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Abstract. . We extend previous results of the authors ((CaL l J and ~CaL2)) to general Markov
processes which admit a "carre du champ" operator. This yields variational characterizations
for the existence of Markov processes with a given flow of time marginal laws which is

the stochastic quantization problem, extending previous results obtained by P A. Meyer
and W.A. Zheng or S. Albeverio and M. Rockner in the symmetric case to nonsymmetric
processes.

0. Introduction

In two previous papers ([CaLl], [CaL2]), we have studied the problem of minimizing the
Kullback information (or relative entropy) with respect to the law P of a IRd-valued diffusion

process, when the flow of its time marginal laws is fixed. This problem is natural when one

looks at the large deviations for the empirical process associated with independent copies of
such diffusions (see (Fol) and the introduction of [CaLl]). At the same time, the finiteness of
the rate function of this large deviation principle was connected in [CaLl] to the existence of
diffusion processes with singular drifts of finite energy, encountered in Nelson’s approach of

Schrodinger’s equation (see [Car]). The existence of such diffusions with a given flow of time

marginal laws and a given drift is sometimes called "stochastic quantization" . The problem
of describing the minimizing element in the class of such singular diffusions is connected

with the "critical" diffusions of Nelson.

After giving a "stochastic calculus" approach of this construction in [CaLl], we proved in

[CaL2] that the finiteness of the rate function can be obtained using direct large deviations

techniques.

We refer to the introductions of both papers [CaLl] and [CaL2], for a precise statement of
what is written above and for the connection with Schrodinger’s original ideas.
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In these works, we announced that, in contrast with known methods (of [Car], [MeZ] and
other references in [CaLl]), ours could be extended to more general frameworks. The present
paper shows how to extend these results to a general strong Markov process with a Polish
state space, provided that it admits a carre du champ operator. In particular, Section 3
follows closely the lines of [CaLl] (with a lot of simplifications) and Section 4 follows closely
the lines of [CaL2]. Of course, the main difference is the use of an "intrisic" gradient operator
which is connected to the stochastic structure of the reference process, and of the "Markov

differential calculus" associated with this gradient instead of the usual euclidian structure
on 1R d .

We want to underline that this generalization is not only a quest of abstraction. Actually,
we show on some examples in Section 5, that this problem is also strongly connected with
recent developments in the theory of symmetric and asymmetric Dirichlet forms on infinite
dimensional state spaces. To keep this paper into a reasonable size, we shall not develop this

point here, but somewhere else.

Let us present the organization of the paper.

Section 1 describes our framework and in Section 2 are recalled some elementary facts on
the relative entropy.

In Section 3, assuming that the set (see (2.2)) is non empty, we describe its structure

and characterize its minimal element (as in [CaLl], Sections 3 and 5).
In Section 4, we connect the weak Fokker-Planck equation with a large deviation principle,
for which we give various expressions of the rate function. This leads to the natural non
variational characterization of the existence of singular processes (in the spirit of singular
diffusion processes) stated in the Corollary 4.7 of Theorem 4.6.

In Section 5, we study on some (generic) examples, how to fulfill the main hypothesis (HC) of
Theorem 4.6. General statements are given for manifold-valued diffusion processes, reflected
diffusion processes, symmetric processes (see Theorem 5.5) as well as particular infinite
dimensional processes (in the nonsymmetric case).

1. The framework

(E, ~) is a Polish space equipped with its Borel a-field £. £* is the universal completion of £,
S~ = C([0, T], E) is the set of E-valued continuous paths. (S~, ,~, (0t Xt, (Px)xEE)
is the canonical realization of a strongly Markov continuous E-valued process. As usual, the
abbreviation a.e. (almost everywhere) stands for "except on a set of potential zero" .
The sets B(E), B*(E), C(E), Cu(E) are respectively the sets of Borel, universally measura-
ble, continuous and uniformly continuous real valued functions on E. The subscript b will
mean bounded.

For f e B;(E), we define Ptf(x) = (E~ stands for the expectation with respect
to P~) which is assumed to be £*-measurable for all t E [0, T]. Then, is a strongly
continuous semigroup on the set C = { f E Bb (E) - f ~~~ - 0 as t j 0~. Let (A, D(A))
be the generator with its domain of the semigroup. The extended domain De (A) is defined
as

De (A) = { f E B~ (E) ; such that there exists g E B* (E) with
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t0|g(Xs)| ds  ~ Px-a.s. for all x, and

Cft := f(Xt) - f(X0) - t0 g(Xs) ds is a Px-local martingale}.

If f E De (A), we put A f = g, noticing that A f is defined up to a set of potential zero.
Definition. Let e be a subset of We shall say that e is a core if

i) for all x E E, Px is an extremal solution of the martingale problem M(A, e, Sx) (see
[Jac] for the notation),

ii) 0 is a subalgebra of Cb,u (E) ,

iii) there is no signed measure r~, except 0, such that J f dr~ = 0 for all f E 0.
From now on, we shall assume that

(H) There exists a core.

Here are some well known consequences (see ([DeM], Chap. XV), ([Jac], pp. 421-431) or

[MeZ]).
Properties of the process.

i) For any  E Ml (E) (probability measures on E) and any local P,-martingale M,
M admits a continuous modification and its increasing process (M)t is absolutely
continuous.

ii) De(A) is an algebra and we may define the carre du champ operator r on De (A) x

De(A) as: r(/, g) = f Ag - gAl. 

iii) There exists a sequence of elements of De(A) such that the local martingales
Cr = n > l, for all generate the space of square integrable local
P -martingales starting from 0, i.e. if M E there exists a sequence i

of previsible processes such that for all P~, and all localizing sequence of

stopping times

MtTk = t^Tk0 mnsdCms (in the sense of M2loc(P )).

Furthermore, if M is a local matingale which is an additive functional, one can

find functions in B*(E), still denoted mn, such that m~ = in the previous
decomposition.

iv) Any is continuous along the paths.

These properties of the process allow us to define the natural gradient operators (~’~)~,>1.

Indeed,
there exists a sequence of operators defined on with values in B*(E)
such that for all f E De (A) and all t > 0

t

n>1 a

in the sense of P,.

Here again, vnf is defined up to a set of potential zero. It follows that

E De(A)~ r(f,g) = L onf Vkf, a.e.

