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1. Introduction
Let (p(ω, t) ; t ≥ 0, ω ∈ Ω) be a stationary Poisson point process with values in a measurable space
A. For any ε > 0, let us associate with it the Poisson random measure on [0, T ]×A :

Nε
ω =

∑

s∈Dω,εs≤T

εδ(εs,p(ω,s))

where T > 0, ω ∈ Ω, δ(t,a) is the Dirac measure at (t, a) ∈ [0, T ] × A and Dω is the domain of
definition of p(ω, ·). We are interested in the random integrals

∫
[0,T ]×A

θ dNε
ω and the corresponding

centred stochastic integrals
∫
[0,T ]×A

θ dÑε
ω where θ are measurable functions on [0, T ]×A (

∫
θ dÑε

is the usual L2-isometric extension of θ 7→ ∫
θ dNε − IE

∫
θ dNε).

In this article, large deviations (LD) results as ε tends to zero are proved for {Ñε} and {Nε} which
are viewed as random linear forms on spaces of functions θ : [0, T ] ×A → IR. As a corollary, LD
results are obtained for IRd-valued processes {Y ε} defined for any 0 ≤ t ≤ T by

Y ε(t) = εY (t/ε)
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where Y belongs to a class of IRd-valued processes with independent increments (including all the
Lévy processes: i.e. with stationary independent increments) without Gaussian component. Our
results are of the following form

ε log IP (Nε ∈ A) ³
ε→0

− I(A), ε log IP (Ñε ∈ A) ³
ε→0

− Ĩ(A) and ε log IP (Y ε ∈ B) ³
ε→0

− J(B)

where A is a subset of the algebraic dual of some space of functions θ on [0, T ] × A and B is a
subset of the space D of càdlàg paths y : [0, T ] → IRd with y(0) = 0. A rigorous statement of such
results is in terms of large deviation principles.

Conventions. We keep the conventions for LD results which were adopted in the book by A.
Dembo and O. Zeitouni ([DeZ]). Let X be a Haussdorf topological space endowed with its Borel
σ-field. A rate function is a [0,∞]-valued lower semicontinuous function on X . It is said to be a
good rate function if its level sets are compact. A family {Xε} of X -valued random variables is
said to obey the large deviation principle (LDP) in X with rate function I if for each open subset
G ⊂ X and each closed subset F ⊂ X

lim sup
ε→0

ε log IP (Xε ∈ F ) ≤ − inf
x∈F

I(x) and lim inf
ε→0

ε log IP (Xε ∈ G) ≥ − inf
x∈G

I(x)

If the lower bound holds for each open subset but the upper bound is only valid for compact subsets
of X , {Xε} is said to obey a weak LDP.

About the literature. Large deviation results for {Nε} acting on functions θ satisfying
IE exp(β

∫
θ dN) < ∞ for all β > 0, have recently been obtained by D. Florens and H. Pham

([FlP]) while LD results for {Y ε} have already been obtained by many authors. When Y is the
Wiener process, the LDP for {Y ε} is given by Schilder’s theorem ([Sch]). This has been extended
by A. de Acosta ([Ac1], Theorem 1.2), ([Ac2], Theorem 6) to the case where Y is any Banach-valued
Lévy process satisfying

(1.1) IE exp(β|Y (1)|) < ∞, ∀β > 0.

A little sooner, R.S. Lipster and A.A. Pukhalskii (LiP) had obtained similar LD results for
IRd-valued normalized semimartingales under integrability assumptions of the type of (1.1). In
this situation, the LDP holds in D with the uniform convergence topology. This result will be
partially recovered later as a particular case of the Laplace principle by P. Dupuis and R.S. Ellis
([DuE], Theorem 10.2.6) for a class of Markov processes whose large deviations had already been
investigated by A.D. Wentzell ([Wen], [FrW]). It seems that the first work in this direction involving
jump processes is due to Borovkov ([Bor]) who proves a LDP under (1.1) for real compound Poisson
processes.

Under the weaker assumption

(1.2) IE exp(βo|Y (1)|) < ∞, for some βo > 0

LDPs still hold for {Y ε} with weaker topologies on D. Assuming that the sample paths of Y have
bounded variation, J. Lynch and J. Sethuraman ([LyS]) have obtained the LDP in dimension d = 1
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with the weak topology (limn→∞ yn = y if and only if limn→∞ yn(t) = y(t) for each 0 ≤ t ≤ T where
y is continuous). In ([Ac1], Theorem 5.2), this result is extended to the finite dimensional case:
d < ∞. Under (1.2), with d = 1 but dropping the bounded variation assumption, Mogulskii ([Mog],
Theorems 2.5 & 2.7) proves the LD lower bound for the weak topology together with the LDP in the
completion Ds of D with respect to some Skorokhod metric (D 6= Ds). The rate function Is of this
LDP on Ds is the greatest lower semicontinuous extension of an explicit function I on D, hence
for any A ⊂ D, infy∈clD(A) I(y) ≥ infy∈clDs (A) Is(y) and infy∈intD(A) I(y) ≤ infy∈intDs (A) Is(y).
Therefore, the pullback of this LDP onto D isn’t clear as it should require the identification of
those A ⊂ D which achieve equality in the above formulas.

Under the assumption that the sample paths have bounded variations and IE|Y (1)| < ∞, ([Ac1],
Theorem 5.2) states a LD lower bound for the weak topology.

Under the only assumption IE|Y (1)| < ∞, A. de Acosta also obtains a possibly non-optimal LD
lower bound for the uniform convergence topology ([Ac1], Theorem 5.1).

Presentation of the results. The aim of this article is to obtain LD results for {Ñε} and
{Nε} and to improve in several directions the above LD results for {Y ε} in the situation where
(1.1) doesn’t hold. The bounded variation and (d = 1) assumptions are removed, the topologies are
strengthened and (under an exponential integrability assumption of the type (1.2)) the requirement
that the increments are stationary is removed. New alternate expressions for the LD rate functions
are also derived.

We shall take advantage of the Lévy-Khinchin integral representation of Y (1) and of duality results
for Orlicz spaces associated with the log-Laplace transform of the Poisson law.

In Section 2, we compute log IE exp(
∫
[0,T ]×A

θ dÑ) and log IE exp(
∫
[0,T ]×A

θ dN) in terms of the
characteristic measure of N, for a general function θ.

This log-Laplace evaluation is the first step to obtain in Section 3 weak LDPs for {Ñε} and
{Nε} considered as random processes indexed by time-independent functions with no exponential
integrability restrictions. Our proof mimics the usual approach to Cramér’s theorem in IRd without
exponential moments, via subadditivity arguments.

In Section 4, we consider {Ñε} (resp. {Nε}) as random processes indexed by functions θ on
[0, T ] ×A such that IE exp(β

∫
[0,T ]×A

θ dÑ) < ∞ (resp. IE exp(β
∫
[0,T ]×A

θ dN) < ∞), ∀|β| ≤ βo,

for some βo > 0, and prove that they obey LDPs for the product topology.

Let M stand for the space of IRd-valued (vector) measures on [0, T ] and σ(D,M) be the topology of
D weakened by M : limn→∞ yn = y if and only if for each µ ∈ M, limn→∞

∫
[0,T ]

yn dµ =
∫
[0,T ]

y dµ.

The following topologies on D are ordered as follows. The weak topology is weaker than the
pointwise convergence topology which is weaker than σ(D,M) which in turn is weaker than the
uniform convergence topology. The Skorokhod topology is stronger than the weak topology and
weaker than the uniform convergence one. It cannot be compared neither with the pointwise
convergence topology nor with σ(D, M). All these topologies, except the uniform one, generate the
same Borel σ-field on D.

The results of Sections 3 and 4 are applied in Section 5 to prove LD results for {Y ε}. With Y a
general Lévy process on IRd (without Gaussian component), Theorem 5.1 states a weak LDP in D
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with the topology of pointwise convergence. Under an assumption of the type of (1.2), Theorem
5.3 states a LDP for {Y ε} in σ(D, M). Its proof is based on the contraction principle applied to
the LDPs of Section 4. It relies on integration by parts formulas and a dual representation result
which are derived in the Appendix.

In Section 6, explicit expressions for the rate functions of Section 5 are computed. They extend
to the multidimensional case (1 ≤ d < ∞) previous results of [LyS] and [Ac1]. Their derivation
largely relies on a paper by R.T. Rockafellar ([Roc]).

As a consequence, we give in Theorem 6.3 a sufficient condition for the optimality of the LD lower
bound in uniform convergence topology of [Ac1].

2. The log-Laplace transform of a Poisson random measure
Let (Ω,F , IP ) be a probability space, and R a σ-finite nonnegative measure on a standard
measurable space (U,U). We consider the Poisson random measure M built on (Ω,F) and (U,U)

with intensity R. Let ER be the space of all the elementary functions on (U,U) : f =
n∑

i=1

λi1IBi where

n ≥ 1, λ1, . . . , λn ∈ IR and B1, . . . , Bn are disjoint subsets in the class {B ∈ U ; R(B) < ∞}. As
usual, the stochastic integral f ∈ L2(U, R) 7→ ∫

U
f(u)M̃(·, du) ∈ L2(Ω, IP ) is the unique isometric

extension of f =
n∑

i=1

λi1IBi ∈ ER 7→
(

ω 7→
n∑

i=1

λi(M(ω, Bi)−R(Bi))

)
∈ L2(Ω, IP ).

Our aim is to compute the log-Laplace transform of the law of M̃. Before stating this result at
Proposition 2.2, we introduce some notations. Let us denote ρ̃ the log-Laplace transform of the
centered Poisson law with parameter 1: ρ̃(x) = log IEex(X−IEX), x ∈ IR where X is Poisson(1)
distributed. We have

ρ̃(x) = ex − x− 1, x ∈ IR.

For any measurable function f on U, we define the Luxemburg norm

‖f‖τ = inf{α > 0 ;
∫

U

τ(f/α) dR ≤ 1} ∈ [0,∞],

which is associated with the Young function

τ(x) := ρ̃(|x|) = e|x| − |x| − 1, x ∈ IR.

The corresponding Orlicz spaces are

Lτ (U, R) := {f : U → IR, measurable, ‖f‖τ < ∞} and(2.1)

Mτ (U, R) :=
{

f : U → IR, measurable,
∫

U

τ(λf) dR < ∞, ∀λ > 0
}

.

Notice that Mτ ⊂ Lτ ⊂ L2 where, in general, the inclusions are strict. The spaces Mτ and Lτ are
endowed with the norm ‖ · ‖τ , they are Banach spaces.
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Lemma 2.1. For any f ∈ Mτ (U, R), we have

log IE exp
(∫

U

f dM̃

)
=

∫

U

ρ̃(f) dR ∈ [0, +∞[.

Proof. By an easy computation, in restriction to the elementary functions, we obtain

(2.2) log IE exp
(∫

U

f dM̃

)
=

∫

U

ρ̃(f) dR, ∀f ∈ ER.

We want to extend this identity to Mτ (U, R). This will follow from a continuity-density argu-
ment. As ER is ‖ · ‖τ -dense in Mτ (U, R) (see [RaR]), it remains to check that the functions:

G1(f) = log IE exp
(∫

U

f dM̃

)
and G2(f) =

∫

U

ρ̃(f) dR are ‖ · ‖τ -continuous on Mτ (U, R).

