among others.

Let R be a probability measure and C := {Q ∈ M(Ω) ; Q ¿ R and κ− ≤ dQ
dR ≤ κ+, R-a.e.} with

−∞ < κ− ≤ 0 ≤ κ+ < ∞. We consider the inverse problem:

”Does there exists Q ∈ C such that
∫

Ω

at dQ = xo
t , for ρ-a.e. t ∈ T?”

where the correct statement of the above constraint is (4.5). In order to give a full answer to this
question, let us chose γ with two asymptots with slopes κ− and κ+ : lims→−∞(κ−s−γ(s)) = b− < ∞
and lims→+∞(κ+s−γ(s)) = b+ < ∞. Then, b− = γ∗(κ−) and b+ = γ∗(κ+) and the effective domain
of γ∗ is [κ−, κ+]. As a direct consequence of Theorem 4.1, we obtain the following result (it slightly
extends previous similar results).

Corollary 4.3. Let γ be as above and satisfy (3.1).

Let us assume (4.2) and
∫
Ω

γ
∣∣∣
∫

T
〈yt, a(t, ω)〉 ρ(dt)

∣∣∣ R(dω) < ∞, for all y ∈ Y.

Then, there exists Q ∈ C such that
∫
Ω

at dQ = xo
t , for ρ-a.e. t ∈ T, if and only if xo satisfies

∀y ∈ Y,

∫

T

〈yt, x
o
t 〉 ρ(dt)−

∫

Ω

γ
( ∫

T

〈yt, a(t, ω)〉 ρ(dt)
)

R(dω) ≤ max(b−, b+)

5. Fredholm equations
In the whole section, it is assumed that (4.4.∀) holds. In particular, this implies that dom γ = IR.

We are going to apply Theorem 4.1 in different specific situations.

Let us first consider the simple case where X = Y = IR and T = [0, 1]. We assume that a satisfies
the following condition:

(5.1)

a is jointly measurable in (t, ω) with respect to B([0, 1])⊗A,
there exists a function a ∈ Mγo such that: ∀t ∈ [0, 1], ω ∈ Ω, |a(t, ω)| ≤ a(ω)

and





for any ω ∈ Ω, a(·, ω) is right continuous on [0, 1[ and left continuous at t = 1
or
for any ω ∈ Ω, a(·, ω) is left continuous on ]0, 1] and right continuous at t = 0.

Because of Proposition 4.2 ((5.1) implies (4.7.∀)), the finite energy constraints are the functions xo :
[0, 1] → IR such that there exists v ∈ Lγ∗o with

∫
Ω

a(t, ω)v(ω)R(dω) = xo
t , ∀0 ≤ t ≤ 1. Consequently,

thanks to the dominated convergence theorem and Hölder’s inequality for (Lγo , Lγ∗o ), the condition

(5.1) implies that xo is bounded and is





right continuous on [0, 1[ and left continuous at t = 1
or
left continuous on ]0, 1] and right continuous at t = 0

.
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Therefore, xo is perfectly described by the knowledge of xo
t , for dt-a.e. t ∈ [0, 1] and one can identify

xo as an element of L∞([0, 1], dt) without any loss of information. In other words, the regular path
xo is determined by 〈y, xo〉 =

∫
[0,1]

ytx
o
t dt, ∀y ∈ Y, where Y is any subspace of L1([0, 1], dt) (this

insures (4.2)) which separates L∞([0, 1], dt). For instance: Y = L1([0, 1], dt) or Y = C∞c (]0, 1[) or
Y = S[0,1] with

S[0,1] := {simple functions on [0, 1]}.

Choosing for X o : L∞([0, 1], dt), and for ρ : the Lebesgue measure on [0, 1], we get (4.2). In addition,
(4.4.∀) follows from (5.1). We have just shown that in the present situation, Theorem 4.1 yields
the following result.

Proposition 5.1. Let us assume (3.12) and suppose that a satisfies the condition (5.1). Then, for

any xo ∈ L∞([0, 1], dt), we have:

inf
{ ∫

Ω

γ∗(v) dR ; v ∈ Lγ∗o such that :
∫

Ω

a(t, ω)v(ω)R(dω) = xo
t , for a.e. t ∈ [0, 1]

}

= sup
y∈Y

{∫

[0,1]

ytx
o
t dt−

∫

Ω

γ

(∫

[0,1]

yta(t, ω) dt

)
R(dω)

}

where Y = L1([0, 1], dt) or Y = C∞c (]0, 1[) or Y = S[0,1].