1
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For simplicity, we shall write instead of r(cpn, pk) and r(f) instead of r( f, f ). The
gradients V~ satisfy the usual rules of derivations and if ~ is a Cb function on IR,

o f ) = 03A6’ o f~nf thanks to Ito’s chain rule.
It is also easy to see that for any sequence of real numbers, ~,~,k>1 is

nonnegative a.e.For such sequences and (r~~,)~,>l, we write

(1.1) ~’(~~ ~) _ ~ in ~k~

Tt,A:>l

Finally, for all p E Ml (E), is an extremal solution of the martingale problem associated
with (C’~)n>1 and the initial law ~. Thus, the usual Girsanov theory is available. If Q « P,,
there exists a sequence ,Q = (,Qn)n>1 of real valued previsible processes (it will be called the
drift of Q) such that, if we define

(1.2) Tk = inf{t ~ 0, t0 03B3(03B2s)ds ~ k}, k ~ IN U {+~},

(where 03B3(03B2s) = 03B3(03B2s,03B2s)(Xs) as defined in ( 1.1 ) ), the density process Z of Q is given by

(1.3) Zt = d(Qo(X0)-1) d exp( t^T~0 03B2ns dCns - 1 2 t^T~0 03B3(03B2s) ds).

Furthermore, Z is a continuous P -martingale, hence

(1.4) T~ > Tk 1 and T~, = inf {t > 0 Zt = 0}.

According to the usual Girsanov transform theory

Too A T = T, Q-a.s., Nt = is a local Q-martingale with
(Tk)k~1 as a localizing sequence of stopping times and

In addition, Q is an extremal solution of the martingale problem associated with
(see [Jac], 12.22).

Conversely, let ,Q = (~3’~)n>1 be a sequence of previsible processes. Let Z(,0, vo, stand

for the process defined by (1.3), with (vo, in place of (Q o /~). Then Z(,Q, vo, 
is a nonnegative local P o-martingale, hence a P o-supermartingale, which is continuous

To this supermartingale corresponds its Follmer measure.

(1.5) Notation. Let S~~ be the space of explosive paths with explosion time ~, the above
Follmer measure is called (as in [CaLl]). If Qs = B (X s ), we write
(B, vo, 

(1.6) If > 1) = 1, then T~ = inf{t > 0; Zt = 0} and thanks to (~Sha~,
Theorem 24.36), the family Qx of all the (B, ~x, Px)-FM, for a given B in B* (E),
defines a strong Markov process on ~~.
Notice that and (,Q, vo, are equivalent on = Tk }, hence >

Tk 1) =1 is equivalent to the same condition replacing by (~3, vo, 
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2. Relative entropy
We collect and adapt some results on the relative entropy which have been proved in [CaLl].
Let Q and P be in Mi(Q), I (Q [ P) denotes the relative entropy of Q with respect to P
defined by

I(Q| P) = Z log Z dP if Q « P,Z = dQ dP, Z log Z ~ L1(P)
+~ otherwise.

It is well known that

I (Q I P) = sup~ ~ dQ - log /~ e~ dP}

where the supremum is taken either on Cb(Q) or .

Proposition 2.1. ([CaLl], 2.1). Assume that Q « Set vo = Q o Then, if ,Q is
the drift of Q (see (1.2), (1.3)):

(2.1) I(Q | P o) = I(vo | o) + 1 2EQ [T0 03B3(03B2s) ds].

Proposition 2.2. ((CaLl] 2.3 and correction to [CaL1]). Let 03B2 = (03B2n)n~1 be a sequence of
previsible processes, Q be the (,Q, vo, (see (1.5)). Assume that 

-,-

j)  +00,
ii) = Tk}) _ ~ (or equivalently = Tk}) = 0),
iii) ds]  +oo. .

Then Q(~ = +00) = 1, T~ A T = T, Q-a.s., I (Q [  +00 and (2.1) holds.

We also introduce

i) For Q E Mi(E), ,CQ = previsible; EQ[T0 03B3(03B2s) ds]  +~}
ii) Let be a measurable flow of elements of Mi(E),

2v = {B ~ B*(E x (0,T])N*; E [0,T]03B3(B(t,.))(x) vt(dx)dt  +~}

(B is allowed to be an infinite sequence).
The associated quotient Hilbert spaces are LQ, Lv with the norms ~ . ~L2O and ~ . ~L2v. A /3
(resp. B) which belongs to LQ (resp. L2v) is said to be of finite Q (resp. v)-ener .
If I(Q ~  +oo, the drift ~i of Q is of finite Q-energy. Also notice that if ,Q (or B) is a
finite sequence of bounded previsible processes (functions in B* ((0, T] x E)), then ,Q E LQ
(B E L~).
We now recall a technical but useful result.

Proposition 2.3. ([CaLl], 2.7 and 2.8). Let Q and Q* be elements of Ml(Sl) such that

Q « Q*. Put Z = d Q . Let S be a bounded Q*-martingale (with bound C). In the two ’

cases described below, S is a Q-semimartingale with decomposition St = Kt + Vt where K
is a square integrable Q-martingale and (K) = (S)t. Moreover,
Case 1. If I(Q ~ Q*)  +oo, then EQ[(K)t]  c(1 + I(Q ~ Q*))C2 where c is a universal

constant.
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Case 2. If ZT E for some q > 1, then for all p EQ[(K)pJ 
with + =1.

In the rest of the paper we are interested in the existence of a probability measure with

given time marginals and finite relative entropy. Namely

(2.2) Definition. Let v = be a measurable flow of probability measures on E. We
define

A03BD = {Q ~ M1(03A9), Q  (Xt)-1 = 03BDt, 1~t ~ [0,T]} and

AI03BD( o) = {Q E Av ; [( Q I Pwa)  

If is non empty, we shall say that the flow is o-admissible.

Since the o-admissibility implies I(vo ( po)  +00, we only need to look at this

case. Conversely, if a flow is vo-admissible, it is also o-admissible for all /-Lo such that

[(I/o ( po)  +00. We shall only consider the case /-Lo = vo and denote A~ the set

3. Some properties of the admissible flows
In this section, we fix a given measurable flow v = (vt)tE[o,T) and we assume that 0.
Notice that this implies that s ’2014~ vs is weakly continuous. We shall describe the set A,1,. .

Proposition and Definition 3.1. Let Q E A~ and ,Q be the drift of Q. Then, there exists
a unique B E Lu such that for all p E L~ :

dQds = B)(s, x) 

B will be called the Markovian version of a, the (B, vo denoted by Q will be called
the Markovian version of Q.

Proof. Apply Riesz’s projection theorem..

Remark. [(Q ( )_>_ So that if Q is a probability measure on S~ and if Q E A~,
then Q 6 ~ and =  

Since B depends on (t, x), we see that it is convenient to introduce the following time-space
process.