As ρ̃ is a convex function and R is nonnegative, G2 is also convex. Its effective domain is the whole
space Mτ (U, R) and it is bounded above on the unit ball of Mτ (U, R). Indeed, for any f ∈ Mτ ,

with ‖f‖τ ≤ 1, we have G2(f) ≤ ∫
U

τ(f) dR ≤ 1 (notice that ρ̃(x) ≤ τ(x), ∀x ∈ IR). Therefore, G2

is continuous on Mτ (U, R).

Let us show now that G1 is also continuous on Mτ (U, R). We have for some C > 0,

(2.3) ‖
∫

U

f dM̃‖τ,IP ≤ C‖f‖τ,R,∀f ∈ ER,

since for any f ∈ ER

‖
∫

U

f dM̃‖τ,IP := inf

{
b > 0 ; IEρ̃

(
| ∫

U
f dM̃ |
b

)
≤ 1

}

≤ inf

{
b > 0 ; IE exp

(∫
U

f dM̃

b

)
+ IE exp

(
− ∫

U
f dM̃

b

)
≤ 3

}

= inf
{

b > 0 ; exp
(∫

U

ρ̃

(
f

b

)
dR

)
+ exp

(∫

U

ρ̃

(
−f

b

)
dR

)
≤ 3

}

≤ inf
{

b > 0 ;
∫

U

ρ̃

( |f |
b

)
dR ≤ log(3/2)

}

≤ ‖f‖τ,R/ log(3/2).

The first inequality follows from: ρ̃(|x|) ≤ ρ̃(x)+ρ̃(−x) = ex+e−x−2, the following equality follows
from (2.2), the second inequality follows from: max(ρ̃(x), ρ̃(−x)) ≤ ρ̃(|x|) and the third one from:
τ(αx) ≤ ατ(x) when 0 ≤ α ≤ 1. The inequality (2.3) means that f ∈ (ER, ‖ · ‖τ,R) 7→ ∫

U
f dM̃ ∈

(Mτ (Ω, IP ), ‖ · ‖τ,IP ) is continuous. Let Iτ denote its continuous extension to Mτ (U, R). For any
f ∈ Mτ (U, R), there exists a sequence (fn)n≥1 in ER such that fn −→

n→∞
f in Mτ (U, R). But this

implies that fn −→
n→∞

f in L2(U, R). Therefore, Iτ (f) = limn→∞
∫
U

fn dM̃ =
∫
U

f dM̃. We have

just proved that the stochastic integral f ∈ Mτ (U, R) 7→ ∫
U

f dM̃ ∈ Mτ (Ω, IP ) is continuous. In
particular, (2.3) extends to: ‖ ∫

U
f dM̃‖τ,IP ≤ ‖f‖τ,R, ∀f ∈ Mτ (U, R) and for any f ∈ Mτ (U, R)

such that‖f‖τ,R ≤ 1/4, we get IEρ̃(2| ∫
U

f dM̃ |) ≤ 1. As, ex ≤ ρ̃(2|x|) + 3,∀x ∈ IR, it follows that
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IE exp(
∫
U

f dM̃) ≤ IEρ̃(2| ∫
U

f dM̃ |) + 3 ≤ 4. Therefore, the convex function f ∈ Mτ (U, R) 7→
IE exp(

∫
U

f dM̃) is bounded above on the open ball {f ∈ Mτ (U, R) ; ‖f‖τ,R < 1/4}, so that it
is continuous on the interior of its effective domain. But, its effective domain is the whole space
Mτ (U, R). Hence, f ∈ Mτ (U, R) 7→ IE exp(

∫
U

f dM̃) is continuous and so is its logarithm G1.

This completes the proof of the lemma.

Let us denote the log-Laplace transform of the Poisson(1) law:

ρ(x) = ex − 1, x ∈ IR.

Proposition 2.2.
(a) For any f ∈ L2(U, R), we have

log IE exp
(∫

U

f dM̃

)
=

∫

U

ρ̃(f) dR ∈ [0, +∞].

(b) For any f ∈ L1(U, R), we have

log IE exp
(∫

U

f dM

)
=

∫

U

ρ(f) dR ∈]−∞,+∞].

(c) If R is a bounded measure, for any measurable function f on U, we have

log IE exp
(∫

U

f dM

)
=

∫

U

ρ(f) dR ∈]−∞,+∞].

Remarks. In (b), the meaning of
∫
U

ρ(f) dR is
∫
U

ρ̃(f) dR +
∫
U

f dR ∈ [0,∞] + IR =]−∞,∞].

In (c), the meaning of
∫
U

ρ(f) dR is
∫
U

ρ(f+) dR+
∫
U

ρ(−f−) dR ∈ [0,∞]+]−R(U), 0] ⊂]−∞,∞].

Proof. Let us begin with (a). For any f ∈ L2(U, R) and k ≥ 1, let us put fk = 1I{1/k≤|f |≤k}f.

We have limk→∞ fk = f pointwise and limk→∞
∫
U

fk dM̃ =
∫
U

f dM̃ in L2(Ω, IP ). Hence, possibly
extracting a subsequence, we get limk→∞

∫
U

fk dM̃ =
∫
U

f dM̃, IP -a.s. As fk belongs to Mτ (U, R),
it follows from Lemma 2.1 that

log IE exp
(∫

U

fk dM̃

)
=

∫

U

ρ̃(fk) dR =
∫

{1/k≤|f |≤k}
ρ̃(f) dR, ∀k ≥ 1.

Using Fatou’s lemma and the monotone convergence theorem:

log IE exp
(∫

U

f dM̃

)
= log IE lim

k→∞
exp

(∫

U

fk dM̃

)

≤ lim inf
k→∞

log IE exp
(∫

U

fk dM̃

)
= lim

k→∞

∫

{1/k≤|f |≤k}
ρ̃(f) dR =

∫

U

ρ̃(f) dR.

Now, let us prove the converse inequality. Let f, g stand in L2(U, R). By Jensen’s inequality,
log IE exp

(∫
U

f dM̃
)
≥ IE

∫
U

f dM̃ = 0. If fg = 0, then
∫
U

f dM̃ and
∫
U

g dM̃ are independent
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and log IE exp
(∫

U
(f + g) dM̃

)
= log IE exp

(∫
U

f dM̃
)

+ log IE exp
(∫

U
g dM̃

)
. As, for any k ≥ 1,

we have fk(f − fk) = 0, it follows that

log IE exp
(∫

U

f dM̃

)
= log IE exp

(∫

U

fk dM̃

)
+ log IE exp

(∫

U

(f − fk) dM̃

)

≥ log IE exp
(∫

U

fk dM̃

)
=

∫

{1/k≤|f |≤k}
ρ̃(f) dR.

Letting k tend to infinity, we obtain the desired inequality and (a).

Let us prove (b) and (c).
In the situation (b), IE

∫
U
|f | dM =

∫
U
|f | dR < ∞. Therefore,

∫
U

f dM is almost surely an
absolutely convergent series.
In the situation (c),

∫
U

f dM is almost surely the sum of finitely many terms.
Under (b) or (c), for any k ≥ 1, we have fk ∈ L2(U, R) ∩ L1(U, R). Hence,

∫
U

fk dM =∫
U

fk dM̃ +
∫
U

fk dR and, with Lemma 2.1: log IE exp
∫
U

fk dM =
∫
U

ρ(fk) dR ∈ IR.

Let f ≥ 0. Then,

log IE exp
∫

U

f dM = lim
k→∞

log IE exp
∫

U

fk dM (monotone convergence)

= lim
k→∞

∫

U

ρ(fk) dR

=
∫

U

ρ(f) dR (monotone convergence)

Let f ≤ 0. One obtains similar equalities, invoking the dominated convergence theorem instead
of the monotone convergence theorem for the first equality. Indeed, we have 0 < exp

∫
U

fk dM ≤
1, ∀k ≥ 1. Therefore,

(2.4) log IE

∫

U

f+ dM =
∫

U

ρ(f+) dR and log IE

∫

U

f− dM =
∫

U

ρ(f−) dR

On the other hand, since
∫
U

f+ dM and
∫
U

f− dM are independent random variables, we obtain

log IE

∫

U

f dM = log IE exp
∫

U

f+ dM + log IE exp(−
∫

U

f− dM).

Together with (2.4), this gives the announced results.

3. Large deviations for Poisson random measures without
integrability conditions
Let (Ω,F , IP ) be a probability space, (Ft)t≥0 a right continuous filtration of the IP -complete σ-field
F and (A,A) a standard measurable space. Let us consider an A-valued point process (pt)t≥0 built
on (Ω,F). It defines a IN ∪ {∞}-valued counting random measure on [0,∞[×A endowed with the
product σ-field B([0,∞[)×A :

N(ω; dtda) =
∑

s∈Dω

δ(s,ps(ω))(dtda), ω ∈ Ω
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where Dω is the countable definition domain of t 7→ pt(ω). This process is assumed to be (Ft)t≥0-
adapted in the sense that for any A ∈ A, N(ω, [0, t]×A) is (Ft)t≥0-adapted.

Let Λ be a nonnegative σ-finite measure on (A,A). We suppose that p is a stationary Poisson process
with characteristic measure Λ, this means that N is a Poisson random measure with intensity
measure

R(dtda) = dtΛ(da).

The associated stochastic integral is denoted
∫
[0,∞[×A

g dÑ, g ∈ L2([0,∞[×A, R).

We fix the terminal time T > 0. For all ε > 0, let us consider the ε-normalized measure on [0, T ]×A

Nε(ω, dtda) =
∑

s∈Dω,s≤T/ε

εδ(εs,ps(ω))(dtda), ω ∈ Ω

For any A ∈ A such that Λ(A) < ∞ and any ε > 0, 0 ≤ t ≤ T the law of Nε([0, t] × A) is
εP( t

εΛ(A)), in particular IENε([0, t] × A) = tΛ(A) = IEN([0, t] × A) and Var(Nε([0, t] × A)) =
εtΛ(A) = εVar(N([0, t]×A).

Let us denote L0 the space of all the measurable functions ϕ : A 7→ IR, L1 = L1(A,Λ) and
L2 = L2(A, Λ), where Λ-almost everywhere equal functions are identified. For any integer d ≥ 1,

Ld
0, Ld

1 and Ld
2 are the corresponding spaces of functions ϕ : A 7→ IRd.

For any θ : [0, T ]×A 7→ IRd, provided that the integrals below are meaningful, one defines

〈Ñε, θ〉 = (〈Ñε, θk〉)k≤d with 〈Ñε, θk〉 = ε

∫

[0,T/ε]×A

θk(εt, a) Ñ(dtda), k ≤ d

〈Nε, θ〉 = (〈Nε, θk〉)k≤d with 〈Nε, θk〉 = ε

∫

[0,T/ε]×A

θk(εt, a)N(dtda), k ≤ d.

For any ϕ ∈ Ld
0, 0 ≤ t ≤ T, y ∈ IRd, let us denote

〈Ñε
t , ϕ〉 = 〈Ñε, 1I[0,t] ⊗ ϕ〉

〈Nε
t , ϕ〉 = 〈Nε, 1I[0,t] ⊗ ϕ〉

Ĩϕ,t(y) = sup
λ∈IRd

{
λ · y − t

∫

A

ρ̃(λ · ϕ) dΛ
}

Iϕ,t(y) = sup
λ∈IRd

{
λ · y − t

∫

A

ρ(λ · ϕ) dΛ
}

.