If this value is finite, then the infimum is attained.

One proves similarly the following result.

Proposition 5.2. Let us assume (3.12). Let us consider a sequence (an)n≥1 of measurable functions

on Ω such that there exists a function a ∈ Mγo with sup
n≥1

|an(ω)| ≤ a(ω), ∀ω ∈ Ω. Then, for any

bounded sequence (xo
n)n≥1, we have:

inf
{ ∫

Ω

γ∗(v) dR ; v ∈ Lγ∗o such that : ∀n ≥ 1,

∫

Ω

anv dR = xo
n

}

= sup
y∈Y





∑

n≥1

ynxo
n −

∫

Ω

γ

( ∑

n≥1

ynan(ω)
)

R(dω)



 .

where Y = `1 : the space of the summable sequences, or Y is the space of finite sequences.

If this value is finite, then the infimum is attained.

Proof. Apply Theorem 4.1 with X = Y = IR, T = {1, 2, . . .}, ρ =
∑

n≥1

δn and a(n, ω) = an(ω),

noticing that the conditions (4.2) and (4.4.∀) are satisfied.

Let us extend the previous Propositions 4.2, 5.1 and 5.2. We consider a topological space T endowed
with its Borel σ-field T = B(T ) and a nonnegative measure ρ on B(T ) such that:

(5.2) any t ∈ T admits an open neighbourhood with a finite ρ-mass and
any ρ-negligible subset has an empty interior.
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In any case, one may choose for ρ the counting measure on T. With T = [0, 1], the Lebesgue measure
is also convenient.

Let us take a dual pairing (X, Y ) of vector spaces where Y separates X and a function a : T×Ω → X

which satisfies the condition

(5.3)
for any θ ∈ Y, ω ∈ Ω, the function t ∈ T 7→ 〈θ, a(t, ω)〉 ∈ IR is continuous,
for any θ ∈ Y, t ∈ T, the function ω ∈ Ω 7→ 〈θ, a(t, ω)〉 ∈ IR is measurable and
for any θ ∈ Y, there exists aθ ∈ Mγo such that: sup

t∈T
|〈θ, a(t, ω)〉| ≤ aθ(ω), ∀ω ∈ Ω.

Notice that under (5.3), for any θ ∈ Y, (t, ω) 7→ 〈θ, a(t, ω)〉 is jointly measurable.

In the part of X o, let us choose the space of the functions x : T → X such that for all θ ∈ Y, 〈θ, x·〉
belongs to L∞(T, ρ). Let us choose Y = {y =

∑d
i=1 αiθi ; d ≥ 1, αi ∈ H, θi ∈ Y, 1 ≤ i ≤ d} where

H is any subspace of L1(T, ρ) separating L∞(T, ρ).

The condition (4.2) is satisfied and the duality bracket (4.3) is:

〈∑i αiθi, x〉Y,Xo =
∫

T

∑
i αi(t)〈θi, xt〉 ρ(dt). Thanks to (5.3) and Proposition 4.2, for any finite

energy constraint xo, 〈θ, xo(·)〉 is bounded and continuous, for any θ ∈ Y. Thanks to (5.2), for any

t ∈ T, there exists a decreasing net (Vα) of open neighbourhoods of t such that lim
α

1IVα

ρ(Vα)
· ρ = δt

for the weak topology σ(M1(T ), Cb(T )) of the probability measures on T. Therefore, the measures
〈θ, xo

t 〉ρ(dt) completely determine xo when θ describes Y and one doesn’t lose any information,
identifying 〈θ, xo(·)〉 with an element of L∞(T, ρ). On the other hand, (5.3) implies (4.4.∀). We
have just checked that the assumptions of Theorem 4.1 are satisfied in the present situation. As a
corollary, we obtain the following statement.