Definition. The time-space process (ut, Xt) with ut = u0 + t is defined on the
set of the time-space paths: S~’. Pu,x is the law of this process with initial point
(u, x) E IR x E. The family is again a strong Markov process with
generator a,~ + A = A’ and its domain: D(A’), contains D(A)) = ~ f E
C1(IR, Bb (E)) ; f (u, ~) E D(A), Vu and A f E CO(JR, Bb (E))}.

Actually, as in [CaLl], we essentially need the strong Markov property of (not of Px),
i.e. we shall assume that (Px) is a non-homogeneous Markov process. So, the main hypothesis
we require is

(H’) There exists a core 0’ for the time-space process.

All what has been done in Section 1 is still available since IR x E is a Polish space.

Furthermore, for all  E P  = o so that the discussion of Section 2

is easy to transpose.
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Definition. is the set of functions f E De(A’) such that

i) ~f ~ L203BD and

ii) [0,T] E 
x 

f(s,  +oo.

Proposition 3.2. D(A’) C 

Proof. Let P = Q E A. Then, the law of (~, X. under Q, still denoted: Q, satisfies

1(Q ~ P)  +oo. If f E D(A’), Ct is a bounded martingale and A’ f is bounded. According
to Proposition 2.3: E L~. 1

Definition. Let B E L~ and A C We say that v satisfies the (B, A)-weak
Fokker-Planck equation: (B, A)-wFP, if for all 0  s  t  T and all f E A

Ef(t,x)03BDt(dx) - Ef(s,x)03BDs(dx) = ks E (A’f + 03B3(B,~f))(u,x)03BDu(dx)du.

Proposition 3.3.

1. Let B E L~ and A C De,L(A’) ~ Cb(IR x E). Then, v satisfies the (B, A)-wFP if and only
if for all f E A

( x) vT(dx) - E f (0, x) vo(dx) = x E (A’f +03B3(B, ~f))(s, x) 

2. Let Q E 03B2 its drift, B the Markovian version of ,Q (see Proposition 3.1). Then, v

satisfies the (B, De,"(A’))-wFP equation.

Proof. 1) Choose a sequence in C°°((O,T~) such that is pointwise conver-

gent with limit 0 ~ Qn  1 and (-~’n)n>1 considered as a sequence of measures is

weakly convergent with limit 6t . For f E A, E A and

E03C8n(T)f(T,x)03BDT(dx)- E03C8n(0)f(0,x)03BD0(dx)

* 

Jo 03C8’n ( J E f ( (s, ") "s (dx)) dS + Wn (s) (A’ f + ’f (B , vf) ) (s, x) "S (dx)ds °

Since f E Cb, s ’-~ f E f(s, x) is continuous (s H vs is weakly continuous) and we are

allowed to take the limit in n.

2) Let f E Applying Girsanov transform theory and Ito’s formula, we obtain that

f (t~ Xt) - f (0~ Xo) - 0 A’f (s~ Xs) ds - 0 ’Y(~~~ ~f )(S~ X9) ds
is a square integrable Q-martingale, since V/ E Lv. One completes the proof, taking 

the

expectation with respect to Q and then using Proposition 3.1..

Notation. P = 

The rest of this section is devoted to the extension the results of ([CaLl], Sections 3 and

5) (except those concerned with the minimization problem) to our general setting. Though
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the proofs are very similar, we prefer giving almost all the details, not only for the reader’s
conveniency, but also because some points are presented in a simpler way.
The following construction will be used several times.

(3.1) Auxiliary construction. This construction works under the assumptions (3.1.iii) and
(3.1.iv) stated below. Let B* = (B*1, ... B*n) be a finite sequence of elements of Bb (IR x E).
We also assume that ~y(B*) is bounded. Then, for all (u, x) E 1R, x E, (B*, 8x ® bu, 
is a probability measure Qu,x and Pu,x with I Pu,x)  +00 and

I(Pu,x  +oo. We thus have a homogeneous strong Markov family (Qu,~) associated
with a strongly continuous Markov semigroup (Q;) on C(B*) : :

= 
, t E (0, T~~ f E C(B*) with

C(B*) _ Bb x E) ; - --~ U as t J, 0}.
We denote (A(B*), D(B*)) the generator of this semigroup with its domain. According
to (1.4), one can define the gradient operator V* and then easily prove that De(A’) =
De(A(B*)), ~* - ~ and the extended generators A’ and A(B*) satisfy A(B*) = A’ +

~), where ~)( f = D f) (all of this holds a.e. for both families (Q~,~) and
. 

’

Let us take t E [0, T] and define the following:
(3.1.i)
For f E Cb,u((0, T] x E), we define F(s; (u, x)) = [f(ut-s, s E [0, t].
(3.1.ii)
We set G(s, x) = F(s; (s, x)) on [0, t] x E, G((s, x)) = G(t, x) if s > t.
Let 0  a  b, u > 0. First assume that u + b  t and pick 9 E x E). Then

[G(ub, Xa)] = Xa)EQua’Xa Xb-a))
= a [f (t) ]
= [~, .

So G(us Xs) is a bounded Q:,x - martingale up to time t - u.
If u + b > t, Xb) = f (t, Xb) Qu,x-a.s. It follows that G E De(A(B*)) and that
A(B*)G(s, x) = 0 if s E [0, t] for all x. Thus G E De(A’) and A’G(s, x) = -~y(B*, VG)(s, x)
for s E [0, t]. Furthermore G(t, x) = f(t, x) and G(0, x) = EQ~ [f(t, Xt)].
Now, if

(3. I .iii) VG E L2 v~ ,

G E since ~y(B*) is bounded (apply Cauchy-Schwarz inequality). If furthermore

(3.l.iv) v satisfies the (B, equation for some B in Ly,
it follows that

E Xt)]03BD0(dx) = - B* x) 
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Applying Cauchy-Schwarz inequality, we obtain for a nonnegative f

EQ* [f (t, Xt)] _ x) vt(dx) + 

where Q* = Q*03BD0~03B40
.

The key point now is that we can get a bound for which only involves f, B and
B*. Indeed, G2 E with B1G2 = 2GVG and A’G2 = 2GA’G + r(G). It follows that

/ 
x 

r(G)(s, x) = x) vt(dx) - G2(0, x) vo(dx)
- 2 / G(s, x)03B3(B - B*, OG)(s, x) 

which yields (see ([CaLl], 4.21-4.23) for the details)

~~G~L203BD ~ 2~f~~(1 + B*~L203BD)1/2.