Proposition 3.1. Let us fix 0 ≤ t ≤ T, ϕ ∈ Ld
0.

(a) if ϕ ∈ Ld
2, {〈Ñε

t , ϕ〉} satisfies a weak LDP in IRd with rate function Ĩϕ,t.

(b) if ϕ ∈ Ld
1, {〈Nε

t , ϕ〉} satisfies a weak LDP in IRd with rate function Iϕ,t.

(c) if ϕ ∈ Ld
0 and Λ(A) < ∞, {〈Nε

t , ϕ〉} satisfies a weak LDP in IRd with rate function Iϕ,t.

Proof. Let us begin with (b). Let ε > 0 and C be an open convex subset of IRd. We define
Zε = 〈Nε

t , ϕ〉 and Γ(1/ε) = − log IP (Zε ∈ C) ∈ [0,∞]. Our proof follows step by step, the proof of
Cramér’s theorem for the empirical mean X of a random sample in IRd, without any integrability
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condition (see [DeZ], Theorem 6.1.3), with Zε in the part of X. We are going to check that Γ is
sub-additive, i.e.

(3.1) Γ(1/ε + 1/ε∗) ≤ Γ(1/ε) + Γ(1/ε∗), ∀ε, ε∗ > 0

and that

(3.2) for any 0 < ε0 < ε1, Γ(1/ε1) < ∞ =⇒ sup
ε∈[ε0,ε1]

Γ(1/ε) < ∞

Following ([DeZ], Lemma 6.1.11), these two results lead us to the following

Lemma. For any U open convex subset of IRd, the limit limε→0 ε log IP (Zε ∈ U) exists as an

extended real number.

Once this result is established, the remainder of the proof of Proposition 3.1 is analogous to the
proof of ([DeZ], Theorem 6.1.3). Hence, one gets a weak LDP for {Zε} the rate function of which
is the convex conjugate G∗(z) of

G(λ) := lim
ε→0

ε log IE exp
(

1
ε
〈λ,Zε〉

)
, λ ∈ IRd.

By Proposition 2.1.b, we have

ε log IE exp
(

1
ε
〈λ, Zε〉

)
= ε log IE exp

( ∫

[0,∞[×A

1I]0,t/ε](s)λ · ϕ(a) N(dsda)
)

= ε

∫

]0,t/ε]×A

ρ(λ · ϕ(a)) dsΛ(da)

= t

∫

A

ρ(λ · ϕ(a)) Λ(da)

for any ε > 0. Therefore, the limit G(λ) = t
∫
A

ρ (λ · ϕ(a)) Λ(da) ∈] −∞, +∞] exists. We finally
obtain the right statement, noticing that : Iϕ,t = G∗. It remains to prove (3.1) and (3.2).

Let us show (3.1). For any 0 < ε < ε′, let us denote ε∗ = εε′/(ε′ − ε) and
Zε

ε′ = ε∗
∫
[0,∞[×A

1I]t/ε′,t/ε] ⊗ ϕdN. Remark that Zε = Zε
εo

with εo = ∞ and that

Zε = (ε/ε′)Zε′ + (ε/ε∗)Zε
ε′ with (ε/ε′) + (ε/ε∗) = 1

Zε
ε′

L= Zε∗

Zε′ and Zε
ε′ are independent.

Taking these remarks into account together with the convexity of C, for any ε′, ε∗ > 0 with
ε = (1/ε′ + 1/ε∗)−1, one obtains:

IP (Zε′ ∈ C)IP (Zε∗ ∈ C) = IP (Zε′ ∈ C and Zε
ε′ ∈ C)

≤ IP ((ε/ε′)Zε′ + (ε/ε∗)Zε
ε′ ∈ C)

= IP (Zε ∈ C)

9



which proves (3.1).

The proof of (3.2) relies upon the following result:

Lemma 3.2. Let 0 < ε0 < ε1.

Under the condition (a), {〈Ñε
t , ϕ〉 ; ε0 ≤ ε ≤ ε1} is tight in IRd.

Under the condition (b) or (c), {〈Nε
t , ϕ〉 ; ε0 ≤ ε ≤ ε1} is tight in IRd.

Its proof is postponed after Proposition 3.1’s proof.

From this lemma, as in ([DeZ], Lemma 6.1.14), one deduces that for any convex open subset U of
IRd satisfying IP (Zε1 ∈ U) > 0 for some ε1 > 0 (i.e. Γ(1/ε1) < ∞), there exists V ⊂ U and b > 0
such that for ε small enough

IP (Zε ∈ U) ≥ IP (Zε1 ∈ V )lIP (|Zη| ≤ b)

with IP (Zε1 ∈ V ) > 0, IP (|Zη| ≤ b) > 0 and 1/ε = (l/ε1) + (1/η), l ∈ IN, η > ε1. From which (3.2)
follows.

The proof of the proposition under conditions (c) and (a) follows the same line, invoking the
corresponding statements in Proposition 2.2 and Lemma 3.2.

Proof of Lemma 3.2. Since IP (maxk≤d |〈Nε
t , ϕk〉| ≥ b) ≤ ∑

k≤d IP (|〈Nε
t , ϕk〉| ≥ b), it is enough to

prove the lemma with d = 1.

Under condition (a): ϕ ∈ L2, for any b > 0, by Chebychev’s inequality:

inf
0<ε≤1

IP (|〈Ñε
t , ϕ〉| ≤ b) ≥ 1− T

∫
A

ϕ2 dΛ
b2

−→
b→∞

1.

Under condition (b): ϕ ∈ L1. Similarly, we get

inf
0<ε≤1

IP (|Zε| ≤ b) ≥ 1− T
∫
A
|ϕ| dΛ
b

−→
b→∞

1.

Under condition (c): ϕ ∈ L0 and Λ(A) < ∞. Let 0 < ε0 ≤ ε ≤ ε′. Since Zε − Zε′ =
(ε/ε′ − 1)Zε′ + ε

∫
]t/ε′,t/ε]×A

ϕ dN, for any δ > 0, we get

IP (|Zε − Zε′ | > δ) ≤ IP
(
N(]t/ε′, t/ε]×A) ≥ 1

)
+ IP

(
(ε/ε′ − 1)|Zε′ | > δ/2

)

≤
[
1− exp

(− Λ(A)t(1/ε− 1/ε′)
)]

+ IP
(
(ε/ε′ − 1)

∫

]0,t/ε0]×A

|ϕ| dN > δ/2
)

It comes out that ε 7→ Zε is continuous in probability on [ε0,∞[. It is a fortiori weakly continuous,
so that the image {Law(Zε) ; ε0 ≤ ε ≤ ε1} of the compact set [ε0, ε1] is weakly compact in the set
of probability measures on IRd.

Let L]
2, L]

1 and L]
0 stand for the algebraic dual spaces of L2, L1 and L0, endowed with the product

topologies σ(L]
2, L2), σ(L]

1, L1) and σ(L]
0, L0).

Let us fix t = T. One can see {Ñε
T } as a random element on L]

2 and {Nε
T } as a random element on

L]
0 (when Λ(A) < ∞) or L]

1.
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(3.3) Remark. As a stochastic integral, 〈Ñε
T , ϕ〉 (resp. 〈Nε

T , ϕ〉) is defined almost surely. Hence,
at most countably many 〈Ñε

T , ϕ〉 (resp. 〈Nε
T , ϕ〉) where ϕ is the varying index, can be considered

simultaneously. But, this is the case for the events of interest since for any Borel subset A of L]
2

(resp. L]
1 and L]

0) : 1I{Ñε
T
∈A} is the pointwise limit of measurable cylinder functions of the form

f(〈Ñε
T , ϕ1〉, . . . , 〈Ñε

T , ϕp〉).

We define

IT
2 (q) = sup

ϕ∈L2

{
〈q, ϕ〉 − T

∫

A

ρ̃(ϕ) dΛ
}

, q ∈ L]
2

IT
1 (q) = sup

ϕ∈L1

{
〈q, ϕ〉 − T

∫

A

ρ(ϕ) dΛ
}

, q ∈ L]
1

IT
0 (q) = sup

ϕ∈L0

{
〈q, ϕ〉 − T

∫

A

ρ(ϕ) dΛ
}

, q ∈ L]
0

Proposition 3.3.

(a) {Ñε
T } satisfies a weak LDP in L]

2 with rate function IT
2 .

(b) {Nε
T } satisfies a weak LDP in L]

1 with rate function IT
1 .

(c) if Λ(A) < ∞, {Nε
T } satisfies a weak LDP in L]

0 with rate function IT
0 .

Proof. Invoking Proposition 3.1 and Proposition A.2, one gets the weak LDP for {Ñε
T } with rate

function supd≥1,ϕ∈Ld
2 ,λ∈IRd

{
λ · 〈q, ϕ〉 − T

∫
A

ρ̃(λ · ϕ) dΛ
}

= IT
2 (q). The proofs of (b) and (c) are

similar.

4. Large deviations for Poisson random measures with
exponential moments
Some Orlicz spaces. In Section 2, the Young function τ(x) = ρ̃(|x|) has been introduced.
Similarly, let us associate with ρ the Young function σ(x) = ρ(|x|) = e|x| − 1, x ∈ IR. As
in (2.1), the corresponding Orlicz spaces are Lσ(U, R) and Mσ(U, R) endowed with the norm
‖f‖σ = inf{α > 0 ;

∫
U

σ(|f |/α) dR ≤ 1}.
Notice that Lτ ⊂ L2, Lσ = Lτ ∩ L1 and if R(U) < ∞, then Lτ = Lσ ⊂ L2 ⊂ L1. We also have

θ ∈ Lτ ⇐⇒ 1I(|θ|≤1)θ ∈ L2 and ∃λo > 0,

∫

{|θ|≥1}
eλo|θ| dR < ∞

θ ∈ Lσ ⇐⇒ 1I(|θ|≤1)θ ∈ L1 and ∃λo > 0,

∫

{|θ|≥1}
eλo|θ| dR < ∞

θ ∈ Lτ = Lσ ⇐⇒ ∃λo > 0,
∫

U

eλo|θ| dR < ∞, if R(U) < ∞.

Let us denote Λ(dtda) = dtΛ(da) which is a measure on [0, T ]×A.

For any Young function γ, Mγ is the space of functions f such that for all λ > 0,
∫

γ(λ|f |) dR < ∞.

We write: Lγ(Λ) = Lγ(A, Λ), Mγ(Λ) = Mγ(A, Λ) and Lγ(Λ) = Lγ([0, T ] × A,Λ), Mγ(Λ) =
Mγ([0, T ]×A,Λ). Their d-dimensional analogues are Ld

γ(Λ), Md
γ (Λ), Ld

γ(Λ) and Md
γ (Λ).
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Let us introduce two function spaces on [0, T ]×A :

L̃ = {θ : [0, T ]×A 7→ IR ; θ(t, a) = α(t, a) + β(t, a)ϕ(a), α ∈ Mτ (Λ), β ∈ L∞(Λ), ϕ ∈ Lτ (Λ)}
L = {θ : [0, T ]×A 7→ IR ; θ(t, a) = α(t, a) + β(t, a)ϕ(a), α ∈ Mσ(Λ), β ∈ L∞(Λ), ϕ ∈ Lσ(Λ)}

Their algebraic dual spaces L̃] and L] are endowed with their pointwise convergence topologies
σ(L̃], L̃) and σ(L],L).

