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ABSTRACT. - In this paper we compute an explicit expression for the
rate function of large deviations for the measure valued empirical process

where the Xi’s are independent copies of a diffusion process in This is
done by minimizing the relative entropy (Kullback information) of a
Probability measure Q with respect to the law P of Xi when all marginals
of Q are fixed. The finiteness of the rate function is connected with the
existence of conservative diffusions, with a general diffusion matrix. These
diffusion processes are constructed in very general cases.

Key words : Large deviation, relative entropy, Kullback information, conservative diffusion
process, Follmer measure, Girsanov transformation.

RESUME. - Dans cet article, nous donnons une formule explicite de la
fonction de taux des grandes deviations du processus empirique a valeurs
mesures
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84 P. CATTIAUX AND C. LEONARD

ou les Xi sont des copies independantes d’un processus de diffusion dans
(~d. Ce programme est realise en minimisant l’entropie relative (information
de Kullback) d’une probability Q par rapport a la loi P commune aux
Xi, sous la contrainte des lois marginales temporelles de Q fixees. La
finitude de la fonction de taux est mise en relation avec l’existence de
diffusions conservatives pour des matrices de diffusion generales. Ces
processus de diffusion sont construits dans une grande generalite.

0. INTRODUCTION

Let Q = C ([0, T], be the space of all continuous paths with values
in Rd endowed with the uniform norm, and P be the law of a Rd-valued
diffusion process considered as a random variable on Q.
We denote by M (Q) and M 1 (SZ) the sets of all measures and all Probability
measures on Q equipped with its Borel a-algebra. Let us consider a

sequence 1 of independent copies of X, P °° the law of this sequence
on the infinite tensor product and the random empirical measures on
M ~ (Q)

N

where ~Z is the Dirac measure at point z. Sanov’s theorem states that the
laws of 1) under P 00 obey a large deviation principle in the space
M (Q) endowed with its usual weak topology, the rate function of which
is the Kullback information I (., P) defined for any Q E M (Q) by

More precisely, if A and A° are the closure and the interior of the set A,
for any Borel subset A of M (Q)

(see [DS] or 
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85MINIMIZATION OF THE KULLBACK INFORMATION OF DIFFUSION PROCESSES

Now, let us consider the sequence of M1 continuous pro-
cesses

Since the mapping

where is the Q-law of X (t), is continuous when C([0, T],
M 1 (f~d)) is endowed with the topology of the weak convergence of all the
t-marginal laws uniformly on [0, T], the contraction principle provides us
with the following large deviation principle. For any Borel subset B of
C ([0, T], M 1 (f~d)), we have

where for any v in C ([0, T], M 1 (p~a))

In [DaG], D. A. Dawson and J. Gartner have computed an explicit
expression for I (v) in the case where P is the law of a nonhomogeneous
diffusion process on Rd with generator

assuming that and b = (bi) are locally Holder continuous and that
the symmetric matrix a is strictly positive definite. This expression is the
following (at least formally):

where J.10 = P 0 Xo 1 is the initial law of the process, ~ is the set of Schwartz
test functions on V denotes the gradient operator, A* (t) is the formal
adjoint of A (t), v is the time derivative of v in the sense of Schwartz
distributions the first bracketting ~ . , . ~ being the duality (~, ~’) and
the second one (. / . ) being the usual scalar product in f~d.

In the special case where P is the Wiener measure starting from yo,
H. Follmer ([Fol]) proposed an alternate proof of the above result, under
the assumption that the marginal flow is admissible in the
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86 P. CATTIAUX AND C. LEONARD

