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1. Introduction

We give a short survey of some of our results related to the maximum
entropy method. In this article, the Large Deviations approach is privi-
leged, rather than the more direct convex analytical approach. Indeed, the
proposed applications are naturally stated in terms of large random par-
ticle systems. These are the existence and construction problems for the
Schrödinger’s bridges and the Nelson’s diffusion processes. These prob-
lems arise from probabilistic approaches to Quantum Mechanics.

Let R be a fixed reference probability measure. The optimization
problem to be investigated is the minimization of the relative entropy
I(· | R) subject to a general linear constraint (−I(· | R) is concave, it is
the entropy to be maximized).
We introduce a constraint function ϕ which allows the description of a
general infinite dimensional linear constraint. Our assumptions on ϕ are
exponential integrability conditions with respect to R; they are called
Cramér’s conditions : the very strong one (2.5), the strong one (4.1) and
the weak one (2.2).

At Section 2, the dual equality of our optimization problem is obtained
under the very strong Cramér’s condition. It yields a criterion of existence
of a unique minimizer: the I-projection (see Definition 2.1).

At Section 3, this criterion is specified for the problems of existence of
the Schrödinger’s bridges and the Nelson’s diffusion processes.

At Section 4, we give a characterization of the I-projection, under the
strong Cramér’s condition. This result definitely improves the previous
related results in the literature.

At Section 5, we give a brief glimpse of the situation when ϕ is not very
integrable: under the weak Cramér’s condition. In this situation, it may
happen that the I-projection doesn’t exist anymore. The minimization
problem has to be replaced by an “extended” one. Its minimizers may
not be unique anymore and may admit a singular part which is not a
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measure (lack of σ-additivity). In order to keep our Large Deviations
approach, we state an extension of Sanov’s theorem at Theorem 5.1. The
situation is illustrated with a simple example at Subsections and . We
call entropic projection the minimizers of the extended relative entropy:
the rate function of the extended Sanov’s theorem (see Definition 5.3). It
appears that I-projections are entropic projections.

Recall that a sequence {Xn}n≥1 obeys the large deviation principle
(LDP) in a topological space with the rate function I if for any measurable
subset A :

− inf
x∈int(A)

I(x) ≤ lim inf
n→∞

1

n
log P (Xn ∈ A)

≤ lim sup
n→∞

1

n
log P (Xn ∈ A) ≤ − inf

x∈cl(A)
I(x)

The rate function I is said to be a good rate function if it is inf-compact.
For more details about large deviations, see the book of A. Dembo and
O. Zeitouni [13].

2. Under the very strong Cramér’s condition

2.1. Sanov’s theorem

Let (Zi)i≥1 be an independent identically distributed sequence of ran-
dom elements with values in a measurable space (Ω,A) and common law
R ∈ P(Ω) : the set of probability measures on (Ω,A). Sanov’s theorem
([13], Theorem 6.2.10) states that the sequence of empirical measures
Ln = 1

n

∑n
i=1 δZi

∈ P(Ω) (δ stands for Dirac measure) satisfies a LDP
in P(Ω) with the weak topology σ(P(Ω), B), where B is the space of
measurable bounded functions on Ω. Its good rate function is the relative
entropy with respect to R, it is given for any P ∈ P(Ω) by

I(P | R) = sup
f∈B

{∫

Ω

f dR− log

∫

Ω

ef dR

}
(2.1)

=

{ ∫
Ω

log
(

dP
dR

)
dP if P ¿ R

+∞ otherwise

2.2. A constraint function

One considers a function ϕ : Ω 7→ X on Ω with its values in a vector
space X in separating duality with a vector space Y . The space X is
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endowed with the σ-field generated by the linear forms x ∈ X 7→ 〈x, y〉 ∈
R, y ∈ Y . It is also assumed that ϕ is measurable in the following sense:
ω ∈ Ω 7→ 〈y, ϕ(ω)〉 ∈ R is measurable for all y ∈ Y .