Finally, for any nonnegative f E Cb,u([O, T] x E)

(3.1.v) [f (t, Xt)] _ x) + ~B - (1 + B* ~L203BD)1/2.

But (3.1.v) extends to any nonnegative f E x E) since IR x E is a Polish space and
Q* o + vt is regular..

We shall immediately use this construction to prove the following extension of Theorem 3.1
in [CaLl]. .

Theorem 3.4. Let Q E Av and Q its Markovian version. Then, Q E and 1(Q ~ 
1(Q I 

Proof. It should be possible to adapt the (intricate) proof of ([CaLl], Theorem 3.1). We
prefer following the scheme of proof suggested in the Section 5 of [CaLl] after the remark
5.5 and using the construction (3.1).
Let

Sk = inf{ t 2: 0; t0 03B3(B)(s, Xs) ds 2: k} and put Sk = +00 if 

(s, Xs) ds  k.

= inf {t > 0; fo > k} and put Tk = +00 if ds  k.

We define Qk = ZT^Tk ({3, (see the notation in Section 1), which is a probability
measure, thanks to Novikov’s criterion.

We then define the sequence (B~ p)~>i as follows

= if i  n

= 0 . if i > n.

For each (n, p), Bn,p is a finite sequence of bounded measurable functions and is

bounded. Qn,p is the (Bn,p, vo ® ~o, P)-FM. According to the second part of Proposition 3.3,
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to apply the construction (3.1), it suffices to prove that for G as in (3.1.ii) (with B* = Bn,p),
VG belongs to L203BD (Cf. (3.1.iii)). But

~~G~2L203BD = EQ[ t0 0393(G)(s,Xs)ds] ~ lim inf EQh[ t^Tk0 0393(G)(s,Xs)ds].

Easy computations show that I(Qk 2I (Q so we may apply the Case 1 of

Proposition 2.3 which yields

 c(1 + I P03BDo))~G~~  c(1 + I °

So VG E Lv and thus for any nonnegative f E x E)

(3.2) EQn,p[f(t,Xt)] ~ Ef(t,x)d03BDt + 2~f~~~B - Bn,p~L203BD(1 + ~B - Bn,p~L203BD)1/2.

Applying twice the bounded convergence theorem, on one hand one has

lim lim II B - Bn,p~L203BD = 0.
n-o 

’ v

On the other hand, the same argument yields for each k

lim lim EPvo [ q (B - Bn p)(s, ds] = 0.

It follows that a subsequence of Zt^Sk (Bn,p, vo ~ 03B40, P) tends P-a.s. as p tends to infinity to
Zt^Sk (Bn,oo, vo ~ 03B40, P) and that a subsequence of the latest Girsanov density tends P-a.s.
as p tends to infinity to Zt^Sk (B, P). Applying twice Fatou’s lemma , we obtain that
for any nonnegative f E x E) : :

lim inf lim inf ( f (t, ]

 lim inf lim inf Xt)]
n-o p-o

 
E

By monotone convergence, we can replace Sk by So and then take f (u, x) _ ~(B)(n, x),
which yields

EQ[S~^T0 
03B3(B)(s,Xs)ds] ~ ~B~2L203BD.

Furthermore, starting with (3.2), one can prove exactly as in the Correction of [CaLl] that
P(~~EN{T~ = Tk~) = 0.

According to the Proposition 2.2, Q is a probability measure on Q and +00, Q-a.s.
Hence: I(Q I Pvo )  +oo. This implies

(3.3) EQ[J(t, Xt)] _ x) 
E
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for f as before. But, since Q o and vt are probability measures on E, it follows that

Q o (Xt ) -1- vt . So, Q E AI03BD. Finally, thanks to the Proposition 2.1,1 (Q | P03BDo ) _ 
1(Q 

v

Thanks to (1.6), (the extension of) Q (to S2’) is a strong Markov probability measure.

Conversely, we have the following result. .

Proposition 3.5. (see [CaLl], Theorem 3.60). The drift {3 of any Markov probability
measure Q E A is Markovian, i.e. : = B(s, Xs).

Finally, we can give a full description of A~. To this end, we first state the following
Definition. is defined as the L-closure of the set {~f f E De,~{A’)~. .

Theorem 3.6. We denote by 1 the orthogonality in Lv.

a) There exists (a unique) B" E such that for any Markov probability measure Q in

A, the drift B of Q satisfies B - B" E ~H-1(v)J1 and conversely, for any B-~ E ~H-1 (v)J1,
the (B" + ~-~, belongs to A,1,.

b) All the Markov elements of A are equivalent. All the elements of Av are absolutely
continuous with respect to Q" the (B" 

Proof. a) The second part of Proposition 3.3 shows that all the Markovian drifts B of the

Markov elements of have the same projection B~ onto H-1(v). Let Q E AY be Markov,
B be its drift and B1 E (H-1(v)J1. First, for all t E [0,T] and f E 

x 

’Y(B1, ~f)(s, x)03BDs(dx)ds = 0.

Indeed, we may apply the orthogonality property (which holds on the whole time interval

[0,T]) to f for E C°° ( ~0, T J which converges pointwise to and

satisfies 0 ~ 1.

So v satisfies the (B+B1, equation. The proof is then the same as in Theorem

3.4, if we replace Bn,p by Bn,p + since I(Qk ~ Qn,p) is less than + 

b) See the Proposition 5.6 in [CaLl]. 1

In [CaLl], we showed that in some cases, one can replace De,v (A’) in the definition of 

by a smaller set. Looking at the above proof, we see that what is really needed 
is that B-~

is orthogonal to any VG, obtained in the auxiliary construction (3.1). Actually, in this

construction belongs to all the LP-spaces and we may apply the Case 2 of Proposition

2.3 to show that CG. is a (true) Px,u-martingale which belongs to all the This

yields

H-1 (v) = f E De,"(A’) such that for all (u, x), Cf is a Px,u-martingale
which belongs to all the 

Another interesting point would be to know if this is possible to replace by D(A’).
In general, we do not know if it is possible. We shall study some specific examples 

later.

Remark. Assume that for all t E [0, T], supp vt = E (or more generally = F, for a fixed closed

subset of E). Let Q be a Markov element of A~, Qx = Q(. Xo = x). Then = +00) = 1,
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An application of the Markov property shows that actually +00) = 1 for
all x (resp. all x E F), except for some "exceptional" x’s. For such nice realization of a

(F-valued) Markov process with generator A + r(B, V) see e.g. [CaF].
If we define a generalized "nodal set" : N = {B = +oo}, we do not know whether the process
hits N or not. For such a study see [MeZ] (and also [CaF]).