sense that there exists QEM1 (Q) such that and

H (Q, P)  00. In addition, he proved that for an admissible flow the
infimum in the definition of I(v) is attained for a Markov law Q*, the
drift (with respect to P) of which being characterized in terms of the
flow v. His constructive proof relies on an extension of a result of I. Csiszar
[Cs] on the minimization of the Kullback information under linear con-
straints. By means of the same method, M. Brunaud [Bru] obtained similar
results for a uniformly elliptic diffusion with smooth coefficients (also see
[Mi]). The main reason for these assumptions is the employment of a time
reversal argument which yields the approximation of Q* by piecewise h-
processes (or Schrödinger bridges). It should be remarked that the notion
of admissible flow is strongly related to the "conservative diffusions" of
E. Carlen [Ca], which appear in the stochastic interpretation of quantum
mechanics.
Our aim is to recover the results of [DaG], [Fo I ], [Bru] and to extend

them to a large class of Markov processes. In the present paper, we
consider the case of diffusion processes in (~d with generator A (t), where
a and b are supposed to be locally bounded measurable, and we allow a
to be degenerate. Since we want extend the methods and results to a larger
class of processes, we decided not to use the usual time reversal of diffusion

processes. We are here mainly interested in application to large deviation
theory (see [Leo]), so, some of the natural developments in the direction
of stochastic mechanics are not treated. They are more systematically
studied in [CP] (also see [Pe]).

Let us now present briefly the organization and contents of the paper.
Section 1 is devoted to the introduction of the main notation.
In Section 2 we give some elementary properties of the relative entropy

H (Q, P) we will use throughout the paper. In particular we indicate in
(2.6) a simple but efficient trick to build diffusion processes with given
marginals under an entropy condition.
The main result of Section 3 is Theorem 3 .1, which tells that one can

associate to any Q, such that H (Q, P) is finite, a Markov Probability
measure Q with the same marginals and such that H (Q, P) __ H (Q, P).
Therefore to solve the minimization problem, it is sufficient to restrict our
attention to Markov Probability measures. Actually Theorem 3 .1 is more

precise. Indeed we prove that the "natural Markovian version" of Q (see
§ 3 (3.4) for the definition) is a Probability measure with the same

marginals and smaller relative entropy. The proof of Theorem 3.1 is
somewhat intricate because we have to use several approximation proce-
dures. An alternate proof of this result can be obtained by the methods
of Section 4, but we think that the one presented here (which is only
based on stochastic calculus arguments) can be useful for other purpose.

In Section 4 we give some conditions for a given flow to be admissible.
Let v be a flow of Probability measures on (~d. A Borel function B is said
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87MINIMIZATION OF THE KULLBACK INFORMATION OF DIFFUSION PROCESSES

to be of v-finite energy if

The results of the section are then the following:
Assume that H (vo, Ilo)  oo and that v satisfies the weak forward equa-

tion for A (t) + a B. V, for some B of v-finite energy. If one of the following
conditions is satisfied

* (H 1) and bare C2,1,03B1 vector fields,
* (H 2) a is strictly positive definite, a and b are locally Holder continu-

ous,
* (H 3) dvt/ dllt is locally bounded,

then v is admissible.
This result extends previous results of Carlen [Ca], Zheng [Zhe] and

other people. As was said before, we refer to [CP] for a more complete
discussion.

Finally in Section 5 we describe the set of all Markov Probability
measures associated to an admissible flow (Theorem 5. 3), and derive in
Theorems 5. 9 and 5 . 20 the explicit formula for I (v), extending [DaG],
[Fol] and [Bru].
We want to underline that a large part of the ideas we are using in this

article, are already contained, at least in implicit form, in the papers of
[DaG], [Fo 1], [Mi], [Zhe], [AN] or [DS1], in particular cases of sometimes
with incomplete proofs (see the comments at the end of Section 5). We
think that one originaglity of the present paper is that it clearly establishes
a link between some of these papers, in particular it gives a purely
large deviations interpretation of the Nelson’s processes which is very
satisfactory from the physical point of view (for a direct approach of the
construction of Nelson processes by large deviations methods, see [CL2]).
Another very interesting large deviations approach of these processes is

given in [RZ].
As the reader will see, the proofs we have tried to give are often

independent of the specific form of the generator. This allows to think
that the contents of this paper are still available in a more general
(Markov) context. This will be the aim of a future work ([eLl]).
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88 P. CATTIAUX AND C. LEONARD

1. PRELIMINARIES

We introduce here some definitions and notations that will hold through-
out the paper.