2.3. Cramér’s theorem

The sequence Xi = ϕ(Zi), i ≥ 1 is independent identically distributed
on X with common law R ◦ ϕ−1. A weak version of Cramér’s theorem
states that under the weak Cramér’s condition:

∀y ∈ Y , ∃λ > 0,

∫

Ω

eλ〈y,ϕ(ω)〉 R(dω) < ∞ (2.2)

the empirical means 1/n
∑n

i=1 ϕ(Zi) obey the LDP in X for the topology
σ(X ,Y) with the good rate function

J(x) = sup(∆x), x ∈ X (2.3)

where (∆x) is the following optimization problem

maximize y 7→ 〈x, y〉 − log

∫

Ω

e〈y,ϕ〉 dR, y ∈ Y (2.4)

The proof of this result is obtained using Cramér’s theorem in Rd with
the law R◦(〈y1, ϕ(·)〉, . . . , 〈yd, ϕ(·)〉)−1 ([13], Corollary 6.1.6) together with
Dawson-Gärtner’s theorem on the projective limits of LDPs ([13], Theo-
rem 4.6.9).

2.4. A dual equality

In the particular case where the constraint function satisfies the fol-
lowing very strong Cramér’s condition:

∀y ∈ Y , 〈y, ϕ(·)〉 ∈ B (2.5)

the application P ∈ P(Ω) 7→ ∫
Ω

ϕdP ∈ X , where as a definition:
〈∫

Ω
ϕdP, y〉X ,Y =

∫
Ω
〈y, ϕ〉 dP, ∀y ∈ Y , is σ(P(Ω), B)-σ(X ,Y)-continuous.

It follows from the contraction principle ([13], Theorem 4.2.1) that the
rate functions of Cramér’s and Sanov’s LDPs satisfy J(x) = inf{I(P |
R); P such that

∫
Ω

ϕdP = x}, x ∈ X . In other words, taking (2.3) into
account, under the assumption (2.5), the following dual equality holds

inf(Πx) = sup(∆x) (2.6)

where (Πx) is the following (primal) optimization problem

minimize P ∈ P(Ω) 7→ I(P | R) subject to

∫

Ω

ϕdP = x (2.7)
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whose dual problem is precisely (∆x) (see (2.4)).

2.5. Csiszár’s I-projection

As a consequence, under (2.5), one obtains the following existence
result: If x ∈ X is such that sup(∆x) < ∞, there exists P ∈ P(Ω) such
that

∫
Ω

ϕdP = x and I(P | R) < ∞ (hence P ¿ R). One may ask which
are the minimizers of (Πx). In practice, this corresponds to a construction
problem (see the huge literature on the entropy maximum, for instance
[1] and the references therein). As I(· | R) is inf-compact (a good rate
function) for the topology σ(P(Ω), B), the minimizers are attained. On
the other hand, I(· | R) is strictly convex and {P ∈ P(Ω);

∫
Ω

ϕdP = x}
is a convex set, therefore the minimizer Px = argmin(Πx) is unique.

Definition 2.1 (Csiszár, [10]). Px is the I-projection of R on the convex
set {P ∈ P(Ω);

∫
Ω

ϕdP = x}.

3. Applications to stochastic processes

Clearly, condition (2.5) is very restrictive. Nevertheless, many inter-
esting problems do not violate it. In this section, such examples are pre-
sented.
Let us take Ω = C([0, 1],Rd) : the space of continuous paths on [0, 1] in
Rd. Our reference probability measure R is a process law: R ∈ P(Ω). For
any P ∈ P(Ω) and 0 ≤ t ≤ 1, let us denote Pt ∈ P(Rd) the t-marginal of
P : the law of the position at time t.