Proposition 5.3. Let us assume (3.12). We take (X, Y ), (T,B(T ), ρ) and a as above; in particular

(5.2) and (5.3) are satisfied. Then, for any xo ∈ XT such that for any θ ∈ Y, sup
t∈T

|〈θ, xo
t 〉| < ∞, we

have:

inf
{ ∫

Ω

γ∗(v) dR ; v ∈ Lγ∗o such that : ∀t ∈ T, θ ∈ Y,

∫

Ω

〈θ, a(t, ω)〉v(ω)R(dω) = 〈θ, xo
t 〉

}

= sup
{ ∫

T

d∑

i=1

αi(t)〈θi, x
o
t 〉 ρ(dt)−

∫

Ω

γ

(∫

T

d∑

i=1

αi(t)〈θi, a(t, ω)〉 ρ(dt)

)
R(dω) ;

d ≥ 1, θi ∈ Y, αi ∈ H, 1 ≤ i ≤ d
}

where H is any subspace of L1(T, ρ) separating L∞(T, ρ). For instance, H = L1(T, ρ) or H =
{simple functions on T} or, if ρ is a Radon measure on the Polish space T : H = Cc(T ).

If this value is finite, then the infimum is attained.

Remark. Similar results hold with relaxed assumptions based on (4.4.∃) rather than on (4.4.∀). The
dominating functions a of the assumptions of Propositions 5.1, 5.2 and 5.3 belonging to Lγo instead
of Mγo , we get dual equalities similar to the Case 2 of Theorem 4.1, involving singular components.
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Example 1. Let γ be a Young function with dom γ = IR and xo a bounded measurable function on
[0, 1]. We consider the following minimization problem

(P1) inf

{∫

[0,1]

γ∗(v(ω)) dω ; v ∈ Lγ∗([0, 1]) such that :
∫

[0,t]

v(ω) dω = xo
t , ∀0 ≤ t ≤ 1

}
.

Applying Proposition 5.1 with Ω = [0, 1[, R(dω) = dω and a(t, ω) = 1I[0,t](ω) = 1I[ω,1](t) ((5.1)
holds with a = 1I), one obtains the dual equality

inf (P1) = sup
y∈C∞c (]0,1[)

{∫

[0,1]

ytx
o
t dt−

∫

[0,1]

γ

(∫ 1

ω

yt dt

)
dω

}
.

Denoting Y (ω) =
∫ 1

ω
yt dt and ẋo the derivative of xo in the distribution sense, the right

hand side of the previous equality becomes sup
Y ∈U

{
Y0x

o
0 +

∫
Y ẋo −

∫

[0,1]

γ(Yt) dt

}
, where U :=

{Y : ω ∈ [0, 1] 7→ Y (ω) =
∫ 1

ω
yt dt ; y ∈ C∞c (]0, 1[)}. If this quantity is finite, then xo

0 = 0
(consider |yt| arbitrarily large on an arbitrarily small neighbourhood of t = 0). And if xo

0 = 0,

supY ∈U{
∫

Y ẋo − ∫
[0,1]

γ(Yt) dt} is finite if and only if ẋo is a ‖ · ‖γ-continuous linear form on
U (see [26], Lemma 2.1). But U is included in Mγ([0, 1]) (see (3.4)), hence: ẋo ∈ M ′

γ = Lγ∗

(see [32], Theorem 4.1.7). In addition, since C∞c ⊂ U , U is ‖ · ‖γ-dense in Mγ . Therefore,
supY ∈U = supY ∈Mγ

and from the conjugacy of convex integral functionals (see [33], Theorem 2),
it follows that supY ∈Mγ

{∫
[0,1]

Ytẋ
o
t dt− ∫

[0,1]
γ(Yt) dt} =

∫
[0,1]

γ∗(ẋo
t ) dt. Finally, we have recovered

that the value of (P1) is finite if and only if x0 = 0 and
∫
[0,1]

γ∗(ẋo
t ) dt < ∞. If this holds, this value

is precisely
∫
[0,1]

γ∗(ẋo
t ) dt, hence v = ẋo is a solution of (P1). It is unique if γ∗ is strictly convex

(or equivalently if γ is differentiable).