Let (Q, ~ ) be a measurable space. We denote by M(Q) (resp. Mi (Q))
the set of all positive measures (resp. Probability measures) on Q.
For Q and P elements of M 1 (Q), H (Q, P) denotes the relative entropy

of Q with respect to P, defined by:

Notice that H (Q, P) &#x3E;__ 0, the equality implying Q = P (Jensen’s inequality)
The following result is well known:

(1 . 2) If Q and P belong to M 1 (Q) then

is the set of real valued bounded measurable functions,
defined on Q.

Furthermore, if Q is a Polish space equipped with its Borel a-field iF,
one can replace, in (1 . 2), ~b (Q) by Cb (Q), the space of bounded continu-
ous functions.

In the paper, Q will be C ([0, T], f~d), the space of all continuous paths
with values in (~d, T being a positive (but finite) real number; (Xt)t E jo T~
will be the canonical process, ~ the Borel a-field of 

’

Let P EM 1 (Q) be given.
(1. 3) DEFINITION. - Let ~o, T~ be a flow of Probability measures on
Rd. We denote by A03BD the set {Q~M1 (Q) s. t. Q.X-1t = vt for all t E [o, T]},
and by Av,H s. t. H (Q, P)  + oo ~ .
The flow will be called admissible i, f ’ is non void.

We adopt classical notation for the usual spaces of Functional Analysis.
In particular the subscript o will denote functions with compact support,
C~ is the space of k-times differentiable functions which are bounded with
bounded derivatives up to an including order k and we omit the target
space when it is R.
Our aim is to study for a given flow v, when P is the law of a

diffusion process with initial law (E M 1 (f~d)) and generator A (t) given
as:

Annales de I’Institut Henri Poincaré - Probabilités et Statistiques



89MINIMIZATION OF THE KULLBACK INFORMATION OF DIFFUSION PROCESSES

Here we assume that

( 1. 5 . i ) the coefficients and bi belong to lo~ ((~d X R), the set of

locally bounded Borel functions,

( 1. 5 . ii) the matrix a = (aij) is non negative symmetric, i. e. for all x E 

More precisely we make the following assumptions:
Let Qt = C ([0, T], f~d X R) be the time-space, with additionnal time coor-

dinate denoted by ut.
The canonical space iF, X., M) is equipped with a strong Markov

family (Px, u)(x, u) E Rd x R of Probability measures, such that:

In particular no explosion occurs up to and including time T.

The (formal) generator of (Px,u) is then A’= 2014 + A (u).
If strong uniqueness occurs, hypotheses ( 1. 6) are satisfied.
Also notice that when A does not depend upon the time coordinate,

this coordinate plays no role nor in uniqueness or extremality.
According to [Jac, Thm 13.55], the last requirement in (1.6) is equiva-

lent to:

(1.7) Px, u is an extremal solution to the martingale problem
M (A’, C~’ ~ 1 (~a x R), ~x, u) (see notation in [Jac, ch. 13]).

Now for 0~M1 (Rd) we define

( 1 . 8) P’ = (bo is the Dirac measure at 0).
In addition we assume that P’ is an extremal solution of ( 1 . 6) with

initial condition Notice that for all s, P’ a. s.
Before going further, we have to make some remarks about the time-

space process.

Vol. 30, n° 1-1994.



90 P. CATTIAUX AND C. LEONARD

Let 03C0 be the projection operator of Rd x R onto Rd. To any random
variable y defined on Q corresponds y’ = defined on Qt. To P’ corre-
sponds its projection on Q denoted by P. We denote by Px the projection
Of P x, 0.