3.1. Schrödinger’s bridges

Our aim is to build a process P ∈ P(Ω) such that P ¿ R, P0 = x0

and P1 = x1 where P0 and P1 are the initial and final laws of the process
and x0, x1 are prescribed probability measures on Rd. These constraints
are properly described by the constraint function ϕ : ω = (ωt)0≤t≤1 ∈ Ω 7→
(δω0 , δω1) ∈ X where X = P(Rd) × P(Rd) is in separating duality with
Y = B(Rd)×B(Rd) or Y = C∞

o (Rd)×C∞
o (Rd). We denote B(Rd) the space

of numerical bounded functions on Rd and C∞
o (Rd) the space of infinitely

differentiable numerical functions on Rd with a compact support. Indeed,
for any (y0, y1) ∈ B(Rd) × B(Rd), 〈∫

Ω
ϕdP, (y0, y1)〉X ,Y =

∫
Ω
[y0(ω0) +

y1(ω1)] P (dω) =
∫
Rd y0 dP0 +

∫
Rd y1 dP1. Hence,

∫
Ω

ϕ dP = (P0, P1). The
very strong Cramér’s condition (2.5) clearly holds. As the dual equality
(2.6) holds, an existence criterion on x = (x0, x1) ∈ X for such a bridge
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is: sup(∆x) < ∞. This means

sup
y0,y1∈B(Rd)

{∫

Rd

y0 dx0 +

∫

Rd

y1 dx1 − log

∫

Ω

ey0(ω0)+y1(ω1) R(dω)

}

= sup
y0,y1∈C∞o (Rd)

{∫

Rd

y0 dx0 +

∫

Rd

y1 dx1 − log

∫

Ω

ey0(ω0)+y1(ω1) R(dω)

}

= sup
y0,y1∈C∞o (Rd)

{∫

Rd

y0 dx0 +

∫

Rd

y1 dx1 − log

∫

Rd×Rd

ey0(a)+y1(b) R01(dadb)

}

< ∞

where R01is the joint law of (ω0, ω1) under R. The first equality follows
from (2.3) with two different choices of Y : Y has only to separate X and
satisfy (2.5).
Note that this criterion of existence for a bridge is equivalent to the cri-
terion of existence of a joint law P01 with marginal laws x0 and x1 such
that I(P01 | R01) < ∞.

3.2. Nelson’s diffusion processes

Our aim is to build a process P ∈ P(Ω) such that P ¿ R, Pt = xt for
all 0 ≤ t ≤ 1 and (xt)0≤t≤1 ∈ X = C([0, 1],P(Rd)) is a prescribed flow of
t-marginals. These constraints are properly described by the constraint
function ϕ : ω = (ωt)0≤t≤1 ∈ Ω 7→ (δωt)0≤t≤1 ∈ X . The very strong
Cramér’s condition (2.5) clearly holds. Let us choose Y = C∞

o (]0, 1[,Rd)
with the duality bracket 〈x, y〉 =

∫
[0,1]×Rd y(t, a) xt(da)dt. The existence

criterion: sup(∆x) < ∞ writes as follows:

sup
y∈C∞o (]0,1[,Rd)

{∫

[0,1]×Rd

y(t, a) xt(da)dt− log

∫

Ω

R(dω)

∫ 1

0

ey(t,ωt) dt

}
< ∞

To make things easier, let us take for R the Wiener measure with initial
law R0. In [6], the following results have been proved.

Results 3.1 (Cattiaux & Léonard, [6])

1. J(x) < ∞ implies that there exists P ¿ R such that Pt = xt for all
0 ≤ t ≤ 1.

2. We have J(x) < ∞ if and only if there exists a vector field bx ∈ Hx

such that
∫

[0,1]×Rd

(∂t + bx · ∇+
∆

2
)f(t, a) xt(da)dt = 0, ∀f ∈ C∞

o (]0, 1[×Rd)
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where Hx is the closure of {∇g; g ∈ C∞
o (]0, 1[×Rd)} in the Hilbert

space L2([0, 1]× Rd, x) with x(dtda) = xt(da)dt.

Moreover, J(x) = 1
2

∫
[0,1]×Rd |bx(t, a)|2 xt(da)dt.

3. If J(x) < ∞, the I-projection Px is the unique absolutely continuous
with respect to R solution to the martingale problem associated with
the generator ∂t + bx · ∇+ ∆

2
.

• Note that the elements of Hx may be very irregular.