Example 2. (Suggested by D. Dacunha-Castelle). Let Ω be the set of the left-continuous and right-
limited (càdlàg) paths on [0, 1] which are left continuous at t = 1. It is endowed with its usual
σ-field: A, generated by the t-cylinders. The set of probability measures on Ω is called M1(Ω). Let
us pick R in M1(Ω). The Kullback information of P ∈ M1(Ω) with respect to R is defined by,

I(P | R) =
{ ∫

Ω
log

(
dP
dR

)
dP if P ¿ R

+∞ otherwise.

Let us take ξo : [0, 1] → IR and a measurable function f : IR → IR which satisfies

(5.4) ∀0 ≤ t ≤ 1, λ > 0,

∫

Ω

exp(λ|f(ωt)|)R(dω) < ∞.

We consider the minimization problem

(P2) inf
{

I(P | R) ; P ∈ M1(Ω),
∫

Ω

f(ωt)P (dω) = ξo
t , ∀0 ≤ t ≤ 1

}
.

Let us take

(5.5) γ(x) = ex − x− 1, x ∈ IR.
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Its convex conjugate is

(5.6) γ∗(x) =





(x + 1) log(x + 1)− x if x ∈]− 1,∞[
+1 if x = −1
+∞ if x ∈]−∞,−1[

.

The Young function γo associated with it is τ(x) = e|x| − |x| − 1 and its convex conjugate is
τ∗(x) = (|x| + 1) log(|x| + 1) − |x|. We denote Lτ and Lτ∗ the corresponding Orlicz spaces on

(Ω,A, R). Considering the new variables xo
t = ξo

t −
∫
Ω

f(ωt) R(dω) and v(ω) =
d(P −R)

dR
(ω), one

sees that (P2) is equivalent to

inf
{∫

Ω

γ∗(v) dR ; v ∈ Lτ∗ such that :
∫

Ω

v dR = 0 and
∫

Ω

f(ωt)v(ω) R(dω) = xo
t , ∀0 ≤ t ≤ 1

}
.

We apply Proposition 4.2 with X = Y = IR and a(t, ω) = f(ωt), remarking that (5.4) implies
(4.7.∀) in the present situation. We obtain

inf (P2)(5.7)

= sup
{ ∑d

i=1 θiξ
o
ti
−

∫

Ω

exp
(
c +

d∑

i=1

θif(ωti)
)

R(dω) ;

c ∈ IR, d ≥ 1, θ1, . . . , θd ∈ IR, 0 ≤ t1 < · · · < td ≤ 1
}

+ 1

= sup
{

θ0ξ
o
0 +

∑d
i=1 θi(ξo

ti
− ξo

ti−1
)

−
∫

Ω

exp
(
c + θ0f(ω0) +

d∑

i=1

θi[f(ωti)− f(ωti−1)]
)

R(dω) ;

c ∈ IR, d ≥ 1, θ0, . . . , θd ∈ IR, 0 = t0 < t1 < · · · < td = 1
}

+ 1

If instead of (5.4), we have:

(5.8) f is continuous and for all λ > 0,

∫

Ω

exp
(

λ sup
0≤t≤1

|f(ωt)|
)

R(dω) < ∞,

then, one can apply Proposition 5.1, noticing that (5.8) yields (5.1) with a(ω) = sup0≤t≤1 |f(ωt)|
(one uses the left continuity of ω at t = 1). This leads us to

inf (P2) = sup

{∫

[0,1]

ytξ
o
t dt−

∫

Ω

exp
(
c +

∫

[0,1]

ytf(ωt) dt
)

R(dω) ; c ∈ IR, y ∈ H
}

+ 1

where H = L1([0, 1], dt) or H = C∞c (]0, 1[) or H = S[0,1]. In particular, under the assumption (5.8),
we have

sup
{

θ0ξ
o
0 +

∑d
i=1 θi(ξo

ti
− ξo

ti−1
)

−
∫

Ω

exp
(
c + θ0f(ω0) +

d∑

i=1

θi[f(ωti)− f(ωti−1)]
)

R(dω) ;

c ∈ IR, d ≥ 1, θ0, . . . , θd ∈ IR, 0 = t0 < t1 < · · · < td = 1
}

=sup

{∫

[0,1]

ytξ
o
t dt−

∫

Ω

exp

(
c +

∫

[0,1]

ytf(ωt) dt

)
R(dω) ; c ∈ IR, y ∈ H

}
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and if this quantity is finite, then (P2) admits a unique solution.