4. Large deviations and applications
We follow the lines of [CaL2] by proving the equality of various functionals with the help of
large deviations results. We will then study the nonvacuity of Av.
In this section, we fix once for all a weakly continuous flow v = and write P in

place of The origin of the study of Av is the large deviation principle for the Mi (E)-
valued empirical processes

XN : t ~ [0,T] ~ XN(t) = 1 N03B4xi(t), N ~ 1

t==i

where is a sequence of independent E-valued processes. Here, instead of identically
distributed we consider particles with laws and assume that

i) either = va for the topology Bb (E)) )

(4.1)  

ii) or lim = v° for the topology Q(Ml (E), Cb(E))

and (Px)x~E iS Feller continuous.

By Feller continuous, it is understood that the semigroup maps Cb into Cb.

Then, by ([DaG], Theorem 3.5 and Lemma 4.6) (see also the Theorem 2.1 of [CaL2]) and
by the contraction principle, we have:

Theorem 4.1. Let be a sequence in E, 1P = and assume that (4.1~ is
fulfilled. Then, for any Borel subset A of C((0, T~, Mi (E)) endowed with the topology of the
weak convergence of time marginal laws uniformly on [0, T’], we have

- inf J2 (v’)  liminf 1 A)  lim sup 1 N log IP(XN ~ A)  - inf- J2 (v’)

where A° and A are respectively the interior and the closure of A, J2 being defined by

J2(03BD’) =(v ) = P) if 03BD’o = I/o
= +oo if vo ~ 03BDo .

The rate function J2 has compact level sets.

Of course, if vo = vo and = 0, then J2(v’) = +00. The notation J2 is taken from [CaL2],
we use it for an easier comparison.
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In order to obtain an alternate expression for J2, we shall use a Cramér type theorem.
Indeed, we may consider XN as a random linear functional on Cb((O,T) x E), given by

XN(f) = 1 N(1 TT0 f(t,Xi(t))dt), f ~ Cb([0,T)  E).

(This relaxation procedure is well known in Control theory). Now, using general results of
D.A. Dawson and J. Gartner ([DaG]), as explained in the Section 2.b of [CaL2], one gets
the large deviation principle stated in Theorem 4.2 below (see [CaL2], Lemma 2.2).
Consider the relaxed flow

03BD’(f) = 1 T [o,T) x E f (t, x) f E Cb((0, T] x E).

The space of relaxed flows, denoted is endowed with the relative topology 03C3(C#b([0, T] x
E), Cb((0, T] x E)), where C6 stands for the algebraic dual space of Cb .
Theorem 4.2. Suppose that (4.1) holds. Then, for any Borel subset A we have

- inf Jl (v’)  lim inf 1 log A)  1 log IP(XN E A)  - inf Jl (v’) 
where

sup { 1 T [0,T] E c(t,x)03BD’t(dx)dt

J1(03BD’) =  -Elog EPu[exp 1 T T0 c(t,Xt) dt] 03BDo (du)} if 03BD’o = 03BDo

+oo 

Notice that in Theorem 4.1, we can replace the topology by Theorem 4.2’s one, since
the transformation arising in the contraction is still continuous. Both Ji and J2 are then
lower semicontinuous (J2 has compact level sets). Therefore, by the uniqueness of a lower
semicontinuous rate function on a regular space (see [DeZ]), one obtains the following

Corollary 4.3. Under the assumption (4.1), Ji = J2(= J).

Remark. In Ji, we can replace the supremum over all c E Cb((0, T) x E) by the supremum
over all c E C, provided that

i) C is a subalgebra of Cb([0, T] x E),
ii) 1 belongs to C,
iii) C generates the Borel a-field of [0, T] x E.

This fact is easily seen, building a sequence of C which converges pointwise to c and

such that 1 + (thanks to the properties of C) and then applying the bounded

convergence theorem.

As in [CaLl], [CaL2] and [DaG] (see also [F61] and other references in [CaLl]), we want to
give other variational descriptions of J(v). If J2(v)  +00, then A~ ~ ~ and the minimizing
Q" was described at Theorem 3.6. As in [DaG] or ([CaLl], Theorem 5.9,1) and 2)), one can
immediately state:
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Theorem 4.4. Let us define

J3(v) = sup {E J(T, x) dvT- f (0, x) dvo- / A’ f s, x 

We have
1. > .

2. If J2 (v)  +oo, then J2 (v) = J3 (v) =1 (Q" ~ P"o ) .
3. For all Q 6 ~, = + 

Notice that for this result, the hypothesis (4.1) is unnecessary.
It is thus natural to ask wether J2 and J3 match everywhere or not, which is equivalent to
the fact that ; J2 (v) = +oo} = ~v ; J3 (v) = +oo}. The next proposition states that the
finiteness of J3 is equivalent to the existence of a solution to a weak Fokker-Planck equation.

Proposition 4.5. The following statements are equivalent.
1. . There exists B E L~ such that v satisfies the (B, equation.
2. There exists B E Lv such that for all f E 

(*) [0,T] E
(A’f 

+03B3(B, ~f))(s, x)03BDs(dx)ds = E f(T, x)d03BDT - E f(0, x) d03BD0.

3. There exists B" E H-1 (v) such that (*) is satisfied.
4. J3 (v)  +oo.

Proof. 1) =~ 2) =~ 3) (projection onto H-1 (v)) ~ 1) (see the first part of Proposition 3.3).
3) ~ 4) since .

4) ==~ 3) thanks to the following argument. Assume that J3 (v)  +00. Then, if f E 
and ~f = 0, for all A E IR we have

03BB(E f(T, x)d03BDT - E f(0, x) d03BD0 - [0,T]
E A’f(s,

x)03BDs(dx)ds) ~ J3(03BD)

and so the left hand side vanishes identically. This shows that the map

{~f; f ~ De,03BD(A’)} ~ IR
~ £(f) = Ef(T,x)d03BDT - Ef(0,x)d03BD0~ x) vs(dx)ds

is well defined, linear and continuous if ~~ f ; f E is equipped with the hilbertian
seminorm ~~~ f (~L~. By Riesz’ representation theorem, there exists B" E such that
/:(/)= 7(~,V/). N

Looking at J3, we recognize a Hamilton-Jacobi operator whose inverse can be easily
computed. Indeed, for c E Cb([0, T] x E) (define c(s, x) = c(T, x) if s > T) define

gc(t,x) = EPt,x[exp T-t0 c((us,Xs))ds] if t  T
(4.2) gc(t, x) = 1 if t ~ T

fc(t,x) = log gc(t,x)
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(notice that gc is bounded from below by a positive constant). Applying the Markov property,
we get

[ge( Ut, Xt)] = [exp Xs_u) ds].