We are going to encounter the rate functions

Ĩ(n) = sup
θ∈L̃

{
〈n, θ〉 −

∫

[0,T ]×A

ρ̃(θ) dtdΛ

}
, n ∈ L̃]

I(n) = sup
θ∈L

{
〈n, θ〉 −

∫

[0,T ]×A

ρ(θ) dtdΛ

}
, n ∈ L]

Let us state the main result of this section.

Theorem 4.1.

(a) {Ñε} satisfies the LDP in L̃] with the good rate function Ĩ .

(b) {Nε} satisfies the LDP in L] with the good rate function I.

For measurability considerations, see remark (3.3).

Remark. If L̃ (resp. L) is replaced by Mτ (Λ) (resp. Mσ(Λ)), this weaker result can be proved
easily by means of Gärtner-Ellis’ theorem, since in this situation the log-Laplace transform which
is given in Lemma 2.1 is a steep function.

The basic technical result for the proof of Theorem 4.1 is the following lemma.

Lemma 4.2. (Exponential estimates). Let d ≥ 1, R ≥ 0, ε > 0.

(a) For any θ ∈ Ld
τ (Λ), IP (max

k≤d
|〈Ñε, θk〉| > R) ≤ 2d exp

[
−1

ε

(
R

maxk≤d ‖θk‖τ
− 1

)]

(b) For any θ ∈ Ld
σ(Λ), IP (max

k≤d
|〈Nε, θk〉| > R) ≤ 2d exp

[
−1

ε

(
R

maxk≤d ‖θk‖σ
− 1

)]

Proof of Lemma 4.2. The proofs of (a) and (b) are similar. Let us prove (b). Let θ stand in
Lσ(Λ), (with d = 1). For any λ, ε > 0, by Proposition 2.2.b, we have

IP (〈Nε, θ〉 > R) ≤ e−
λR
ε IE exp

(
λ

ε
〈Nε, θ〉

)

= exp

[
1
ε

(
−λR +

∫

[0,T ]×A

ρ(λθ) dΛ

)]

≤ exp

[
1
ε

(
−λR +

∫

[0,T ]×A

ρ(λ|θ|) dΛ

)]
.

Choosing λ = 1/‖θ‖σ, one obtains IP (〈Nε, θ〉 > R) ≤ exp[1ε (−R/‖θ‖σ + 1)].

12



One concludes with IP (maxk≤d |〈Nε, θ〉| > R) ≤ ∑
k≤d[IP (〈Nε, θk〉 > R)+IP (〈Nε,−θk〉 > R)].

Proof of Theorem 4.1. The proofs of (a) and (b) are similar. Let us prove (b).

Step 0. The goodness of the rate function is a consequence of Banach-Alaoglu theorem applied to
the dual pairing (Lσ, Lσ∗), see ([Léo], Corollary 2.2) for more details.

Step 1. Let d ≥ 1, 0 ≤ t ≤ T, ϕ ∈ Ld
σ be fixed. Letting R tend to infinity in Lemma 4.2.b, one

sees that {〈Nε
t , ϕ〉} is exponentially tight. Because of Proposition 3.1.b, it follows that {〈Nε

t , ϕ〉}
satisfies the full LDP in IRd with rate function Iϕ,t. As a supremum of continuous affine functions,
Iϕ,t is convex and lower semicontinuous. One deduces from the exponential tightness and the lower
bound that Iϕ,t is also a good rate function (see [DeZ], Lemma 1.2.18).

Step2. Let d ≥ 1, J ≥ 1, 0 = t0 ≤ t1 ≤ · · · ≤ tJ ≤ T and ϕ1, . . . , ϕJ ∈ Ld
σ be fixed. Taking

the independence of the increments into account, the result obtained in Step 1 together with
Lemma A.1 lead us to the LDP for {(〈Nε, 1I]tj ,tj+1] ⊗ ϕj〉)0≤j≤J−1} in IRdJ with the rate function
(y1, . . . , yJ) 7→ ∑

0≤j≤J−1 Iϕj ,tj+1−tj (yj).
It follows from the contraction principle applied with the continuous transformation S(y1, . . . , yJ) =∑

j yj , that {〈Nε,
∑

0≤j≤J−1 1I]tj ,tj+1] ⊗ ϕj〉} obeys the LDP in IRd with rate function I2(y) =
inf{∑0≤j≤J−1 Iϕj ,tj+1−tj (yj) ; y1, . . . , yJ such that

∑
j yj = y}. Since S is linear, I2 is still convex

(its epigraph is the linear transform of a convex epigraph). Since S is continuous, I2 is still a good
rate function.

Step 3. By Lemma 4.2.b, we get the following exponential approximation estimate. For any
θ, η ∈ Ld

σ(Λ), with R = δ > 0 arbitrarily small, lim supε→0 ε log IP (maxk≤d |〈Nε, θk − ηk〉| > δ) ≤
− δ

maxk≤d ‖θk−ηk‖σ
+ 1. It follows that for any sequence (θn)n≥1 ‖ · ‖σ-converging to θ in Ld

σ(Λ), the
sequence 〈Nε, θn〉n≥1 is an exponential approximation (see [DeZ], Definition 4.2.14) of 〈Nε, θ〉 :

lim
n→∞

lim sup
ε→0

ε log IP (max
k≤d

|〈Nε, θn
k − θk〉| > δ) ≤ − lim

n→∞
δ

maxk≤d ‖θn
k − θk‖σ

+ 1 = −∞.

But, any function in Ld is the ‖ · ‖σ-limit of simple functions of the form
∑

0≤j≤J−1 1I]tj ,tj+1] ⊗ ϕj

with ϕj ∈ Ld
σ : the simple functions are dense in Mσ and ‖βnϕ− βϕ‖σ ≤ ‖βn − β‖∞‖ϕ‖σ. Hence,

by ([DeZ], Theorem 4.2.16.a), the LDP of Step 2 yields a weak LDP for {〈Nε, θ〉} for any θ ∈ Ld

with a convex lower semicontinuous rate function I3 (the explicit form of I3 is given in [DeZ],
Theorem 4.2.16.a). Again, letting R tend to infinity in Lemma 4.2.b, one sees that {〈Nε, θ〉} is
exponentially tight; this proves that {〈Nε, θ〉} satisfies the full LDP in IRd with the good ([DeZ],
Lemma 1.2.18) rate function I3.

Step 4. As a direct consequence of the Dawson-Gärtner’s theorem on projective limits of LDPs
([DeZ], Theorem 4.6.9), we obtain a LDP for {Nε} in L] with a convex good rate function I4.

Step 5. It remains to compute I4. Since it is a good rate function, the conditions of Laplace-
Varadhan theorem ([DeZ], Theorem 4.3.1) are fulfilled. Together with Proposition 2.2.b, this
theorem states that for any θ ∈ L such that there exists γ > 1 with

∫
[0,T ]×A

ρ(γ|θ|) dtdΛ < ∞, we
have

(4.1) H(θ) := lim
ε→0

ε log IE exp
(

1
ε
〈Nε, θ〉

)
= sup

n∈L]

{〈n, θ〉 − I4(n)} := G(θ).
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By Proposition 2.2.b, H(θ) =
∫
[0,T ]×A

ρ(θ) dtdΛ. With θl = min(θ, l), l ≥ 1, we get

(4.2) lim
l→∞

H(θl) = H(θ) ≤ ∞.

Taking advantage of ρ′ ≥ 0 and keeping track of the abstract form of I4 expressed in terms of
limits, sup and inf of I2’s, one can show that I4(n) < ∞ implies that n ≥ 0. Consequently,
G(θ) = supn≥0{〈n, θ〉 − I4(n)}, so that G(θl) ≤ G(θ), ∀l ≥ 1.

With (4.1): H(θl) = G(θl),∀l ≥ 1, by (4.2), we get: H(θ) ≤ G(θ), ∀θ ∈ L. In particular,
H(θ) = ∞ =⇒ G(θ) = ∞.

Now, let us pick θ ∈ L such that H(θ) < ∞. If θ stands in the intrinsic core of the effective domain
of H, there exists γ > 1 such that

∫
[0,T ]×A

ρ(γ|θ|) dtdΛ < ∞. With (4.1), we obtain H(θ) = G(θ).
If θ stands on the intrinsic boundary of the effective domain of H and H(θ) < ∞, since
γ ∈ IR 7→ H(γθ) ∈] −∞,∞] and γ ∈ IR 7→ G(γθ) ∈] −∞,∞] are convex lower semicontinuous,
considering the limits as γ ↑ 1 and the equalities H(θl) = G(θl), ∀l ≥ 1, we see that H(θ) = G(θ).
We have just proved that

sup
n∈L]

{〈n, θ〉 − I4(n)} =
∫

[0,T ]×A

ρ(θ) dtdΛ, ∀θ ∈ L.

As I4 is convex and σ(L],L)-lower semicontinuous, this proves that

I4(n) = sup
θ∈L

{
〈n, θ〉 −

∫

[0,T ]×A

ρ(θ) dtdΛ

}

which is the desired result.

As Λ is σ-finite, there exists a sequence (Ak)k≥1 of measurable subsets of A such that ∪k≥1Ak = A
and Λ(Ak) < ∞, ∀k ≥ 1. A continuous linear form n on Lτ (Λ) is said to be singular with respect
to Λ if there exists a nonincreasing sequence (Bl)l≥1 of measurable subsets of [0, T ]×A such that
for all k ≥ 1, liml→∞ Λ(([0, T ] × Ak) ∩ Bl) = 0 and for all θ ∈ Lτ (Λ), 〈n, 1I([0,T ]×Ak)\Bl

θ〉 = 0.

The topological dual space of (Mτ (Λ), ‖ · ‖τ ) is Lτ∗(Λ) where τ∗ is the convex conjugate of τ (see
[RaR]). While, the topological dual space L?

τ (Λ) of (Lτ (Λ), ‖ · ‖τ ) is Lτ∗(Λ)⊕ Ls
τ (Λ) where Ls

τ (Λ)
is the space of all continuous forms which are singular with respect to Λ (see [Léo], Theorem 5.8).
This means that any n ∈ L?

τ (Λ) can be uniquely decomposed as

(4.3) n = na + ns

where na ∈ Lτ∗(Λ) and ns ∈ Ls
τ (Λ). Similar results hold with the Young function σ instead of τ.

The convex conjugates of ρ̃ and ρ are given for any x ∈ IR by

ρ̃∗(x) =





(x + 1) log(x + 1)− x if x > −1
1 if x = −1
+∞ if x < −1

and ρ∗(x) =





x log x− x + 1 if x > 0
1 if x = 0
+∞ if x < 0

Proposition 4.3.
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(a) For any n in L̃], we have

Ĩ(n) =
{ ∫

ρ̃∗(dna

dΛ
) dΛ + sup{〈ns, θ〉 ; θ ∈ Lτ (Λ),

∫
ρ̃(θ) dΛ < ∞} if n ∈ L?

τ (Λ)
+∞ otherwise

where n = na + ns is the decomposition (4.3).

(b) For any n in L], we have

I(n) =
{ ∫

ρ∗(dna

dΛ
) dΛ + sup{〈ns, θ〉 ; θ ∈ Lσ(Λ),

∫
ρ(θ) dΛ < ∞} if n ∈ L?