Let us specialize the example choosing the Wiener measure W for R and f(x) = x, x ∈ IR. The
problem (P2) becomes

(P′2) inf
{

I(P | W) ; P ∈ M1(Ωo),
∫

Ωo

ωt P (dω) = ξo
t ,∀0 ≤ t ≤ 1

}

where Ωo is the space of all continuous paths ω on [0, 1] with ω0 = 0. We impose ξo
0 = 0 (without

losing generality). By (5.7), the value inf (P′2) is

sup
{ d∑

i=1

θi(ξo
ti
− ξo

ti−1
)−

∫

Ωo

exp
(
c +

d∑

i=1

θi[ωti − ωti−1 ]
)
W(dω) ;

c ∈ IR, d ≥ 1, θ0, . . . , θd ∈ IR, 0 = t0 < t1 < · · · < td = 1
}

+ 1

= sup

{∫

[0,1]

ztdξo
t − exp

(
c +

1
2

∫

[0,1]

z2
t dt

)
; z ∈ S[0,1], c ∈ IR

}
+ 1.

If it is finite, taking c = 0, for any a ∈ IR and z ∈ S[0,1], we get a
∫
[0,1]

z dξo − exp
(

a2

2 ‖z‖22
)
≤

inf (P′2) < ∞ and choosing |a| = 1/‖z‖2, leads us to: ∀z ∈ S[0,1], |
∫
[0,1]

z dξo| ≤ [inf (P′2) + e
1
2 ]‖z‖2.

Hence, z 7→ ∫
[0,1]

z dξo is continuous on S[0,1] ⊂ L2([0, 1]), that is:
∫
[0,1]

z dξo =
∫
[0,1]

zξ̇o dt with

ξ̇o ∈ L2([0, 1]) (ξo ∈ H1).

Conversely, if ξo ∈ H1, then, sup
{∫

[0,1]
ztdξo

t − exp
(
c + 1

2

∫
[0,1]

z2
t dt

)
; z ∈ S[0,1], c ∈ IR

}
< ∞.

Therefore, (P′2) admits a solution if and only if ξo ∈ H1. In addition, this solution P∗ is unique
since γ∗ is strictly convex (see (5.6)).

By means of ([27], Theorem 4.5), one can identify P∗ as the (unique) solution P ξo

to the stochastic
differential equation dXt(ω) = ξ̇o

t dt + dωt, X0 = 0 under the law W (ω is a W-Brownian motion).
Indeed, Girsanov’s theorem provides us with

dP ξo

dW (ω) = exp

(∫

[0,1]

ξ̇o
t dωt − 1

2

∫

[0,1]

(ξ̇o
t )2 dt

)

where
∫
[0,1]

ξ̇o
t dωt is a stochastic integral which is well-defined since ξo belongs to H1. Applying

([27], Theorem 4.5), we have to check that
∫
[0,1]

ξ̇o
t dωt − 1

2

∫
[0,1]

(ξ̇o
t )2 dt is an admissible force field

(see [27], (4.9)) as a function of (1, a(·, ω)) = (1, (ωt)0≤t≤1) = (1, ω). The linearity is clear, while
the approximation condition in ([27], (4.9.a)) follows from the stronger property:

(5.9) ∀ε > 0, ∃z ∈ S[0,1] such that :
∥∥∥ω 7→

∫

[0,1]

(ξ̇o
t − zt) dωt

∥∥∥
τ
≤ ε

(‖ · ‖τ is the Orlicz norm of Lτ ). Let us prove (5.9). For any λ > 0, we have:
∫

Ωo

exp(λ|
∫

[0,1]

(ξ̇o
t − zt) dωt|)W(dω)

≤
∫

Ωo

exp(λ
∫

[0,1]

(ξ̇o
t − zt) dωt)W(dω) +

∫

Ωo

exp(−λ

∫

[0,1]

(ξ̇o
t − zt) dωt)W(dω)

=2 exp
(

λ2

2
‖ξ̇o − z‖22

)
.
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This leads us to the estimate: ∀λ > 0, ∃z ∈ S[0,1] such that :
∫
Ωo

exp(λ| ∫
[0,1]

(ξ̇o
t −zt) dωt|)W(dω) ≤

3, from which (5.9) follows.