To any Q « P corresponds Q’ defined on S2 by Q’ = ( dQ dP.03C0) P’.
Of course relative entropy and spatial marginals are preserved.
We shall now recall some basic facts related to the Girsanov transform

theory and to the Föllmer measure.
If we put

then sn is a localizing sequence of stopping times for Mt.
Let be absolutely continuous with respect to P, and

Thanks to the extremality assumption in (1. 6), it follows
from theorems 12. 17, 12.34 and 12.48 of [Jac] that there exists a f~d-
valued previsible process such that if we put

where ( . / . ) denotes the euclidian scalar product in ~d, the density
process Z. of Q with respect to P is given by the exponential formula:

Furthermore one can choose a continuous version of Z such that Zr = 0
if t &#x3E; Tn for all n. We shall sometimes write Z ([3, vo, P) if confusions are
possible.
Now

(1.12) Tn-+Too=T-Q a. s., N,=M,- is a continuous

d-dimensional Q-local martingale admitting sn A T" as a localizing sequence
of stopping times and ( N’, M’ B.

’ 

Conversely, if [3S is a previsible process, one can define Tn and vo, P)
as in ( 1. 10) and ( 1 . 11 ). Then Z. is a nonnegative P-local martingale and
we can choose a version which is a supermartingale. Once again we can
choose a continuous version of Z and Zr = 0 if t &#x3E; Tn for all n (for all these
results see [Jac chap. 8 and chap. 12.3 §c]).

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



91MINIMIZATION OF THE KULLBACK INFORMATION OF DIFFUSION PROCESSES

We can associate to this supermartingale its Follmer measure ([Fo]). To
this end, we must consider the space Q~ of explosive trajectories with
explosion time ç which belongs to [0, T] U { + 

( 1.13) NOTATION. - The Follmer measure Q defined on Q~ associated
to the P-exponential supermartingale Z (P, vo, P) will be called the

(P, vo, P)-FM. If (3S = B (XS, s) for a Borel function B, we write B instead
of P.
More generally the Follmer measure associated to a nonnegative P-

supermartingale Z will be called the (Z, P)-FM.
Recall that the (P, vo, P)-FM Q satisfies the following equality

( 1 . 14) For all stopping time T, and all f7’t measurable F

Actually, one deduces from what precedes that

Finally, if for a Borel function B, Z is a multiplicative
functional. It follows that the (B, vo, P)-FM is a Markov Probability
measure on Q, as soon as Q (~  + oo) = 0. By Theorem 24. 36 in [Sha], it
is in fact strong Markov.

2. SOME PROPERTIES OF THE RELATIVE ENTROPY

In this section we shall discuss some elementary properties related to
the finite entropy condition.

(2 .1 ) PROPOSITION. - Assume that Q is a Probability measure with Q  P.
Let (3S denotes its drift. Then

Proof (cf. [F6 2]). - We may assume that H (vo, Jlo) is finite. Let Q~
be defined by Qn = ZTn P. By Novikov criterion one knows that Qn is a
Probability measure. Furthermore H (Qn, P) is finite, and these
two measures are the same in restriction to ~ Tn. Thus

Vol. 30, n° 1-1994.



92 P. CATTIAUX AND C. LEONARD

But, according to (1.12), Jo is a Q-martingale with zero

expectation. It follows:

Notice that the lim inf of ZT is P almost surely equal to ZT because
ZS = 0 if s&#x3E; Tn for all n, and recall that Tn --+ T, Q a. s.

Since the function x log (x) is bounded from below, one can apply
Fatou’s lemma and obtain

The conserve inequality is obtained by taking the supremum over n, in
the right hand side of the following chain of relations:

Indeed we may assume that H (Q, P) is finite. Since log (dQn/dP) belongs
to L 1 (Qn) it also belongs to L 1 (Q) and (2 . 2) makes sense. D

The next Proposition completes the preceding one.

(2. 3) PROPOSITION. - Let Q be the (j3, vo, P)-FM (see (1 . 13)) where 
a previsible process and va a Probability measure such that H (vo,  + oo .

bility measure on S2 with H (Q, P)  + oo, T~ = T - Q a. s. and (2 .1) holds.