But, since c and X are continuous, for t E [0, T - u], t H Tut c(s, ds is of

class C1 and Therefore,

Xo)+ fo Xs) ds~ = 0, which yields, thanks again
to the Markov property,

(4.3) gc E D(A’) and = -c(t, 

so that

(4.4) fc ~ D(A’),fc(T,x) = 0,~fc = ~gc gc and A’fc + 1 20393(fc) + c = 0 on [0,T[ E .

It follows that

[0,T]
x 

c(s,x) vs(dx)ds - E log EPx[exp T0 c(s,X.) ds) vo(dx)

= Efc(T,x)d03BDT - Efc(0,x)d03BD0 - [0,T] E(A’fc + 1 20393(fc))(s,x)03BDs(dx)ds.

Hence, provided that De,v(A’), which is actually equivalent to ~ fc E Lv (or ~gc E L203BD),
one gets Jl(v)  J3(v) (the normalizing constant T is irrelevant). Let us summarize our
results.

Theorem 4.6. Assume that

i) there exists a sequence such that vo = limN~~ 1 N 03A3Ni=1 03B4xi
for the topology Q(Ml(E), Bb(E))

or

ii) (Px)x~E is Feller continuous.

(the other condition in (4.1), ii) is always satisfied in a Polish space). .

Moreover, assume that
(HC) there exists a subalgebra C of Cb((O, T] x E) with I E C which generates the Borel

a-field of (0, T] x E and such that for c E C, the function ~ f ~ defined by (4.2) belongs
to L~.

Then,
Jl(v) = J2(v) = J3(v).

(4.5) Remark. If in addition is Feller continuous, then g~ and f ~ are continuous.

Corollary 4.7. Under the hypotheses of Theorem 4.6, if v satisfies the (B, De,"(A’))-wFP
equation for some B E Lv, then the (B, vo, belongs to A,1,, i.e. there exists a

Markovian probability measure Q such that I(Q ~ Plio) )  +00, Q o = vt for all

t and Q is a solution to the martingale problem M (A + y(B, ~), De," (A’), . Using the

terminology of Section 2: v is admissible.



303

Proof of Corollary 4.7. Apply Proposition 4.5, Theorem 4.6 and Theorem 3.6..

Corollary 4.7 is a general setting of E. Carlen’s existence result ([Car]). Notice that, in
contrast with [Car], we do not assume any "dual energy condition" on the backward
drift. Moreover, we obtained in Section 3, a complete description of all possible Markovian
Schrodinger (or Nelson) processes associated with a given flow v. But, let us go on for a
while discussing large deviations properties.
In order to compare Ji and J3, we used (4.4). But, it is also possible to directly use (4.3)
and write

(4.6) [0,T] E c(s,x)03BDs(dx)ds - E log EPx[exp T0 c(s,Xs)ds]03BDo(dx )

= - [0,T] E A’gc gc(s,x)03BDs(dx)ds - E log gc(0, x)03BDo(dx) .

Define

Cexp = {g E De," (A’) ; g > 1, g(t, x) = 1, dx E E, t ~ T, C9 is a bounded

Pu,x-martingale for all (u, x), g and A 9 g E C6((0, T] x E )}.
Theorem 4.8. Assume that Feller continuous. Then,

Cexp = {gc ; c ~ 0, c ~ Cb}

and

J1(03BD) = J4(03BD) := sup -[0,T] E A’g g(s,x)03BDs(dx)ds - E log g(0,x)03BDo(dx).}
Proof. If c E Cb and c > 0, then gc satisfies all the properties of Cexp except perhaps the
continuity assumption. This last property is ensured by the continuity Px (Feller
property). Conversely, let g E Cexp and c = -2014~. We can define ge as in (4.2). We are
going to prove that g = gc. 

9

Define T = inf{t > 0 ; Xt) = g(ut Xt)}. T is less than T-u, so it is a bounded stopping
time and for all (u, x), XT) = XT) thanks to the continuity assumptions. From
the optional sampling theorem, it comes out that for all (u, x)

(9c - g)(u, x) + ( c(gc - X.) ds] = 0.

Since c > 0 and by continuity: g)(us, Xs) and - g)(u, x) have the same sign
up to time T, Pu,x-a.s., so both terms in the above sum are equal to 0. In particular

x) = g(u, x) for all (u, x).
Finally, Ji = J4 thanks to (4.6), since the supremum in Ji can be taken over all nonnegative
c. []
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Remarks. i) This theorem (as well as nonentropic cases) can be derived using another
large deviations approach: the MEM’s method introduced by [DcG] and developed by F.
Gamboa and E. Gassiat (see e.g. [GaG]). For a finite flow (i.e. discrete time) see [CaG]. But
a relaxation method similar to the present paper’s one, should allow to consider the general
continuous flow of marginals with the methods of [CaG].
ii) At least at a formal level, Theorem 4.8 is similar to the results of Lemma 4.2.35 and

Theorem 4.2.23 of [DeS]. 
’

5. Examples of admissible flows
Here again, v is a weakly continuous flow of marginal laws and P = We shall assume

throughout this section that

(5.1) The hypothesis of Theorem 4.6 is satisfied.

The goal of this section is to give sufficient conditions for v to be admissible, i.e. for A~ to
be nonempty, i.e. for J2 (v) to be finite. According to Theorem 4.6, when (HC) holds, it is

enough to check the finiteness of J3 (v), which is equivalent, thanks to Proposition 4.5, to
the following:
(5.2) There exists B E Lv such that v satisfies the (B, equation.

Assuming (5.2), we thus have two possibilities:
a. to find sufficient conditions on v for (HC) to hold with C = Ca ( (0, T x E), or
(3. to find sufficient conditions on P for (HC) to hold for a well chosen C and any v

satisfying (5.1) and (5.2).
Another possibility would be to use the "approximation procedure" of Section 3 (see (3.1))
as in [CaLl] in order to give a direct construction. But, here again, the main point is to

prove that VG belongs to Lv for some suitable G (see (3.1.iii)), and this is of course of the
same nature as proving that (HC) holds.

In the Section 4 of [CaLl] and in the Section 3 of [CaL2], we have studied these situations
in the case where P is the law of a Revalued diffusion process. Here, we shall only give
some examples for which answers to the questions a or /3 are not too hard to get. As was

expected, these examples cover a large part of the "usual processes" .