6. Marginal problems
In this section, we apply Proposition 5.3 to a class of Fredholm equations: the marginal problems
for stochastic processes. Let us describe them.

Let E be a state space endowed with a σ-field E , T is an index set. The space: Ω = ET , of the
paths from T to E is endowed with the product σ-field A = E⊗T and we denote M1(E) and M1(Ω)
the sets of the probability measures on E and Ω. For any P ∈ M1(Ω) and any t ∈ T, the t-marginal
of P is defined by

Pt(A) = P ({ω ∈ Ω ; ωt ∈ A}), ∀A ∈ E .

Let us fix a reference law on Ω : R ∈ M1(Ω). A typical marginal problem is:

(6.1) “Does there exist P ∈ M1(ET ) such that P ¿ R and Pt = νo
t , ∀t ∈ T ?” ,

where νo : t ∈ T 7→ νo
t ∈ M1(E) is a given flow of marginals. Notice that

⊗

t∈T

νo
t has the desired

marginals, but it may not be absolutely continuous with respect to R.

One way to answer (6.1) is to consider the following energy minimization problem:

(6.2.a) inf
{∫

ET

γ∗
(dP

dR
+ κ−

)
dR ; P ∈ M1(ET ), P ¿ R and Pt = νo

t , ∀t ∈ T

}

with κ− := lim
x→−∞

γ(x)/x > −∞. Let us assume that dom γ = IR, then Φ∗(P + κ−R) =
{ ∫

ET γ∗(dP
dR + κ−) dR if P ¿ R

+∞ otherwise . Clearly, if Φ∗(P + κ−R) < ∞, then P is a nonnegative

measure and since νo
t has a unit mass, (6.2.a) is equivalent to

(6.2.b) inf{Φ∗(P + κ−R) ; P signed measure on ET , Pt = νo
t , ∀t ∈ T}.

When γ(x) = ex − x − 1 (see (5.5)), in restriction to M1(ET ), Φ∗(P + κ−R) is the Kullback

information of P ∈ M1(ET ) with respect to R : I(P | R) =
{ ∫

ET log
(

dP
dR

)
dP if P ¿ R

+∞ otherwise .

We introduce the function (when κ− > −∞)

(6.3) γ̃(x) = γ(x)− κ−x, x ∈ IR.

With (5.5), we have: γ̃(x) = ex − 1. The next proposition states a variational criterion for the
existence of a solution to (6.2).

Proposition 6.1. We assume that γ satisfies dom γ = IR, (3.1) and κ− := lim
x→−∞

γ(x)/x > −∞.

Then, for any flow (νo
t )t∈T ∈ M1(E)T , we have:

inf
{∫

ET

γ∗
(

dP

dR
+ κ−

)
dR ; P ∈ M1(ET ), P ¿ R and Pt = νo

t , ∀t ∈ T

}

=sup
{ d∑

i=1

∫

E

θi dνo
ti
−

∫

ET

γ̃
( d∑

i=1

θi(ωti)
)

R(dω) ; d ≥ 1, θ1, . . . , θd ∈ B(E), t1, . . . , td ∈ T

}
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where γ̃ is given at (6.3) and B(E) stands for the space of the bounded measurable functions on

E.

If this value is finite, then the infimum is attained.

Remark. With T = {1, 2}, one recovers the usual marginal problem with an absolute continuity
constraint (see [10], [4], [9], [27]).
Large deviations may be useful to obtain such dual equalities. In [14], this equality is proved
when γ is given by (5.5) and R is the law of a diffusion process. The infimum comes from a
contraction principle, while the supremum is obtained via a projective limit of finite dimensional
large deviation principles. In [9], γ being the log-Laplace transform of a probability measure,
the 2-marginal problem (T = {1, 2}) is investigated with another large deviation technique: the
maximum entropy method on the mean (MEM).