Proof. - Applying (1.14) with ’t=Tn and F== 1, we get a. s.

Thus T ~ __ ~ - Q a. s. Furthermore Q and Qn = ZTn P are the same in
restriction to Hence

This implies that ZTn is a bounded sequence in the Orlicz space L~* (P)
with i* (x) _ (x + 1) log (x + 1 ) - x. In particular ZT is uniformly integra-
ble. Since this sequence goes P a. s. to we get, according to (1 . 15),

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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In view of what precedes it is natural to put the following definition:

(2.4) DEFINITION. - (i) Let Q be a Probability measure on Q. We denote
by ~Q the following space:

= y.; Rd-valued measurable process s. t.

(ii) Let ~o~ T~ be a flow of Probability measures on We denote

by the following space:

~ X [0, T]) measurable, with values in f~d s. t.

The quadratic forms introduced in (2.4) define hilbertian seminorms on
the spaces 22.

(2.5) We shall denote by LQ and L~ the factor spaces (22/Ker form)
which are Hilbert spaces. If y (resp. cp) belongs to LQ (resp. L~ ) we shall
say that y (resp. cp) is of finite Q-energy (resp. v-energy).

Putting together (2 .1 ) and (2. 3), we get the following trick, which we
shall use several times in the sequel.

(2 . 6) Trick. - Let B be a Borel function defined and

vt (o _ t -- T) be a flow of Probability measures such that

H (vo, yo)  + ~. Define Z_ (B, vo, P) as in ( 1 . 11) with (3S = B (XS, s), and
denote by Q the (B, vo, P)-FM. Assume that

(i) Energy condition. - s)/a (x, s) B (x, s)) vs (dx) ds  + oo,

i. e. B is of finite v-energy,
(ii) Domination. - For all nonnegative f in ~b ((l~d and all t in

[0, T],

Then by the monotone convergence theorem ii ) extends to any nonnegative
measurable f, so that

Vol. 30, n° 1-1994.



94 P. CATTIAUX AND C. LEONARD

Thanks to (2 . 3), Q is then a Probability measure on Q, H (Q, P)  + 00

and Too = T Q a. s. But now (ii ) implies that for all t.

In other words, the finite energy condition together with the domination
relation impose that Q has the prescribed marginals vt. This idea appears
in a slightly different form in Zheng’s paper [Zhe].
We complete this section with a useful remark on the behaviour of

martingales in connection with an entropy condition.

(2.7) PROPOSITION. - Let Q and Q* be two Probability measures on Q
such that H (Q, Q*)  +00. Let St be a bounded Q*-martingale. Then St is
a Q-semi martingale with decomposition St = Kt + Vt, where Kt is a L2 Q-
martingale with ~ K )t = ~ S )t and EQ [~ K ~T]  + oo .

Proof. - Everything is well known except (perhaps) that
EQ [ ( S )T]  + oo which implies that Kt is a (true) Q-martingale. Let C be
a bound for S.. Applying the Burkholder-Davis-Gundy inequalities we get

It follows from Stirling formula that if C  (4 e)-1~2 then

Hence (SB belongs to the Orlicz space L,(Q*) with T(~-)=~-x-l.
But dQ belongs to L,.(Q*) with since

dQ*
H(Q, Q*)  + ~. Holder’s inequality in Orlicz spaces leads to the desired
result, since T and T* are Legendre conjugate. In the general case it suffices
to divide S by a large enough constant. D

(2.8) Remarks. - 1) The above proof shows that there exists a universal
constant K such that for all Q, Q* and S as in (2.7)

2) = Z belongs to some U (Q*) with ~&#x3E;1, then belongs
dQ * 

T g (Q ) q ~ ~ ~T g

to all the LP (Q) and with ( 1 /q) + ( 1 /~*) =1.