• The proof of 3.1.1 in [6] is different from the above one.

To make precise the type of information carried by J(x) < ∞, we give a
short proof of the necessary condition of 3.1.2.
Proof. For all x ∈ C([0, 1],P(Rd)), we have

J(x) = sup
y∈C∞o (]0,1[,Rd)

{
〈x, y〉 − log

∫

Ω

e〈y,ϕ(ω)〉 R(dω)

}

= sup
y∈C∞o (]0,1[,Rd)

{∫

[0,1]×Rd

y dx− log

∫

Ω

exp
( ∫ 1

0

y(t, ωt) dt
)

R(dω)

}

≥ sup
f∈C∞o (]0,1[,Rd)

{∫

[0,1]×Rd

−(∂t +
∆

2
)f dx− 1

2

∫

[0,1]×Rd

|∇f |2 dx

}
.

For the last inequality, only consider y of the special form:

−yf (t, a) = (∂t +
∆

2
)f(t, a) +

1

2
|∇f(t, a)|2, f ∈ C∞

o (]0, 1[,Rd)

and use
∫
Ω

exp
( ∫ 1

0
y(t, ωt) dt

)
R(dω) = 1 (exponential martingale). De-

noting `x(f) =
∫
[0,1]×Rd −(∂t+

∆
2
)f dx, the previous inequality implies that

|`x(f)| ≤ (J(x) +
1

2
)‖∇f‖2,x, f ∈ C∞

o (]0, 1[,Rd)

where ‖ · ‖2,x is the norm of L2([0, 1]×Rd, x). It comes out that, whenever
J(x) < ∞, `x(f) only depends on ∇f, that is: `x(f) = ˜̀

x(∇f), and
˜̀
x is a ‖ · ‖2,x-continuous linear form on ∇C∞

o (]0, 1[,Rd). Finally, by the
Riesz representation theorem, there exists a unique bx ∈ Hx such that
`x(f) =

∫
[0,1]×Rd bx(t, a) ·∇f(t, a) xt(da)dt for all f ∈ C∞

o (]0, 1[,Rd), which

is the desired result.

3.3. About the literature
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The problem of Schrödinger’s bridges has been settled by E. Schrödinger
in 1932 [26], and investigated later by several authors, in particular:
S. Bernstein [2] and R. Fortet [17]. A. Beurling [3] brought a solution
in the spirit of the proof of the present article. For a stimulating presen-
tation of this problem, see H. Föllmer’s lectures in Saint-Flour [16]. The
above proof already appeared in the author’s paper [19].
The first proof of the existence of a Nelson’s diffusion process is due to E.
Carlen [7]. This problem has then been investigated my many authors who
brought several different solutions. The reader may have a look to [5] and
[6] for references on the subject and two distinct solutions of this problem.
Among other references, about Nelson’s diffusions one may read [23], [31]
and [29]. In connection with Schrödinger’s bridges and Nelson’s diffusions,
one may be interested in Berstein’s processes ([30], [9]). Applications of
the I-projection to Bernstein processes are given in [8].

4. Under the strong Cramér’s condition

In the previous sections, the dual equality (2.6) has only been proved
under the very strong Cramér’s condition (2.5), while Cramér’s theorem
in σ(X ,Y) holds under a much weaker condition. In this section, Sanov’s
theorem is slightly extended. As a consequence, the dual equality is re-
covered via the contraction principle, under the intermediate condition

∀y ∈ Y ,

∫

Ω

e〈y,ϕ(ω)〉 R(dω) < ∞ (4.1)

which is called the strong Cramér’s condition.
In the next section, a wider extension of Sanov’s theorem is stated.

4.1. A slight improvement of Sanov’s theorem

Let Mτ be the space of measurable functions {f : Ω → R;∀λ > 0,∫
Ω

eλ|f | dR < ∞} andM∗
τ be its algebraic dual space. One doesn’t identify

R-almost surely equal functions in Mτ . Hence, any empirical measure
1/n

∑n
i=1 δzi

belongs to M∗
τ for the duality bracket 〈1/n ∑n

i=1 δzi
, f〉 =

1/n
∑n

i=1 f(zi), f ∈Mτ .