σ(Λ)
+∞ otherwise

Proof. See ([Léo], Theorem 6.2).

5. Large deviations for processes with independent incre-
ments
Let us fix the dimension d ≥ 1. We are going to deduce from our previous results, LDPs for the
càdlàg IRd-valued processes with non-stationary independent increments

(5.1) Y ε(t) v= c(t)+
∫

[0,t]×A

θo(t, a)1I{|θo(t,a)|≤1} Ñε(dsda)+
∫

[0,t]×A

θo(t, a)1I{|θo(t,a)|>1}Nε(dsda)

where θo is a fixed measurable IRd-valued function on [0, T ] ×A with some required integrability
property, c is a deterministic càdlàg path (with c0 = 0) and v= means that the processes are

càdlàg versions. Let D = {x ∈ D([0, T ], IRd) ; x0 = 0} stand for the set of the sample paths of these
processes.

Under the assumptions that θo1I{|θo|≤1} belongs to L2(Λ), Λ(|θo| > 1) < ∞ and c ∈ D, (5.1) is
the general expression for a (ε-normalized) IRd-valued process with non-stationary independent
increments (see [JaS]).

The law of Y ε − c is a probability measure on D solution to the martingale problem associated
with the generator given for any g ∈ C1,1

o (]0, T [×IRd) by:

∂tg(t, z) +
1
ε

∫

A

[g(t, z + εθo(t, a))− g(t, z)− εθo(t, a) · ∇zg(t, z)]1I{|θo(t,a)|≤1}Λ(da)

+
1
ε

∫

A

[g(t, z + εθo(t, a))− g(t, z)]1I{|θo(t,a)|>1}Λ(da).

Its Lévy measure is 1
εΛ ◦ (εθo)−1. The special cases

(5.2) X̃ε
t

v= 〈Ñε, 1I[0,t]θo〉 and Xε
t

v= 〈Nε, 1I[0,t]θo〉, t ∈ [0, T ]

correspond respectively to the situations where c(t) = − ∫
[0,t]×A

θo1I|θo|>1 dΛ with θo1I|θo|>1 in
L1(Λ) and c(t) =

∫
[0,t]×A

θo1I|θo|≤1 dΛ with θo1I|θo|≤1 in L1(Λ).

Without integrability assumptions. If θo doesn’t depend on t : θo(t, a) = ϕo(a),

(5.3) Y ε(t) v= tα +
∫

[0,t]×A

ϕo(a)1I{|ϕo(a)|≤1} Ñε(dsda) +
∫

[0,t]×A

ϕo(a)1I{|ϕo(a)|>1}Nε(dsda)
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with α ∈ IRd, is a general Lévy process without Gaussian component.

For any λ ∈ IRd, we define

Gϕo(λ) =
∫

A

[
ρ̃(λ · ϕo(a))1I{|ϕo(a)|≤1} + ρ(λ · ϕo(a))1I{|ϕo(a)|>1}

]
Λ(da), λ ∈ IRd.

Let S stand for the space of the IRd-valued simple functions on [0, T ] : γ(t) =
∑

1≤l≤L γl1I]tl−1,tl](t),
with L ≥ 1, γl ∈ IRd, l ≤ L and 0 = t0 < t1 < · · · < tL = T. The relevent rate function is

Jϕo

S (y) = sup
γ∈S

{∫

[0,T ]

γ · (dy − αdt)−
∫

[0,T ]

Gϕo(γt) dt

}
, y ∈ D

where
∫
[0,T ]

γ · dx has the obvious meaning:
∑

l γl · [x(tl)− x(tl−1)], for any γ ∈ S, x ∈ D.

Theorem 5.1. Let us define Y ε as in (5.3). We assume that ϕo1I{|ϕo|≤1} ∈ Ld
2 and Λ(|ϕo| > 1) < ∞.

Then, the family of Lévy processes {Y ε} obeys a weak LDP in D endowed with the topology of

pointwise convergence with the rate function Jϕo

S .

Proof. This is not a direct consequence of the previous results but a consequence of their proofs.
The deterministic part tα is treated by means of the contraction principle. We take α = 0 in the
remainder of the proof.
The starting point is similar to Proposition 3.1 where one considers Zε = 〈Ñε

t , ϕ1I|ϕ|≤1〉 +
〈Nε

t , ϕ1I|ϕ|>1〉. As a sum of independent random variables, it gives ε log IE exp
(

1
ε 〈λ, Zε〉) =

t
∫
A

[ρ̃(λ · ϕ)1I|ϕ|≤1 + ρ(λ · ϕ)1I|ϕ|>1] dΛ.

Let 0 = t0 < t1 < · · · < tL = T. The random vectors Y ε
tl
− Y ε

tl−1
, l ≤ L are in-

dependent and Y ε
tl
− Y ε

tl−1

L= Y ε
tl−tl−1

. Combining a slight modification of Proposition 3.1

with Proposition A.1, we obtain a weak LDP for (Y ε
tl
− Y ε

tl−1
)l≤L with the rate function∑

l≤L supγl∈IRd

{
γl · ul − (tl − tl−1)

∫
A

Gϕo(γl) dΛ
}

where ul ∈ IRd, 1 ≤ l ≤ L.

As the application F : (u1, . . . , uL) 7→ (u1, u1 + u2, . . . , u1 + · · ·+ uL) is one-one and bicontinuous,
by the contraction principle we obtain a weak LDP for (Y ε

tl
)l≤L = F (Y ε

t1 − Y ε
t0 , . . . , Y

ε
tL
− Y ε

tL−1
)

with rate function

∑

l≤L

(tl − tl−1) sup
γl∈IRd

{
γl · zl − zl−1

tl − tl−1
−Gϕo(γl)

}

=
∑

l≤L

sup
λl∈IRd



λl · zl − (tl − tl−1)Gϕo

(∑

i≥l

λi

)




= sup
λ1,...,λL∈IRd





∑

l≤L

λl · zl −
∑

l≤L

(tl − tl−1)Gϕo

( ∑

i≥l

λi

)




(with λl = γl − γl+1 and γL+1 = 0).

One concludes with Proposition A.2 which states a weak LDP for projective limits.
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(5.4) Remark. Under the assumption: ϕo1I{|ϕo|≤1} ∈ Ld
1, the sample paths x belong to the space

Vr of right continuous paths with bounded variations. Their generalized derivatives ẋ belong to M :
the set of bounded IRd-valued measures on [0, T ]. Since x(0) = 0, ẋ is an unambiguous description
of x. Identifying x and ẋ, one is allowed to consider the usual weak topology on M ; transfered on
Vr, it is still called the weak topology. It is weaker than the pointwise convergence topology.
In [Ac1], the large deviation lower bound is proved for the weak topology assuming that
ϕo1I{|ϕo|≤1} ∈ Ld

1.

With integrability assumptions. Let L̃d (resp. Ld) be the space of IRd-valued functions on
[0, T ]×A with their components in L̃ (resp. L). In this subsection, θo is a fixed function in L̃d and
we consider Y ε as defined in (5.1).

For any γ ∈ B : the space of bounded measurable IRd-valued functions on [0, T ], we define

(5.5) 〈Ẏ ε, γ〉 :=
∫

[0,T ]

γ(t) · dY ε
t = 〈Ñε, γ · (θo1I{|θo|≤1})〉+ 〈Nε, γ · (θo1I{|θo|>1})〉

(in this definition we state c = 0 in (5.1)). This invites us to consider Ẏ ε as a random element in
the algebraic dual space B] of B; see remark (3.3) for measurability considerations.

Let V` (resp. Vr) be the space of left (resp. right) continuous IRd-valued functions on [0, T ]
with bounded variations. We denote V ]

` the algebraic dual space of V` and V ?
` is its subspace of

continuous elements for the uniform convergence topology.
Let us denote M the space of bounded IRd-valued measures on [0, T ].

Let B? be the topological dual space of L∞
IRd([0, T ], dt). Clearly, M ⊂ B]. We shall consider the

∗-weak topologies σ(B], B), σ(B?, B) and σ(M,V`).

Notice that if θo ∈ Ld, then Ẏ ε stands almost surely in M.

The rate functions of interest are given by

IB(ξ) = sup
γ∈B

{
〈ξ, γ〉 −

∫

[0,T ]

Gθo(t, γt) dt

}
, ξ ∈ B]

IV (ν) = sup
γ∈V`

{
〈ν, γ〉 −

∫

[0,T ]

Gθo(t, γt) dt

}
, ν ∈ V ]

`

where, for any t ∈ [0, T ], λ ∈ IRd,

Gθo(t, λ) =
∫

A

[
ρ̃(λ · θo(t, a))1I{|θo(t,a)|≤1} + ρ(λ · θo(t, a))1I{|θo(t,a)|>1}

]
Λ(da).

Theorem 5.2. Let us fix θo and define Ẏ ε as in (5.5).

(a) if θo ∈ L̃d, {Ẏ ε} satisfies the LDP in B] for the topology σ(B], B) with the good rate function

IB .

(b) if θo ∈ Ld, {Ẏ ε} satisfies the LDP in B? for the topology σ(B?, B) with the good rate

function IB (restricted to B?).
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(c) if θo ∈ Ld, {Ẏ ε} satisfies the LDP in M for the topology σ(M,V`) with the good rate function

IV (restricted to M).

Proof. Noticing that θo·γ ∈ L̃ (resp. ∈ L) whenever γ ∈ B and θo ∈ L̃d (resp. ∈ Ld), following step
by step the proof of Theorem 4.1, replacing θ(t, a) by θo(t, a) · γ(t) and 〈n, θ〉 by 〈n, θo · γ〉 = 〈ξ, γ〉,
one proves the LDP of (a) and two weaker versions of the LDP of (b): in σ(B], B) with rate
function IB and in σ(V ]

` , V`) with rate function IV . Noticing that Ẏ ε is M -valued when θo ∈ Ld,

one completes the proofs of (b) and (c) with Lemma 6.4 and ([DeZ], Lemma 4.1.5.b).

Let us introduce the linear application Ψ : V ]
` → M ] defined for any ξ ∈ V ]

` by

(5.6) 〈Ψ(ξ), µ〉M],M = 〈ξ, µ([·, T ])〉V ]
`

,V`
, ∀µ ∈ M.

We are going to transfer the LDP for Ẏ ε to the LDP for Y ε, by means of the application Ψ. We
keep the notations Ẏ ε for its restriction to V` ⊂ B. Considering Ẏ ε as a random element in V ]

` ,

Proposition B.1.b and (App.2) of the appendix provide us with

(5.7) Ψ(Ẏ ε) = Y ε − c.

where Y ε is seen as a random element in D ⊂ M ].

The space D is now endowed with the ∗-weak topology σ(D, M) : a sequence (xn)n≥1 converges
towards x in σ(D, M) if and only if limn→∞

∫
[0,T ]

xn(t) · µ(dt) =
∫
[0,T ]

x(t) · µ(dt), ∀µ ∈ M.

Considering Dirac measures, one shows that this topology is stronger than the topology of the
pointwise convergence. In restriction to Vr, it is also stronger than the weak topology (see remark
(5.4)) which is σ(Vr,Mna) where Mna ⊂ M is the set of nonatomic measures.