3. ENTROPY AND THE MARKOV PROPERTY

Let us first discuss the following easy exercise.
Let be the Lebesgue measure on the unit square

S = [0, 1] x [0, 1]. Consider two Probability measures vo (dx) and v~ on

[0, 1] such that H (vo, dx) and H (vi, dy) are finite. Then among all Proba-
bility measures v on S such that H(v,X) is finite and 

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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v ~ y -1= v 1 ), the one which minimizes the relative entropy with respect to
03BB is 03BD0 ~ 03BD1.

If we replace (S, ~,, (vo, v 1 )) by (Q, P, to, for a given admissible
flow v., the natural analogous statement would be that the Probability
measure Q in Av, H which minimizes the relative entropy with respect to
P, has the Markov property.

This statement is actually true and follows from the following more
precise result.

(3.1) THEOREM. - Let Q be any Probability measure in A~, H. Then there
exists a (strong) Markov Probability measure Q such that Q 
H (Q, P) ~ H (Q, P). (Here, strong stands for the time-space version of Q,
see § 1).

Actually we shall prove that if P is a (non necessarily extremal) solution
to the martingale problem (1 . 6) and if Q is given by the density 
vo, P) of ( 1 . 11 ), a natural Markovian version Q [see (3 . 4) below] of Q
satisfy (3.1). This result is more precise that the one in [F61] ] or [AN]
which only says that the minimizing Probability measure has the Markov
property. Before proving (3.1), we shall first explain what we mean by a
"natural Markovian version of Q".

Since H (Q, P) is finite, P E LQ. Thus, we can apply Riesz representation
theorem to obtain:

(3 . 2) there exists a Borel function B such that for all cp E L~ ,

Furthermore B is unique in L~.
Of course, this is nothing else than a particular form of multidimensional

conditional expectation. Clearly we get

We choose once for all a version of B. Furthermore we extend B to the
whole space x R by defining

B (x, u) = B (x, T) fo u &#x3E;_ T and B (x, u) = B (x, 0) for 

Define Q’ as in Section 1, a "natural Markovian version of Q"’ is then
Q’ defined as

(3 . 4) Q’ is defined on as the (B, vo, P’)-FM.
Notice that Q’ may depend on the choice of B.

Vol. 30, n° 1-1994.



96 P. CATTIAUX AND C. LEONARD

According to the final remark of Section 1, Q’ is then strong Markov.
We shall now discuss some questions related to this Q’.
Define Tn, Sn and in as follows -

Once again in - T, Q’ a. s. [by (3. 3)]. Let us define the process Gt by:

where Nt is defined in ( 1.12). Of course Us = s for all s, Q’ a. s.

Q’ (i~ = T) = l, thus Gt is Q’ a. s. defined by the exponential formula and
we can choose a continuous version of Gt which is a nonnegative Q-
supermartingale.

(3 . 7) Q" is then defined on Qt, ç as the (G, Q’)-FM.

Q" does not depend of our choice of B. According to (3.3),
Therefore, Q’~Q". Now define Zt as:

Since EP’ [Zt lim inf G~n ~n~ = EQ’ [lim inf GTn = 0, it holds

Z is a P’-supermartingale and Q" is actually the (Z, P’)-FM. Notice that
, 
Z is not necessarily continuous (there is a jump to 0 at time and non-

multiplicative. In particular Q" (03BE = + and not equal in

general. Zt is smaller or equal to the supermartingale Z (B, vo, P). Indeed
they may differ on the set ~ sup in  t  sup where Zt = 0 while Z (B, vo,
P) &#x3E;__ o. As a consequence it is thus clear that Q’  Q’ and that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Remark that ’t 00 = T - P’ a. s. if and only if Q’ and P’ are equivalent
(assuming here that P’ is an extremal solution, see [Jac]). If Q’ (ç = + oo) = 1
then Q’ - Q’. But also, if Q" (ç  + oo) = 0, i. e. Q" is a Probability measure
on nt, then Zt is a martingale and so is Z (B, vo, P). This implies easily
that Z (B, vo, P) and Z coincide. Hence Q’ = Q" and Q’-Q’.