Proof. The above minimization problem appears in the form (6.2.a), but under its alternate
formulation (6.2.b), it enters the framework of the present paper. We are going to check that it
is a Fredholm problem which satisfies the assumptions of Proposition 5.3. To do this, we give T

its discrete topology and the associated Borel σ-field, we choose ρ as the counting measure on T,

X = Mb(E) : the space of the bounded measures on (E, E), Y = B(E) and

a : (t, ω) ∈ T × ET 7→ δωt ∈ Mb(E).

We note that (X,Y ) is a separating dual pairing and ρ satisfies (5.2). In addition, (5.3) is satisfied
since for any θ ∈ B(E), 〈θ, a(t, ω)〉 = θ(ωt) is continuous in t (T is endowed with the discrete
topology), measurable in ω (ω 7→ ωto is measurable by the very definition of A = E⊗T ) and
supt∈T |θ(ωt)| ≤ aθ(ω) := ‖θ‖∞ (hence: aθ ∈ L∞(R) ⊂ Mγo(R)). Therefore, one can apply
Proposition 5.3. This completes the proof of the proposition.

One can specialize the previous result when the paths ω are continuous. Let us consider a metric
space E endowed with its Borel σ-field E = B(E) and a topological index set T with its Borel
σ-field T = B(T ). The set of paths is Ω = C(T, E) : the space of the continuous functions from T

to E. It is endowed with the relative σ-field associated with B(E)⊗T .

Proposition 6.2. We assume that γ satisfies dom γ = IR, (3.1) and κ− := lim
x→−∞

γ(x)/x > −∞.

We also choose a measure ρ on (T,B(T )) which satisfies (5.2). Then, for any continuous flow

(νo
t )t∈T ∈ C(T,M1(E)), we have:

inf

{∫

C(T,E)

γ∗
(

dP

dR
+ κ−

)
dR ; P ∈ M1(C(T, E)), P ¿ R and Pt = νo

t , ∀t ∈ T

}

= sup

{∫

T×E

d∑

i=1

αi(t)θi(z) νo
t (dz)ρ(dt)−

∫

C(T,E)

γ̃

(∫

T

d∑

i=1

αi(t)θi(ωt) ρ(dt)

)
R(dω) ;

d ≥ 1, θi ∈ Cb(E), αi ∈ H, 1 ≤ i ≤ d

}
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where γ̃ is given at (6.3), Cb(E) stands for the space of the bounded continuous functions

on E and H is any subspace of L1(T, ρ) separating L∞(T, ρ). For instance, H = L1(T, ρ) or

H = {simple functions on T} or, if ρ is a Radon measure on the Polish space T : H = Cc(T ).

If this value is finite, then the infimum is attained and t ∈ T 7→ νo
t ∈ M1(E) is continuous, M1(E)

being endowed with its usual weak topology σ(M1(E), Cb(E)).

Proof. Again, it is a corollary of Proposition 5.3. Its proof is very similar to Proposition 6.1’s one.
Notice that, as E is a metric space, Y = Cb(E) separates X = Mb(E).

When T = [0, 1[, there are many relevant stochastic processes whose laws are supported by the set
Ω = D([0, 1[, E) of the right-continuous and left-limited (càdlàg) paths from [0, 1[ to the topological
space E. A slight modification of the proofs of Proposition 6.1 and 6.2, in the spirit of Proposition
5.1 with its condition (5.1), leads us to the following result.

Proposition 6.3. We assume that γ satisfies dom γ = IR, (3.1) and κ− := lim
x→−∞

γ(x)/x > −∞.

Then, for any flow (νo
t )t∈[0,1[ ∈ M1(E)[0,1[, we have:

inf

{∫

D([0,1[,E)

γ∗
(

dP

dR
+ κ−

)
dR ; P ∈ M1(D([0, 1[, E)), P ¿ R and Pt = νo

t , ∀t ∈ T

}

= sup
{ ∫

[0,1[×E

d∑

i=1

αi(t)θi(z) νo
t (dz)dt−

∫

D([0,1[,E)

γ̃

(∫

T

d∑

i=1

αi(t)θi(ωt) dt

)
R(dω) ;

d ≥ 1, θi ∈ B(E), αi ∈ C∞c (]0, 1[), 1 ≤ i ≤ d

}

where γ̃ is given at (6.3).

If this value is finite, then the infimum is attained.