We are going to prove that the rate function for {Y ε} is given for any y ∈ D by

Jθo

M (y) =

{
supµ∈M

{∫
[0,T ]

(yt − ct) · µ(dt)− ∫
[0,T ]

Gθo(t, µ[t, T ]) dt
}

if y − c ∈ Vr

+∞ otherwise

Theorem 5.3. Let us fix θo in L̃d and define Y ε as in (5.1). Then, {Y ε} satisfies the LDP in D

for the topology σ(D,M) with the good rate function Jθo

M .

Proof. A weaker version of Theorem 5.2.c is the LDP for {Ẏ ε} in V ]
` for the topology σ(V ]

` , V`)
with rate function IV . As Ψ is continuous for σ(V ]

` , V`) and σ(M ],M), the contraction principle
and (5.7) lead us to the LDP for {Y ε} in σ(M ],M) with the good rate function J(y) = Jo(y − c)
where Jo(x) = inf{IV (ν) ; ν ∈ V ]

` , Ψ(ν) = x}, x ∈ M ].

Suppose that x ∈ M ] satisfies Jo(x) < ∞. Then, there exists ν ∈ V ]
` such that IV (ν) < ∞ and

Ψ(ν) = x. By Lemma 6.4, ν belongs to M and by Lemma B.2 in the appendix, Ψ(ν) = x implies
that x belongs to Vr and ν = ẋ. Therefore, for any x ∈ M ], Jo(x) = IV (ẋ) if x ∈ Vr and Jo(x) = ∞
otherwise. According to (App.1):

(5.8) Jθo

M (x) = IV (ẋ), ∀x ∈ Vr
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This completes the proof of the theorem.

Remark. A slight modification of the proof of Theorem 4.1 combined with a projective limit
approach to the pointwise convergence topology, allows us to state the LDP for {Y ε} in D with
the pointwise convergence topology and the rate function:

y 7→ sup
µ∈MS

{∫

[0,T ]

(yt − ct) · µ(dt)−
∫

[0,T ]

Gθo(t, µ[t, T ]) dt

}

where MS is the space finitely supported IRd-valued measures on [0, T ].

6. The rate functions
In this section, we give alternate expressions for the rate functions of Section 5.

Without exponential integrability assumptions. We are going to work with the rate function
Jϕo

S of the weak LDP for the Lévy processes {Y ε} defined at (5.3). With ε = 1 and t = 1 we get

Y := Y 1(1) = α +
∫

[0,1]×A

ϕo1I{|ϕo|≤1} dÑ +
∫

[0,1]×A

ϕo1I{|ϕo|>1} dN

the log-Laplace transform of which is denoted, for any λ ∈ IRd, by

H(λ) = log IE exp(λ · Y ) ∈]−∞,∞].

We also write dom H = {λ ∈ IRd ; H(λ) < ∞} its effective domain and intdom H the interior of
dom H in IRd.

Lemma 6.1.

(a) For any y ∈ D, Jϕo

S (y) = supγ∈S

{∫
[0,T ]

γ · dy − ∫
[0,T ]

H(γt) dt
}

.

(b) Assuming that intdom H is not empty, for any y ∈ Vr,

Jϕo

S (y) = sup
γ∈C

{∫

[0,T ]

γt · ẏ(dt)−
∫

[0,T ]

H(γt) dt

}
.

Remarks. The expression in (b) already appeared in [Ac1].
Possibly modifying the dimension d, one may always assume that intdom H is not empty without
loss of generality.

Proof. (a) Because of Proposition 2.2, for any λ ∈ IRd,

Gϕo(λ) = log IE exp(λ·∫
[0,T ]×A

ϕo1I{|ϕo|≤1} dÑ) + log IE exp(λ·∫
[0,T ]×A

ϕo1I{|ϕo|>1} dN). Since these
variables are independent, we get: α · λ + Gϕo(λ) = H(λ). From which the result follows.

(b) For any y ∈ Vr, we have Jϕo

S (y) = Iϕo

S (ẏ) with

(6.1) Iϕo

S (ν) = sup
γ∈S

{∫

[0,T ]

γt · ν(dt)−
∫

[0,T ]

H(γt) dt

}
, ν ∈ M.
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Let us show that in the above identity: supγ∈S = supγ∈C .

We shall need the following preliminary result. Let (un)n≥1 be a sequence of functions on [0, T ]
such that 0 ≤ un(t) ≤ 1, ∀t ∈ [0, T ] and limn→∞ un(t) = 1, dt-almost everywhere. Then, for any
measurable IRd-valued function γ on [0, T ] with

∫
[0,T ]

H(γt) dt < ∞, we have

(6.2) lim
n→∞

∫

[0,T ]

H(un(t)γt) dt =
∫

[0,T ]

H(γt) dt

Because of 0 ≤ ρ̃(uv) ≤ ρ̃(v),∀0 ≤ u ≤ 1, v ∈ IR; 0 ≤ ρ(uv) ≤ ρ(v), ∀0 ≤ u ≤ 1, v ≥ 0 and
−1 ≤ ρ(uv) ≤ 0, 0 ≤ u ≤ 1, v ≤ 0, thanks to the dominated convergence theorem, both the
integrals of the right hand side of the following identity converge:

∫

[0,T ]

H(un(t)γt) dt =
∫

[0,T ]×A

[ρ̃(unγ · ϕo)1I{|ϕo|≤1} + ρ(unγ · ϕo)1I{|ϕo|>1,γ·ϕo≥0}] dΛ

+
∫

[0,T ]×A

ρ(unγ · ϕo)1I{|ϕo|>1,γ·ϕo<0} dΛ

This proves (6.2).

Notice that H is convex (Hölder’s inequality) and lower semicontinuous (Fatou’s lemma) on IRd.

Hence, it is continuous on intdom H.

Let us show that supγ∈S ≥ supγ∈C. As supγ∈C = sup
γ∈C,

∫
H(γ)<∞, we restrict our attention on

γ ∈ C such that
∫
[0,T ]

H(γt) dt < ∞. The sequence γn = (1 − 1/n)γ uniformly approximates γ

with its values in intdom H. By (6.2), for any ν ∈ M, limn→∞(
∫
[0,T ]

γn dν − ∫
[0,T ]

H(γn(t)) dt) =∫
[0,T ]

γ dν − ∫
[0,T ]

H(γ(t)) dt. Therefore, supγ∈C = sup
γ∈C,

∫
H(γ)<∞,γ([0,T ])⊂intdom H

. Let γ ∈ C

be such that
∫
[0,T ]

H(γt) dt < ∞ and γ([0, T ]) ⊂ intdom H. As it is uniformly continuous, it is
approximated by γn ∈ S with γn([0, T ]) ⊂ intdom H. But, H is uniformly continuous on a compact
neighbourhood of γ([0, T ]), consequently H ◦ γn uniformly converges to H ◦ γ. It follows that
limn→∞(

∫
[0,T ]

γn dν − ∫
[0,T ]

H(γn(t)) dt) =
∫
[0,T ]

γ dν − ∫
[0,T ]

H(γ(t)) dt and supγ∈S ≥ supγ∈C .

Now, let us prove that supγ∈C ≥ supγ∈S . For all 0 ≤ a < a + 1/n ≤ b − 1/n < b ≤ T, n ≥ 1,

we define the function χn
a,b(t) = 1I]a,a+1/n](t)n(t − a) + 1I]a+1/n,b−1/n](t) + 1I]b−1/n,b](t)n(b − t),

0 ≤ t ≤ T. It is a continuous function with 0 ≤ χn
a,b ≤ 1 and limn→∞ χn

a,b = 1I]a,b[. As
supγ∈S = sup

γ∈S,
∫

H(γ)<∞, we consider γ ∈ S such that
∫
[0,T ]

H(γt) dt < ∞. We approximate

γ =
∑

l λl1I]tl−1,tl] dt-almost everywhere by γn =
∑

l λlχ
n
tl−1,tl

for large enough n. Taking (6.2)
into account, we obtain limn→∞

∫
[0,T ]

γn dν−∫
[0,T ]

H(γn(t)) dt =
∫
[0,T ]

γ dν−∫
[0,T ]

H(γ(t)) dt. This
proves the inequality supγ∈C ≥ supγ∈S and completes the proof of the lemma.

We introduce the Lagrangian associated with Y :

La(v) = sup
λ∈IRd

{λ · v −H(λ)} ∈ [0,∞], v ∈ IRd

and its recession function

Ls(w) = lim
u→∞

La(uw)
u

∈ [0,∞], w ∈ IRd.
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We define CΛ◦ϕ−1
o
⊂ IRd as the closed convex cone with vertex 0 generated by the support of the

image measure Λ ◦ ϕ−1
o ∈ M. It is a closed convex cone. We say that a closed convex cone C is

acute if C \ {0} is a subset of an open half-space of the vector space spanned by C.

It is assumed below that ϕo1I{|ϕo|≤1} ∈ Ld
1. In this situation, one can rewrite (5.3)

(6.3) Y ε(t) = tβ +
∫

[0,t]×A

ϕo(a)Nε(dsda)

with β = α − ∫
A

ϕo1I{|ϕo|≤1} dΛ ∈ IRd, and Y ε has bounded variation sample paths (see remark
(5.4)).

Theorem 6.2. Let us assume that ϕo1I{|ϕo|≤1} ∈ Ld
1, Λ(|ϕo| > 1) < ∞ and that CΛ◦ϕ−1

o
is acute.

Then, the rate function of the weak LDP satisfied by {Y ε} defined at (6.3), is given for any y ∈ D,

by

Jϕo

S (y) =





∫
[0,T ]

La

(
dẏa

dt (t)
)

dt +
∫
[0,T ]

Ls

(
dẏs

dµ (t)
)

µ(dt) if y ∈ Vr

and ẏ is (β + CΛ◦ϕ−1
o

)-valued

+∞ otherwise

where ẏ = ẏa + ẏs is the decomposition in absolutely continuous and singular parts of ẏ ∈ M with

respect to the Lebesgue measure dt on [0, T ] and µ is any bounded nonnegative measure on [0, T ]
such that ẏs is absolutely continuous with respect to µ (e.g. µ = |ẏs|).
Proof. Let us first check that the effective domain of Jϕo

S is a subset of Vr. With C∗ = {λ ∈
IRd ; λ · ϕo ≤ 0, Λ-a.e.}, we see that

(6.4) CΛ◦ϕ−1
o

= {v ∈ IRd ; v · λ ≤ 0, ∀λ ∈ C∗}

and

(6.5) CΛ◦ϕ−1
o

is acute if and only if C∗ spans IRd.

Let us take y ∈ D such that Jϕo

S (y) < ∞. For any λo ∈ IRd, 0 ≤ a < b ≤ T, u ∈ IR, choosing
γ = uλo1I]a,b] in supγ∈S and denoting Fϕo(λ) =

∫
A

ρ(λ · ϕo) dΛ =
∫
A

λ · ϕo1I{|ϕo|≤1} dΛ + Gϕo(λ),

we get supu∈IR{uλo · (yb−ya

b−a − β) − Fϕo(uλo)} = supu∈IR{uλo · (yb−ya

b−a ) −H(uλo)} ≤ Jϕo
S

(y)

b−a < ∞.

Therefore, λo · (yb−ya

b−a −β) stands in the closure of { d
duFϕo(uλo) =

∫
A

λo ·ϕoe
uλo·ϕo dΛ ; u ∈ IR}. It

comes out that

(6.6) λo ·
(

yb − ya

b− a
− β

)
≤ 0, ∀λo ∈ C∗.