In a general setting, the most natural approach is the one in a, and we will start our study
with this problem.
A. When does (HC) hold with C = x E)?

Since relative entropy does not increase under measurable transforms, for any admissible v,
we have

for all t E ~O,T~, I(vt ~ pt)  +oo (in particular vt « pt) where = P o 

Conversely, assume that for all t E [0, and define

03C1(. , t) = d t d t .

We want to find sufficient conditions on p for (HC) to hold with C = T x E), i.e. for

r(gc) to be finite for all c E x E). But

(5.3) 

/ 
x 

= / [0,T] x r(s, x)P(s, x) = Ep( [ / 0 ds].
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The main estimate is given in the following lemma.

Lemma 5.1. There exists ao > 0 such that for all A  Ào,  +oo.

Proof. Since A’gc = -cgc is bounded, C9C is a bounded Px-martingale for all x E E, with
a uniform bound K (which does not depend on x). Applying BDG inequalities, we obtain
for 1  q  +00

~ 
xEE

Thus, applying Stirling’s formula (see [CaLl], 2.7 for the argument) and taking the
quadratic growth of .1 H = into account, we obtain for a small enough:

 +00..

One can then obtain:

Proposition 5.2. Assume that (5.1), (5.2) and (5.3) hold. Assume in addition that
ess sup p(t, Xt) E LT (P), where LT 

* 

is the Orlicz space associated with: T* (u) = (u +t~[0,T]
1) + 1) - u, u > 0. Then, v is admissible.

Corollary 5.3. If p E Bb ( (0, T] x E) then v is admissible.

See ([CaLl], 4.48) for the same result in the case of Revalued diffusions.
Proof. According to (5.3)

[0,T] E 0393(gc)(s, x)03BDs(dx)ds = EP[ T00393(gc(s,Xs)03C1(s, Xs) ds]

 EP[ess sup p(t, Xt) / y~ r(gc)(s, ds] .
tE (o,TJ o

Thanks to Lemma 5.1, belongs to with T(u) -
e" - u -1, u > 0. It remains to apply Holder’s inequality in Orlicz spaces to conclude.
.

Of course, except in the bounded case of Corollary 5.3, Proposition 5.2 is not really tractable.
If E is compact and p is continuous, one may apply Corollary 5.3. As in [CaLl], one can
expect to relax the boundedness assumption into a local boundedness one, in the case of a
a-compact space E. A natural method to improve Corollary 5.3 would be to show that
(5.4) if (= P(~, satisfies (5.2), one can find a sequence of bounded

densities satisfying (5.2) and such that J3(03BDn) ~ J3(03BD).
In the general case, we do not even know whether (5.4) is true or not. But, if p and Px are
smooth enough, one can show that (5.4) holds. Here, we will restrict ourselves to the simpler
symmetric case, as in [MeZ]. .

Theorem 5.5. Assume that (Px)xEE is a p-symmetric Feller process. Let v be a probability
measure on (E, ~) and the associated stationary flow v = vt for t E (0, T]. Assume that

~ ~c)  +oo, a~ = p and pl/2 belongs to the domain of the Dirichlet form associated
with ~). Then, v is admissible, i.e. there exists Q such that I(Q ~ P")  +oo and

,
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Proof. Denote (D, D(D)) the above Dirichlet form. Recall that for f E D(D), there exists

~f = such that D( f ) = 2 Furthermore, if f E De(A) and

Af E L2(~), then f E D(D) and V f = ~ f (in L2(~c)) (see (BoHJ). Actually, this fact
extends to the functions which are continuous. Indeed, for such an f

1 t f (f - Ttf = 1 t (f (Xo)(f (Xo) - f (Xt))J d~

= - ~ 1 
= -1 t  Af(x)EPx[t0 f(Xs) ds] dtc.

Thanks to Lebesgue bounded convergence theorem and since f is continuous and bounded,
it follows that 

/ ’’ - Tt’> d  = - / ’z>A’z> dP.
According to a well known result for Dirichlet forms (see e.g. Lemma 1.3.4), this

means that f E D(D).

Now, since E D(D), p~ ~_ ((pV I1 and pk = ((pV 1/k) n k] also belong to D(Ð). .

Let dvk = ck03C1kd  (where ck is a normalizing constant, which clearly tends to 1 as k ~ oo.)
Then, De,03BDk (A) = In particular, if f E (A) is continuous, f E D(D) and

A.f Pk d  _ - 1 2 ~f . 03C1k d  = - . 03C1’k 03C1’k d  = f c kPk , dvk.

It follows that vk satisfies the (~03C1’k, De,03BDk (A) n Co)-wFP equation, i.e. J3(vk)  +oo (if one
Pk ,

restricts the supremum to the continuous functions f ). But pk is bounded, °-~P, E Lvk (sinceP Pk k

E L2(~c)) and (Px) is Feller continuous. According to Corollary 5.3 and the Remark

(4.5), it follows that vk is admissible, i.e. J2(l/k)  +oo (with respect to the measure 

Furthermore

J vk ) = inf{I(Q | P03BDk); Q ° (Xt)-1= vk} - 

We cannot directly take the limit in k because the reference measure P03BDk depends on k.

But, if Q o (Xo)-1= ~,

I(Q I = I(Q I + I (rJ I l~)~

Since I(~ | )  +°°, I(03BDk | ) = f (log ck + log 03C1k)ck03C1k d   +oo, and limk~~ I(03BDk | ) =

1(1/ ~ tc) by Lebesgue’s theorem again. Denote

J2(v’) = inf{I(Q ~ ; Q ° 1 = 

Then,
= I(vk I I~) +  I(vk I I~) + 
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But [ ~) and D(p~) converge respectively to I(v ~ ~) and D(p1~2). It follows that 
is bounded. Since J2 is lower semicontinuous for the weak topology and 03BDk converges weakly
to v, then is finite..

Remarks. i) One can prove that J2(v) = I(v ~ ~) + ZD(p~~2) (see [CaF] for the Brownian
case) .
ii) It can be proved in many cases (for instance, the finite dimensional case as in [CaF])
that the assumption E D(D) is also necessary for to be admissible. This situation

is quite satisfactory in the symmetric case.

iii) This result is related to recent works on Dirichlet forms on non locally compact spaces
(see [MaR], [AIR], [Son]), especially to the extension of the Girsanov formula in this context
(see in particular [ARZ]). Notice that an hypothesis 1(1/ I /~)  +00 also appears in these

works, since log p is assumed to be in L2 .

iv) Our approach can be extended to nonsymmetric cases with additional material.