Remarks. This result still holds when [0, 1[ is replaced by any interval T of IR which is open at its
right bound, provided that C∞c (]0, 1[) is replaced by C∞c (int(T )).

If R is a probability measure on D([0, 1], E) (including t = 1) and if t = 1 isn’t a fixed discontinuity
time of R, considering R as a probability measure on D([0, 1[, E) (without t = 1), one doesn’t lose
any information.

In the above statement, B(E) may be replaced by any of its subspace which separates M1(E); for
instance by the simple functions on E, or by Cb(E) when E is a metric space, or by C∞c (IRd) if
E = IRd.

In connection with stochastic mechanics (see [31], [8]), such a dual equality has been obtained in
[7] with large deviation techniques.

Finally, we state a result connected to the problem of the existence of Schrödinger bridges (see [36],
[2], [20], [3], [23], [37],[19], [30], [1], [18], [9], [13]).

Proposition 6.4. Let S ⊂ T be a nonempty subset of T. In the situation of Proposition 6.1 and
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under its assumptions, for any subflow (νo
s )s∈S ∈ M1(E)S , we have:

inf
{∫

ET

γ∗
(

dP

dR
+ κ−

)
dR ; P ∈ M1(ET ), P ¿ R and Ps = νo

s , ∀s ∈ S

}

=sup
{ d∑

i=1

∫

E

θi dνo
si
−

∫

ET

γ̃
( d∑

i=1

θi(ωsi)
)

R(dω) ; d ≥ 1, θ1, . . . , θd ∈ B(E), s1, . . . , sd ∈ S

}

where γ̃ is given at (6.3).

If this value is finite, then the infimum is attained.

Proof. Similar to the proof of Proposition 6.1.

A typical application of this result is obtained with T = [0, 1] and S = {0, 1} : the initial and final
times. It is the problem of the Schrödinger bridges. As a consequence of Propositions 6.1 and 6.4
in this context, for any νo

0 , νo
1 ∈ M1(E), we have:

inf
{∫

E[0,1]
γ∗

(
dP

dR
+ κ−

)
dR ; P ∈ M1(E[0,1]), P ¿ R,P0 = νo

0 and P1 = νo
1

}

= sup
{ ∫

E

θ0 dνo
0 +

∫

E

θ1 dνo
1 −

∫

E2
γ̃
(
θ0(ω0) + θ1(ω1)

)
R01(dω0dω1) ; θ0, θ1 ∈ B(E)

}

= inf
{∫

E2
γ∗

(
dπ

dR01
+ κ−

)
dR01 ; π ∈ M1(E2), π ¿ R01, π0 = νo

0 and π1 = νo
1

}

where R01 ∈ M1(E2) is the image law of R by the application (ωt)0≤t≤1 ∈ E[0,1] 7→ (ω0, ω1) ∈ E2

and π0, π1 are the first and second marginals of π. If this value is finite, then the infima are
attained.
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Birkhäuser.

[2] S. Bernstein. Sur les liaisons entre les grandeurs aléatoires. Vehr. des intern. Mathe-
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[7] P. Cattiaux and C. Léonard. Large deviations and Nelson processes. Forum Math., 7,
(1995), 95–115.

[8] E. Carlen. Conservative diffusions. Comm. Math. Phys. 94. (1984), 293–315.
[9] P. Cattiaux et F. Gamboa. Large deviations and variational theorems for marginal

problems. Bernoulli, 5, (1999).

22



[10] I. Csiszár. I-Divergence Geometry of Probability Distributions and Minimization Prob-
lems. Ann. Probab. 3, (1975), 146–158.

[11] I. Csiszár. Sanov property, generalized I-projection and a conditional limit theorem . Ann.
Probab. 12, (1984), 768–793.

[12] I. Csiszár. Generalized projections for non-negative functions. Acta Math. Hungar., 68
(1-2) (1995), 161–185.

[13] A.B. Cruzeiro, Liming Wu and J.C. Zambrini. Bernstein processes associated with a
Markov process. Proceedings of the Third International Workshop on Stochastic Analysis
and Mathematical Physics: ANESTOC’98, Ed. R. Rebolledo. Trends in Mathematics.
Birkhaüser.
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