Hence, for any λo ∈ C∗, t 7→ λo · (yt − tβ) is a nonincreasing function. As, thanks to (6.5), C∗

spans IRd, it follows that y has bounded variation.
On the other hand, (6.6) and (6.4) lead us to yb−ya

b−a ∈ β + CΛ◦ϕ−1
o

, ∀0 ≤ a < b ≤ T. This implies
that ẏ is a (β + CΛ◦ϕ−1

o
)-valued measure.
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As by (6.5), intdom H is nonempty, we can invoke Lemma 6.1.b: ∀y ∈ Vr, Jϕo

S (y) = Iϕo

S (ẏ) =
supγ∈C{

∫
[0,T ]

γt · ẏt dt − ∫
[0,T ]

H(γt) dt}, ẏ ∈ M (see (6.1)). Now, the expression of Jϕo

S which
is stated in the theorem is a result of R. T. Rockafellar: ([Roc], Theorem 6). Notice that the
assumptions of ([Roc], Theorem 6) are satisfied: since H doesn’t depend on t, it is convex and
lower semicontinuous and intdom H 6= ∅.
Under the only assumption IE|Y | < ∞, A. de Acosta ([Ac1], Thm. 5.1) has proved a LD lower
bound for {Y ε} with the uniform topology and the rate function given for any y ∈ D by Jϕo

S (y)
if y is continuous and +∞ otherwise. This lower bound rate function may not be optimal in the
sense that it may not match the upper bound rate function (for compact sets). The second part of
the next corollary states a sufficient condition for this uniform lower bound to be optimal.

Corollary 6.3. Let us assume that in addition to the hypotheses of Theorem 6.2, dom H is a cone.

Then, for any y ∈ D,

Jϕo

S (y) =





∫
[0,T ]

La

(
dẏ
dt (t)

)
dt if y is absolutely continuous

and ẏ is (β + CΛ◦ϕ−1
o

)-valued

+∞ otherwise

Let us assume now that in addition to the hypotheses of Theorem 6.2, dom H is a cone and

IE|Y | < ∞. Then, {Y ε} obeys the LD lower bound on Vr endowed with the uniform convergence

topology with rate function Jϕo

S as above.

Proof. The first statement is a direct consequence of ([Roc], Corollary 1A). The second statement
is a direct consequence of ([Ac1], Thm. 5.1).

With exponential integrability assumptions. During the proofs of Theorems 5.2 and 5.3,
the following result has been used.

Lemma 6.4. Let θo be in L̃d. Then, dom IB ⊂ B? and dom IV ⊂ M.

Proof. Let us show that dom IB ⊂ B?. Let us take ξ ∈ B]. For any γ ∈ B, α ∈ IR, we have∫
[0,T ]

Gθo(t, αγt) dt =
∫
[0,T ]×A

ρ̃(αγ · θo) dΛ +
∫
[0,T ]×A

αγ · θo1I{|θo|>1} dΛ
≤ ∫

[0,T ]×A
τ(|α|γ · θo) dΛ+ |α| ∫

[0,T ]×A
|γ · θo1I{|θo|>1}| dΛ. As, α〈ξ, γ〉 ≤ ∫

[0,T ]
Gθo(t, αγt) dt+ IB(ξ),

with α = ± 1
‖γ·θo‖τ,Λ+‖γ·θo1I{|θo|>1}‖1,Λ

, we get

|〈ξ, γ〉| ≤ (2 + IB(ξ))(‖γ · θo‖τ,Λ + ‖γ · θo1I{|θo|>1}‖1,Λ)

≤ 2(2 + IB(ξ))‖θo‖1,Λ‖γ‖∞

with ‖γ‖∞ = dt-ess supt∈[0,T ]|γt|. Therefore, ξ ∈ B? whenever IB(ξ) < ∞.

Let us prove: dom IV ⊂ M. We obtain similarly, for any ν ∈ V ]
`

|〈ν, γ〉| ≤ 2(2 + IV (ν))‖θo‖1,Λ‖γ‖, ∀γ ∈ V`

with ‖γ‖ = supt∈[0,T ] |γt|. Therefore, if IV (ν) < ∞, then ν ∈ V ?
` . But, V ?

` ' M by Theorem B.3.
This completes the proof of the lemma.
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We introduce some notions and notations which will be useful to state the next result. For any
t ∈ [0, T ],

Z(t) =
∫

[0,1]×A

θo(t, a)1I{|θo(t,a)|≤1} Ñ(dsda) +
∫

[0,1]×A

θo(t, a)1I{|θo(t,a)|>1}N(dsda).

Its log-laplace transform is

log IE exp(λ · Z(t)) = Gθo(t, λ), λ ∈ IRd.

We define the associated Lagrangian

La(t, v) = sup
λ∈IRd

{λ · v −Gθo(t, λ)} ∈ [0,∞], v ∈ IRd

and its recession function

Ls(t, w) = lim
u→∞

La(t, uw)
u

∈ [0,∞], w ∈ IRd.

Any element ξ ∈ B? can uniquely be decomposed as

(6.7) ξ = ξa + ξs

where ξa ∈ M is absolutely continuous with respect to dt and ξs is dt-singular. This means that
there exists a nonincreasing sequence (Tk)k≥1 of Borel subsets of [0, T ] such that limk→∞

∫
Tk

dt = 0
and for all γ ∈ B, 〈ξs, γ1I[0,T ]\Tk

〉 = 0 (see for instance [CaV]).

Theorem 6.5. Let θo be in L̃d.

(a) For any ξ ∈ B],

IB(ξ) =
{ ∫

[0,T ]
La(t, dξa

dt (t)) dt + sup{〈ξs, γ〉 ; γ ∈ B,
∫
[0,T ]

Gθo(t, γt) dt < ∞} if ξ ∈ B?

+∞ otherwise

where ξ = ξa + ξs is the decomposition (6.7).

(b) Let us assume in addition that Γθo := {(t, λ) ∈ [0, T ]× IRd ; λ ∈ intdom(Gθo(t, ·))} satisfies

Γθo = int cl Γθo . Then, for any ν ∈ V ]
` ,

IV (ν) =
{ ∫

[0,T ]
La(t, dνa

dt (t)) dt +
∫
[0,T ]

Ls(t, dνs

dµ (t)) µ(dt) if ν ∈ M

+∞ otherwise

where ν = νa + νs is the decomposition of the measure ν ∈ M in absolutely continuous and

singular parts with respect to dt and µ is any nonnegative measure on [0, T ] with respect to

which νs is absolutely continuous.

(c) Under the assumptions of (b), we also have for any y ∈ D, Jθo

M (y) = Jθo

M

′
(y − c) with

Jθo

M

′
(x) =

{ ∫
[0,T ]

La(t, dẋa

dt (t)) dt +
∫
[0,T ]

Ls(t, dẋs

dµ (t)) µ(dt) if x ∈ Vr

+∞ otherwise
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where ẋ = ẋa + ẋs is the decomposition of the measure ẋ ∈ M in absolutely continuous and

singular parts with respect to dt and µ is any nonnegative measure on [0, T ] with respect to

which ẋs is absolutely continuous.

Proof. (a) We have shown in Lemma 6.4 that dom IB ⊂ B?. Hence, the expression for IB(ξ)
is given in ([Roc], Theorem 1). Indeed, the assumptions of this theorem are satisfied since
Gθo(·, 0) ≡ 0 ∈ L1(dt) and with γ∗t = IEZ(t), we get γ̇∗ ∈ L1(dt) and t 7→ La(t, γ̇∗t ) = 0 ∈ L1(dt).

(b) We have shown in Lemma 6.4 that dom IV ⊂ M. As in Lemma 6.1, one can prove that
for all ν ∈ M, IV (ν) = supγ∈V`

{} = supγ∈C{}. Hence, the expression for IV (ν) is given in ([Roc],
Theorem 5). Indeed, the assumptions of this theorem are satisfied: θo ∈ L̃d implies that the interior
of dom Gθo(t, ·) is nonempty for all t ∈ [0, T ] and the assumption Γθo = int cl Γθo means that the
multifunction t 7→ dom Gθo(t, ·) is fully lower semicontinuous (see ([Roc], Lemma 2).

(c) It is deduced from (b) by means of (5.8).

Remarks. If θo belongs to Mτ (Λ) : i.e. θo1I{|θo|≤1} ∈ L2(Λ) and
∫
[0,T ]×A

exp(β|θo|)1I{|θo|>1} dΛ < ∞,

∀β > 0, then
∫
[0,T ]

Gθo(t, γt) dt < ∞, ∀γ ∈ B and dom IB ⊂ L1(dt). Similarly, in this case

Jθo

M (y) < ∞ implies that y − c is absolutely continuous.
If θo doesn’t depend on t, the assumption on Γθo in (b) and (c) is satisfied.
In the case d = 1, the expression (c) has been derived in [LyS] and [Ac1] via martingale methods.

We conclude with a dual equality. Let us define L̃a(v) = supλ∈IRd{λ · v − ∫
[0,T ]×A

ρ̃(λ · θo) dΛ} ∈
[0,∞], v ∈ IRd and its recession function L̃s(w) = limu→∞ L̃a(uw)/u ∈ [0,∞], w ∈ IRd.

Corollary 6.6. Let θo stand in L̃d. Then, {X̃ε} (defined at (5.2)) obeys the LDP in σ(D,M) with

the good rate function given for any y ∈ D by

J̃θo

M (y) =
{ ∫

[0,T ]
L̃a(t, dẏa

dt (t)) dt +
∫
[0,T ]

L̃s(t, dẏs

dµ (t)) µ(dt) if y ∈ Vr

+∞ otherwise

where ẏ = ẏa + ẏs is the decomposition of the measure ẏ ∈ M in absolutely continuous and singular

parts with respect to dt and µ is any nonnegative measure on [0, T ] with respect to which ẏs is

absolutely continuous.

Moreover, for any y ∈ D,

J̃θo

M (y) = sup
µ∈M

{∫

[0,T ]

yt · µ(dt)−
∫

[0,T ]×A

ρ̃(µ([t, T ]) · θo(t, a)) dtΛ(da)

}

= inf

{
Ĩ(n) ; n ∈ L̃], 〈n, µ([·, T ]) · θo〉 =

∫

[0,T ]

yt · µ(dt), ∀µ ∈ M

}

Proof. As X̃ε corresponds to Y ε with ct = − ∫
[0,t]×A

θo(s, a)1I{|θo(s,a)|>1} dsΛ(da), the LDP is

Theorem 5.3 where J̃θo

M (y) = supµ∈M

{ ∫
[0,T ]

[yt +
∫
[0,t]×A

θo(s, a)1I{|θo(s,a)|>1} dsΛ(da)] · µ(dt)

− ∫
[0,T ]

Gθo(t, µ([t, T ]) dt
}

(use (App.1) to transform this identity) is expressed by means of
Theorem 6.5.c. Because of the uniqueness of the rate function of a LDP (see [DeZ], Lemma
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4.1.4) and thanks to the contraction principle applied to Theorem 4.1 with the (weakly) continuous
application Φ : L̃] → M ] defined for any ν ∈ L̃] by 〈Φ(n), µ〉 = 〈n, µ([·, T ]) ·θo〉, ∀µ ∈ M, we obtain
the last equality.