Proposition 4.1 ([21]). The sequence 1/n
∑n

i=1 δZi
obeys the LDP in

P(Ω)∩M∗
τ , for the topology σ(P(Ω)∩M∗

τ ,Mτ ) with the good rate function
I(· | R).

This result is a corollary of the extended Sanov’s theorem stated in next
the section (Theorem 5.1), see the Remark . A direct proof is as follows.

For any ~f = (f1, . . . , fd) ∈Md
τ , 1/n

∑n
i=1

~f(Zi) obeys the LDP in Rd with
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the good rate function ζ ∈ Rd 7→ supλ∈Rd{〈λ, ζ〉− log
∫
Ω

e〈λ,~f〉 dR}. Taking
the projective limit of these LDPs, one obtains the LDP for Ln in M∗

τ

for the topology σ(M∗
τ ,Mτ ) with the good rate function (compare with

(2.1))

HM(`) = sup
f∈Mτ

{
〈`, f〉 − log

∫

Ω

ef dR

}
, ` ∈M∗

τ . (4.2)

One concludes by checking that HM = I(· | R) (see [21]).
With the contraction principle, one obtains the following

Corollary 4.2 The dual equality (2.6) holds under the strong Cramér’s
condition (4.1).

We are going to state a characterization of the I-projections Px when ϕ
satisfies the strong Cramér condition (4.1). This result is a particular case
of some results of the author ([18], Theorems 4.4 and 4.5). Let us first
introduce the relevant notion of force field.

4.2. Admissible force fields

Let J be a totally ordered countable index set which admits a smaller
element: [. We consider a family (n) = (nj)j∈J of measurable linear forms
on X . For any j ∈ J , let us denote T j

+ = {〈nj, ϕ〉 > 0}⋂∩i<j{〈ni, ϕ〉 =
0} and T j

− = {〈nj, ϕ〉 < 0}⋂∩i<j{〈ni, ϕ〉 = 0} with the convention:⋂
i<[{〈ni, ϕ〉 = 0} = Ω, so that T [

+ = {〈n[, ϕ〉 > 0} and T [
− = {〈n[, ϕ〉 <

0}. We define

S =
⋂
j∈J
{〈nj, ϕ〉 = 0}, T+ =

⋃
j∈J

T j
+ and T− =

⋃
j∈J

T j
−.

Up to a R-negligible set, S, T+ and T− form a measurable partition of Ω.
Let us introduce a notation for the force fields. Let z be a measurable lin-
ear form on X and (n) = (〈nj, ϕ〉)j∈J as above. We define the application
〈z +∞ · (n), ϕ〉 : Ω → [−∞, +∞], for any ω ∈ Ω, by

〈z +∞ · (n), ϕ(ω)〉 =





+∞ if ω ∈ T+

−∞ if ω ∈ T−
〈z, ϕ(ω)〉 if ω ∈ S.

It is a measurable application. If (n) = 0, z +∞ · (n) = z has no infinite
value.

Definition 4.3 ([18]). One says that z + ∞ · (n) is an admissible force
field if:
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1.
∫
S [〈z, ϕ〉+e〈z,ϕ〉+ + 〈z, ϕ〉−] dR < ∞ and for all ε > 0, K ≥ 1,

1 ≤ k ≤ K, all functions fk such that
∫
Ω
|fk| log(|fk|) dR <

∞ and all gk ∈ L∞(R), there exists y ∈ Y such that∣∣∫
Ω
〈z − y, ϕ〉[fk1〈z,ϕ〉≥0 + gk1〈z,ϕ〉≤0] dR

∣∣ ≤ ε.

2. For all j ∈ J ,
∫
∩i<j{〈ni,ϕ〉=0}〈nj, ϕ〉− dR < ∞.

3. R(T+) = 0 and R(T−) < ∞.

The subscripts + and − stand for the nonnegative and nonpositive parts
of the functions.