We shall see how to deal with question ,~.
B. How to use a differential structure

To choose a C in such a way that (HC) holds, seems to be hard to do unless one can use a
"universal" differential structure on E which is connected to the stochastic structure, i.e. to

(~’~)n>l. This leads us to require that E is equipped with a linear structure (i.e. a tangent
space at each point). Here again, we shall only consider a few examples without giving all
the details.

Bl. Finite dimensional manifolds

Assume that E is a d-dimensional connected C°° manifold (without boundary, but possibly
E = IRd since we do not assume any compactness). The natural candidate for C would be
C~° V I : the algebra generated by the constant function I and the space of compactly
supported C°° functions defined on E. But, it is known (see [Jac] 13.53.3) that if C~ is
included in the (true) domain of the generator A of and if the semigroup is Feller

continuous, then A has (in local coordinates) the form

A = 1 2 03A3 
03B1i,j(x)

~2f ~xi~xj + 
bi(x)

~f ~xi

with the coefficients ai, j and bi bounded and continuous. Furthermore, in this case

0393(f) = 03A3 ai,j~f ~xi ~f ~xj

for f E C~o(E) with its support in a local chart. (One can choose © = C~o(E) V I or relax
the boundedness assumption in the definition of De(A) and take for a countable

family of coordinate changes.)
This has already been studied in [CaLl] and [CaL2], at least for E = IRd. Notice that in the
uniformly elliptic case, one can use known regularity results on Hamilton-Jacobi equations,
see e.g. [Lio], in order to recover Theorem 4.42 of [CaLl] by means of the method which is
developped in Section 4.
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The manifold-valued case is completely similar. Indeed, imbed E into IR~’ (m > 2d + 1)
appealing to Whitney’s theorem and assume that A is the restriction to E of the operator

(5.5) 1 2 03A3 03C3i,j ~ ~xi (03A3 03C3i,j~ ~xk) + 03A3bi~ ~xi

where and b; belong respectively to Cb and Cl (Cb is the space of Ck functions with
bounded derivatives of order 0 to k). Then, applying the differentiability result with respect
to the initial data (see e.g. [Kun] or [IkW], pp. 254-255), it is easily shown that gc belongs to

for any c E C~°(E) V I and t E [0, T]. Accordingly, (HC) holds with C = C~°(E) V I.

In the time-dependent case, one can relax the differentiability assumption in the time
direction. In the elliptic case again, known results on Hamilton-Jacobi equations could be

used. Notice that W. A. Zheng ([Zhe]) obtained a similar result in the case of a compact
manifold, compactness being a key point in his approach.
B2. Finite dimensional manifolds with boundary

Let E be a d-dimensional connected C°° manifold with a smooth boundary 8E which

is locally on one side. For simplicity, one can assume that E = D = D U aD where

D = {x; > 0} and aD = {x ; = 0} for a given ~ E but the results still

hold in more general contexts. For more details on what follows, we refer to [Cat] and the
references contained therein.

We consider (Px)xEE : the law of a reflected diffusion, i.e. whose generator coincides with
the one defined in (5.5) for all f E Cb(E) satisfying an oblique derivative condition on aE,
i.e.

/3 . On 8E

for a given vector field /3 defined on being the inward pointed normal derivative on

aE (for instance, if = 1 on aE, one can identify an with this will done in the

sequel) .
For simplicity, we assume that

(5.6) bi and ~i are Cb functions

(more precisely: are the restrictions to E of smooth functions defined on the whole space,
but after imbedding; this is not a restriction, thanks to Whitney’s theorem). We refer to

[Cat] for the minimal differentiability assumptions required for the following to hold.

In addition, it is assumed that

(5.7)
i) |~03C8| ~ 1 on ~E,

j ii) 03B2 . ~03C8 > co > 0 on aE, (strong transversality assumption)

iii) 03A3i (S ci > 0 on aE, (i.e. aE is uniformly noncharacteristic).

Under all these assumptions, one knows that exists and can be built via the

resolution of a stochastic differential system with reflection (see [IkW]). Moreover, the
solution is (weakly) unique and Feller continuous. Let

®={f =OonaE}.



309

Then, 8 is a core for and we can use all the material of this work, with

r( f ) = (a = as before. Here again, we may take C = Co (E) V I,
but we cannot anymore apply the arguments of the previous part to prove that gc E ,

since there is no regular flow associated with the reflected diffusion. Hence, we have to make
additional assumptions.

Theorem 5.5. In addition to (5.6) and (5.7), assume that A satisfies a uniform Hormander’s
condition. Then, gc E C6 (E) for all t E (O, T] and c E V I, and (HC) holds for
C = C~°(E) V I.

The above result follows from Theorem 4.4 of [Cat]. We also refer to this paper for the
precise meaning of a uniform Hormander’s condition (called (HG.unif), there) as well as
for known analytical results in the uniformly elliptic case. Notice that one cannot treat the
case of a Ventcel like boundary condition, since in this case, the corresponding 8 is not an

algebra and the "carré du champ" r is not anymore absolutely continuous with respect to
ds.

B3. Infinite dimensional linear spaces

The method of Bl can be extended to any linear space provided that one can represent Px
by a stochastic process which depends smoothly on x. This can be done, for

instance, for the solutions of stochastic differential equations in Hilbert spaces with smooth
coefficients.

The same method also applies in the case of an abstract Wiener space (~, H, E) with Px
the law of the standard Brownian motion (or the Ornstein-Uhlenbeck process) starting from
x. In this case, the "usual" gradient is the Gateaux derivative in the directions of H (the
Cameron-Martin space) and C can be chosen as

C={c=~i,.),...,~,.)),~~l,~6C~(]R~),~,...,~6E*},

where E* stands for the dual space of E. This result can be extended to the more general
situation of a symmetric process associated with an "admissible" Dirichlet form (see [BoH]
or [MaR]) and a non necessarily stationary flow v (in contrast with the situation of Al where
v was stationary). But a precise discussion would need to introduce additional material and
we shall not enter into the details here.

Another interesting situation would be the case when E = i.e. particle systems as
in [LeR], [ShS], [MNS] or (CRZ). But, even it is trivial to extend Bl to an infinite collection
of independent Brownian motions, the existence result we obtain via the Theorem 4.6 has no
real interest, because the "global" finite entropy conditon is too strong. Indeed, all interesting
systems will satisfy a "local" finite entropy condition (see e.g. [F6W]) but not a "global"
one, or involve the "specific" entropy rather than the relative one (see e. g. [F61]).
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