Appendix
A. Two abstract results.

Proposition A.1. Let X and Y be regular Haussdorf topological spaces. We assume that {µε}
and {νε} satisfy weak LDPs on X and Y with lower semicontinuous rate functions I and J. Then,

{µε ⊗ νε} satisfies a weak LDP on X × Y with rate function I ⊕ J. Moreover, I ⊕ J is lower

semicontinuous on X × Y.

Proof. This result is a slight modification of ([LyS], Lemma 2.8).

The result of Dawson and Gärtner ([DaG]) about projective limits of LDPs is usually stated for
full LDPs with good rate functions (see [DeZ], Theorem 4.6.1). In our context, projective limits of
weak LDPs with lower semicontinuous rate functions are needed.

Let (J,≤) be a partially ordered right filtering family and X = lim←−Yj be the projective limit of the
topological spaces (Yj)j∈J . The canonical projections pj : X 7→ Yj , j ∈ J, are continuous.

Proposition A.2. Let {µε} be a family of probability measures on X = lim←−Yj , endowed with

its Borel σ-field, such that for any j ∈ J, {µε ◦ p−1
j } satisfies a weak LDP with rate function Ij .

Suppose that for any j ∈ J, Ij : Yj 7→ [0,∞] is lower semicontinuous and that for any i ≤ j in

J : Ii ◦ pi ≤ Ij ◦ pj . Then, {µε} satisfies a weak LDP with rate function I(x) = supj∈J Ij ◦ pj(x),
x ∈ X .

Proof. Let us prove the lower bound. For any open subset G of X and any x ∈ G, there exists
j ∈ J and an open subset Vj of Yj such that x ∈ p−1

j (Vj) ⊂ G. Therefore,

lim inf
ε→0

ε log µε(G) ≥ lim inf
ε→0

ε log µε ◦ p−1
j (Vj) ≥ −Ij(Vj) ≥ −Ij ◦ pj(x) ≥ − sup

j∈J
Ij ◦ pj(x)

which gives the desired lower bound.

Let us prove the weak upper bound. Let C be a compact subset of X . Since pj is continuous, pj(C)
is a compact subset of Yj . It follows from the weak upper bound in Yj that for any j ∈ J

lim sup
ε→0

ε log µε(C) ≤ lim sup
ε→0

ε log µε ◦ p−1
j (pj(C)) ≤ − inf

x∈C
Ij ◦ pj(x).

Hence, lim supε→0 ε log µε(C) ≤ − supj∈J infx∈C Ij ◦ pj(x). One completes the proof of this upper
bound with the next lemma.

Lemma. Let (J,≤) be a partially ordered right filtering family and {fj , j ∈ J} a family of

lower semicontinuous functions on a topological space X which is nondecreasing: ∀i, j ∈ J,

i ≤ j =⇒ fi ≤ fj . Then, for any compact subset C of X , we have

sup
j∈J

inf
x∈C

fj(x) = inf
x∈C

sup
j∈J

fj(x).

25



Proof. Let us give a proof of this standard result. Denote A = supj∈J infx∈C fj(x) and
B = infx∈C supj∈J fj(x). Clearly, A ≤ B. Let us show that B ≤ A. If A = ∞, the result
is immediate. Suppose now that A < ∞. Since fj is lower semicontinuous, C is compact and
A < ∞, Dj := {(x, y) ∈ C × IR ; fj(x) ≤ t ≤ A} is a compact subset of X × IR. As fj is lower
semicontinuous, it attains its infimum at some point x∗ of the compact C, and because of definition
of A : fj(x∗) = infx∈C fj(x) ≤ A. Consequenly, Dj is non-empty.
It follows from our assumptions that {Dj}j∈J is a right filtering decreasing family on non-empty
compact sets. Therefore,

⋂
j∈J Dj is non-empty. This means that there exists (xo, to) ∈ C × IR

such that supj∈J fj(xo) ≤ to ≤ A. Finally, B ≤ A. This completes the proof of the lemma.

B. Some duality results. We study functional spaces which are used in Section 5 to prove the
LDP for {Y ε} under exponential integrability assumptions.

Let V` (resp. Vr) be the space of left (resp. right) continuous IRd-valued functions on [0, T ]
with bounded variations. We denote V ]

` the algebraic dual space of V` and V ?
` is its subspace of

continuous elements for the uniform convergence topology.
Let us denote M the space of bounded IRd-valued measures on [0, T ].

Proposition B.1. (Integration by parts).

(a) Deterministic formula. For any µ ∈ M and ν ∈ V ?
` , we have µ([·, T ]) ∈ V`, ν([0, ·]) ∈ Vr and

∫

[0,T ]

ν([0, t]) · µ(dt) = 〈µ([·, T ]), ν〉V`,V ?
`
.

where ν([0, ·]) stands for 〈1I[0,·], ν〉.
(b) Stochastic formula. For any µ ∈ M and θo ∈ Ld

2(Λ) we have

∫

[0,T ]

X̃ε
t · µ(dt) =

∫

[0,T ]×A

µ([t, T ]) · θo(t, a) Ñε(dtda) in L2(Ω, IP ).

where X̃ε is defined at (5.2).

Remark. Let us notice that if µ, ν ∈ M :

(App.1)
∫

[0,T ]

ν([0, t]) µ(dt) =
∫

[0,T ]2
1I{0≤s≤t≤T} ν(ds)µ(dt) =

∫

[0,T ]

µ([s, T ]) ν(ds),∀µ, ν ∈ M.

As a consequence, in view of (5.2), we also have for any µ ∈ M and θo ∈ Ld
1(Λ)

(App.2)
∫

[0,T ]

Xε
t · µ(dt) =

∫

[0,T ]×A

µ([t, T ]) · θo(t, a)Nε(dtda) almost surely.

Proof. As the proof easily reduces to the dimension d = 1, we take d = 1.

Let us prove (a). Any ν ∈ V ?
` is relatively bounded (with respect to the natural order on the Riesz

space V`). Therefore, it admits a Jordan decomposition ν = ν+ − ν−. As a consequence, ν([0, ·])
belongs to Vr. Similarly, since µ = µ+ − µ−, µ([·, T ]) belongs to V`. These Jordan decompositions
allow us to reduce the proof to the case where µ and ν are nonnegative.
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Let us take µ ∈ M, ν ∈ V ?
` , µ, ν ≥ 0 and denote A(t) = µ([t, T ]), t ∈ [0, T ]. It is a nonincreasing

function in V`. Hence, it can be uniformly approximated by a sequence (An)n≥1 of simple functions
of V`. Let µn ∈ M be defined by µn([·, T ]) = An. An easy computation gives, for any n ≥ 1,

(App.3)
∫

[0,T ]

ν([0, t]) · µn(dt) = 〈An, ν〉V`,V ?
`
.

As ν is continuous with respect to the uniform topology on V`, we get limn→∞〈An, ν〉 = 〈A, ν〉. Since
ν([0, ·]) is right continuous and nondecreasing it can be decomposed as ν([0, ·]) = fcont+fjump where
fcont is continuous and fjump is its jump part: fjump =

∑
k βk1IUk

, where βk > 0 and the Uk’s are of
the form Uk = [s, t[∩[0, T ]. As µn weakly tends to µ, we get limn→∞

∫
[0,T ]

fcont dµn =
∫
[0,T ]

fcont dµ.

We also have:
∫
[0,T ]

fjump dµn =
∑

k βkµn(Uk) and µn(Uk) = An(t) − An(s) −→
n→∞

A(t) − A(s) =

µ(Uk). It follows that limn→∞
∫
[0,T ]

fjump dµn =
∫
[0,T ]

fjump dµ. Putting these convergences together
with (App.3), we obtain the desired identity.

Let us prove (b). For simplicity, the proof is written with ε = 1. Let θn stand in EΛ, see the begining
of Section 2 for the definition of ER. Because of (App.1), we have almost surely

(App.4) W (µ([·, T ])θn) =
∫

[0,T ]

W (1I[0,t]θ
n)µ(dt)

where W is the stochastic integral with respect to Ñ which is defined as the isometry from L2(Λ)
to L2(IP ).

Let θo belong to L2(Λ). Consider the approximation θn −→
n→∞

θo in L2(Λ), θn ∈ EΛ. Since,
∫
[0,T ]×A

|µ([·, T ])(θn − θo)|2 dΛ ≤ |µ|([0, T ])2‖θn − θo‖22,Λ
−→

n→∞
0, we get

(App.5) W (µ([·, T ])θn) −→
n→∞

W (µ([·, T ])θo) in L2(IP ).

We also have IE
∣∣∣
∫
[0,T ]

{W (1I[0,t]θ
n)−W (1I[0,t]θo)}µ(dt)

∣∣∣
2

≤ ∫
[0,T ]

{IE|W (1I[0,t](θn−θo))|2} |µ|(dt) ≤
|µ|([0, T ])‖θn − θo‖22,Λ

−→
n→∞

0. Therefore,

∫

[0,T ]

W (1I[0,t]θ
n) µ(dt) −→

n→∞

∫

[0,T ]

W (1I[0,t]θo) µ(dt) in L2(IP ).

This convergence together with (5.2), (App.4) and (App.5) completes the proof of the proposition.

There is a one-one correspondence between Vr and M : for any x ∈ Vr, there exists a unique m ∈ M

such that x = m([0, ·]) and for any m ∈ M, x = m([0, ·]) stands in Vr. We denote

x = ẋ([0, ·]), x ∈ Vr, ẋ ∈ M.

Lemma B.2. The application Ψ defined at (5.6) is a linear injection. Its restriction to V ?
` is

one-one from V ?
` to Vr ⊂ M ]. Moreover,

Ψ(ν) = ν([0, ·]), ∀ν ∈ V ?
`

Ψ−1(x) = rV`
(ẋ), ∀x ∈ Vr
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where rV`
(m) is the restriction to V` of the measure m ∈ M.

Proof. For any ξ ∈ V ]
` , Ψ(ξ) = 0 ⇔ 〈ξ, µ([·, T ]〉 = 0, ∀µ ∈ M ⇔ ξ = 0, since µ([·, T ]) describes V`

when µ describes M. Hence, Ψ is an injection.

For any µ ∈ M, ν ∈ V ?
` , we have 〈Ψ(ν), µ〉 = 〈µ([·, T ]), ν〉 =

∫
[0,T ]

ν([0, t]) · µ(dt), where the first
equality is the definition of Ψ and the second one is Proposition B.1.a. This is Ψ(ν) = ν([0, ·])
which stands in Vr as proved in Proposition B.1.
Similarly, for any x ∈ Vr, µ ∈ M, 〈Ψ(rV`

(ẋ)), µ〉 =
∫
[0,T ]

µ([t, T ]) · ẋ(dt) =
∫
[0,T ]

xt · µ(dt), which is
Ψ−1(x) = rV`

(ẋ).

This lemma together with the basic identity ν = Ψ−1 ◦ Ψ(ν), ν ∈ V ?
` , leads us to the following

corollary.

Theorem B.3. (Representation of V ?
` ). For any ν ∈ V ?

` , there exists a unique mν ∈ M such that

〈ν, γ〉 =
∫

[0,T ]

γ · dmν , ∀γ ∈ V`.

Conversely, the restriction rV`
(m) of any m ∈ M to V` stands in V ?

` .

In other words, V ?
` is isomorphic to M.
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