4.3. Characterization of the I-projections

An element x of X is said to be an admissible constraint, if J(x) < ∞.
Being the domain of a convex function, the set of all admissible constraints
is a convex subset of X .

Theorem 4.4 (Characterization of the I-projections, [18]). Let us as-
sume that the strong Cramér’s condition (4.1) holds and the σ-field A on
Ω is R-complete.

1. For any admissible constraint xo, there exists an admissible force
field zxo = zxo +∞ · (n)xo such that

xo =

∫

Ω

ϕe〈zxo ,ϕ〉 dR and (4.3)

J(xo) = I(e〈zxo ,ϕ〉 ·R | R) < ∞. (4.4)

Conversely, if xo is associated with an admissible force field zxo by
formula (4.3), then (4.4) holds.

2. If xo is an admissible constraint, then the minimization problem
(Πxo) has a unique solution Pxo in P(Ω) ∩ M∗

τ : the set of prob-
ability measures which integrate all the functions 〈y, ϕ(·)〉, y ∈ Y .
The shape of this solution is

Pxo = e〈zxo ,ϕ〉 ·R (4.5)

where zxo is an admissible force field.

Conversely, if z + ∞ · (n) is an admissible force field, putting
xo =

∫
Ω

ϕe〈z+∞·(n),ϕ〉 dR, we have J(xo) < ∞, Pxo , e〈z+∞·(n),ϕ〉 · R
integrates all the functions 〈y, ϕ(·)〉, y ∈ Y and is the unique solution
of (Πxo).
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If xo stands in the relative geometric interior of the effective domain of
J, zxo = zxo has no infinite component. If it stands on the geometric
boundary of the effective domain of J, the field of ordered collections
of outward normal vectors (n)xo characterizes the minimal face of the
boundary on which xo stands. Note that xo is in the relative geometric
interior of this face and zxo characterizes xo in this face.
In situations where Ω = C([0, 1],Rd), (4.5) is a Girsanov’s formula and
e〈∞·(n)xo ,ϕ〉 = 1S (R-almost surely) is the indicator function of a set of
paths with finite energy.

4.4. About the literature

A characterization of the minimizer Px in terms of the cancelation
of a gradient is given in [24] and extended in ([22], Theorem 8.10) and
([28], Theorem 2). It doesn’t lead to the exact shape of the density of the
minimizer: dPx

dR
.

A necessary condition for a density to be dPx

dR
, and a sufficient condition,

are stated in ([10], Theorem 3.1). Except for a finite number of moment
constraints, it remains a gap between these conditions to be simultaneously
necessary and sufficient. Similar conditions in more general situations are
obtained in ([11], Lemma 3.4) and ([22], Theorem 8.20).
For a finite number of qualified constraints, the characterization of dPx

dR
is

given in [4] and extended in [12]. Let us mention that a qualified constraint
is “interior” and it follows from our results that the force field associated
with Px doesn’t take any infinite values.
Theorem 4.4 closes the problem of the characterization of dPx

dR
under the

strong Cramér’s condition (4.1), without any topological restrictions. It
definitely improves the already published related results.

5. Under the weak Cramér’s condition

Cramér’s theorem holds under the weak Cramér’s condition (2.2) while
we have only proved Sanov’s theorem under the strong Cramér’s condi-
tion (4.1) (see Proposition 4.1). It is interesting to ask how to extend
Sanov’s theorem in order to recover Cramér’s theorem with the contrac-
tion principle, under the weak Cramér’s condition. This result has been
obtained in collaboration with J. Najim [21], it is stated below. Let us
begin illustrating the situation with a simple example .

5.1. Csiszár’s example

This example has been studied by I. Csiszár in [11]. Take Ω = [0,∞[,
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R(dω) = c e−λ̃ω

1+ω3 dω where λ̃ > 0, c is the unspecified normalizing constant
and dω is the Lebesgue measure on [0,∞[. Our constraint function is
ϕ(ω) = ω, ω ≥ 0. Note that (2.2) holds but (4.1) fails. The log-Laplace
transform of R is Λ(λ) = log

∫
[0,∞[

eλω R(dω). Its effective domain is ] −
∞, λ̃] and its left derivative at λ̃ : Λ′(λ̃) , x̃ is finite. Therefore, its convex
conjugate J = Λ∗ has effective domain ]0,∞[ and is affine with slope λ̃ on
[x̃,∞[. The problem (Πx) consists of minimizing P 7→ I(P | R) under the
constraint

∫
[0,∞[

ω P (dω) = x. In [11], it is shown that

• for any x > 0, the dual equality: inf{I(P | R);
∫

[0,∞[
ω P (dω) = x} =

J(x), holds

• for any 0 < x ≤ x̃, the infimum is attained at Px(dω) = ceλxω R(dω)
where Λ′(λx) = x

• for any x > x̃, the infimum is not attained, but any minimizing
sequence (Pn) (i.e. limn→∞ I(Pn | R) = J(x) and

∫
[0,∞[

ω Pn(dω) =

x,∀n ≥ 1), converges in the sense of total variation to P̃ (dω) ,
Px̃(dω) = ceλ̃ω R(dω) = c dω

1+ω3 .

I. Csiszár introduced in [11] the notion of generalized I-projection to take
this phenomenon into account.

5.2. The extended Sanov’s theorem

Let Lτ stand for the space of measurable functions on Ω which admit
“some finite exponential moment”:

Lτ = {f : Ω → R;∃λ > 0,

∫

Ω

eλ|f | dR < ∞}

Its algebraic dual is denoted L∗τ . Proceeding as in the proof of Proposi-
tion 4.1, one obtains by projective limits of Cramér’s theorem in Rd that
{Ln; n ≥ 1} obeys the LDP in L∗τ for the topology σ(L∗τ ,Lτ ) and with
the good rate function

HL(`) = sup
f∈Lτ

{
〈`, f〉 − log

∫

Ω

ef dR

}
, ` ∈ L∗τ

(compare with (2.1) and(4.2)). As Mτ ⊂ Lτ , we have HL(`) ≥ HM(`′)

=

{
I(`′ | R) if `′ ∈ P(Ω)
∞ otherwise

where `′ is the restriction of ` to Mτ .
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In [21], it is proved that HL(`) < ∞ implies that ` matches with an element
of the topological dual space L′τ of the Orlicz space Lτ , Lτ/R-a.s. : the
factor space of Lτ for the R-a.s. equality, endowed with the Luxemburg
norm ‖f‖τ = inf{a > 0;

∫
Ω

τ(f/a) dR ≤ 1} where τ is the Young function

τ(s) = e|s| − |s| − 1, s ∈ R.
Any element ` ∈ L′τ is decomposed into ` = `a+`s, the sum of its absolutely
continuous part `a = d`a

dR
·R with d`a

dR
∈ Lτ∗ and of its singular part `s ∈ Ls

τ .
The space Lτ∗ is the Orlicz space associated with the convex conjugate τ ∗

of τ : τ ∗(t) = (|t|+1) log(|t|+1)−|t|, Lτ∗ = {g : Ω → R;
∫
Ω

τ ∗(g) dR < ∞}.
The space Ls

τ of singular forms consists of all ` ∈ L′τ such that 〈`, f〉 = 0,
for all f ∈Mτ . Therefore, one can write L′τ ' (Lτ∗ ·R)⊕ Ls

τ .
Let Q be the set of all ` ∈ L∗τ which are nonnegative: 〈`, f〉 ≥ 0, ∀f ≥ 0,
with unit mass: 〈`,1〉 = 1. Note that since 1 belongs to Mτ , we have
〈`,1〉 = 0 for all ` ∈ Ls

τ . It comes out that except for 0, the elements of
Ls

τ cannot be represented as measures (they are finitely additive, but not
σ-additive set functionals).

Theorem 5.1 (Extended Sanov’s theorem, [21]). The sequence of random
empirical measures {Ln; n ≥ 1} obeys the LDP in Q for the topology
σ(Q,Lτ ) with the good rate function

I(`) =

{
Ia(`

a) + Is(`
s) if ` ∈ L′τ

∞ otherwise

where ` = `a + `s, Ia(`
a) =

{
I(`a | R) if `a ∈ P(Ω)
∞ otherwise

and

Is(`
s) = sup{〈`s, f〉; f ∈ Lτ ,

∫
Ω

ef dR < ∞}.
Proof. See [21].
Note that if Is(`

s) < ∞, then `s is nonnegative. The function Is is the
recession function of Ia, it is also the support functional of the convex set
{f ∈ Lτ ;

∫
Ω

ef dR < ∞}.
Remark . One recovers Proposition 4.1 contracting the LDP of Theorem
5.1 with the application which associates with any element of L∗τ its re-
striction to Mτ . Indeed, the restriction to Mτ of any singular form (in
Ls

τ ) is zero.
The equality 〈`, ϕ〉 = x with ` ∈ Q and x ∈ X means 〈`, 〈y, ϕ〉〉 =

〈x, y〉, for all y ∈ Y . In view of the continuity of ` ∈ Q 7→ 〈`, ϕ〉 ∈ X with
respect to the topologies σ(Q,Lτ ) and σ(X ,Y), the contraction principle
yields the following

Corollary 5.2 Let us consider the following extension (Πx) of (Πx) :

minimize ` ∈ Q ∩ L′τ 7→ I(`a | R) + Is(`
s) subject to 〈`, ϕ〉 = x (5.1)
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The dual equality sup(∆x) = inf(Πx) holds under the weak Cramér’s con-
dition (2.2).

Since I is a good rate function, when J(x)(:= sup(∆x)) < ∞, the infimum
is attained for (Πx), although it may not be attained for (Πx).
As Is is positively homogeneous, it is not strictly convex and (Πx) may
admit several solutions.

Definition 5.3 The minimizers of (Πx) are called entropic projections.

5.3. Back to Csiszár’s example

Now, we consider (Πx) instead of (Πx) in the above Csiszár’s example.
One can prove ([20]) that `x is a solution to (Πx) if and only if

`x =

{
Px if x ≤ x̃

P̃ + (x− x̃)ξ if x ≥ x̃
where ξ is any nonnegative element

of Ls
τ such that

1. the constraint 〈ξ, ϕ〉 = 1 is satisfied and

2. its “support” is determined by 〈ξ, f〉 = 0 for all nonnegative f in Lτ

such that there exists t > 0 with
∫

[0,∞[
eλ̃ϕ+tf dR < ∞.

Note that

• for all x ≤ x̃, 〈`x, ϕ〉 = 〈Px, ϕ〉 = x and I(`x) = I(Px | R) = J(x)
and

• for all x ≥ x̃, I(`x) = I(P̃ | R) + 〈(x− x̃)ξ, λ̃ϕ〉 = J(x̃) + λ̃(x− x̃) =
J(x).

For the second item, one can prove that under the constraint 〈ξ, ϕ〉 = 1,
the supremum of f 7→ 〈ξ, f〉 subject to

∫
[0,∞[

ef dR < ∞ is attained at λ̃ϕ.

5.4. About the literature

Improvements of the usual Sanov’s theorem for the topology
σ(P(Ω), B)) have been obtained by P. Eischelbacher and U. Schmock ([14],
[15]). They are close to Proposition 4.1. A. Schied [25] shows that the
relative entropy I(· | R) may not be inf-compact for topologies σ(P(Ω),F)
when F is not included in Mτ .
The dual equality in Corollary 5.2 is proved in [19] with convex analysis.
In [20], the author characterizes the minimizers of (5.1). This extends
Theorem 4.4.
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In [21], Theorem 5.1 is exploited to improve the Gibbs conditioning prin-
ciple obtained by D. Stroock and O. Zeitouni [27] (see also: [13] for a
detailed presentation, and [11] for an alternate statement).
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[20] C. Léonard. Minimizers of energy functionals under not very inte-
grable constraints Preprint Ecole Polytechnique, CMAP, 2000.
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