. 

In general one only has Q’  Q’.
Q will denote the projection Q’ 0 1t (see § 1).
We shall show that Q and Q (thus Q’ and Q’) have same marginals.

Q’ will thus be a Probability measure on Qt and the inequality
H (Q, P)  H (Q, P) will then follow from (3. 3) and proposition 2. 3.

Proof of (3 . 1). - Step 1. - Assume that

(3 .11. a) a and b are bounded, so that
(3 .11. b) M is a L2 (P)-(true) martingale, and assume furthermore that
(3 .11. c) ~ __ K, for all t in [0, T].
Under these assumptions the process Z (P, vo, P) is a P martingale which

belongs to any LP(P), Here are some other consequences:

(3 .12 . a) N, is a L2 (Q) (true) martingale.
(3 .12 . b) One can choose for B a version of EQ x dt s)], so
that

(3.12. c) Since Q is a Polish space we know that for almost all s,

It follows from (3 .12 . b) that Gt is a Q’-martingale which belongs to any
LP (Q’), 1 p  +00, so that Q’ = Q" are Probability measures equivalent
to P’. Define

N is then a L2 (Q) martingale. Furthermore Q = GT Q, where

Gt = EQ is given by

Hence for f E ~b (f~d) and t E ] 0, T] the following holds:

It remains to show that the second term of the sum vanishes. This result
would be clear if one could exchange the stochastic integral and the
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conditional expectation EQ [ . ~ XJ (stochastic conditional Fubini’s theo-
rem). Indeed, according to (3 .12 . c), for all g E ~ ((~d) and almost all s,

So that

To prove that the stochastic conditional Fubini’s theorem holds, we shall
use an approximation procedure of the stochastic integral (which appears
p. 23 of Mac Kean’s book "Stochastic integrals"). We thank Francis
Comets for pointing out this result to us.
(3.18) LEMMA. - Put t~ = it 2 - n, i = 0, ... , 2n. Let hs be a previsible
process in L2 (Q x dt) (with hs = ho for s ~ 0). Then

where the limit is taken in L2 (Q).

Proof of the Lemma. - The mapping

is continuous from L2(Q x dt) into itself, with norm equal to 1.

Furthermore if h is constant on each dyadic interval of length 2 - k, then
for n ?_ k, hand h" may differ on at most 2 - k intervals of length 2 - n (the
left side of the dyadic intervals at level 2 - k). Hence for such an h

Finally if h is a previsible process in L2 (Q x dt), we can approximate h in
L2(Q x dt) by a sequence of hdyad. Since

we immediatly see that hn converges to h in L2 (Q x dt). Remark that h" is
left continuous (will right limits) and hence previsible.

which proves that hn converges to h in L.Q (i. e. L" (N, Q)). The Lemma
now follows from the isometry property of the L 2 stochastic integral. D

The previous approximation procedure is of course very useful because
it does not require any kind of continuity property on the integrand.
Recall that the approximation by the Riemann sums for instance, requires
the left continuity of the paths.
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We apply Lemma (3.18) with s)) which satisfies the
hypotheses of (3 . 18) since G is continuous, sup GS is square integrable

s

with respect to Q, and (3s - B (XS, s) is bounded and previsible. This yields

But

In the right hand term we can now take the conditional expectation with
respect to v &#x3E;__ s). Of course f(Xt) and Ntt are cx (X", v &#x3E;_ s)-
measurable for s ~ t;. On the other hand, since Q is Markov and hs is f7 s
measurable

Finally

Applying (3 . 17), we see that each term of the sum in (3 .19) is equal to 0,
which proves

(3.15) becomes EQ [, f’ (Xt)] = EQ [, f’ (Xt)]. The proof is finished under the
assumptions (3 . 11 ). D

Short comments on hypotheses {3 . 11 ). - The time reversal argument
we used in the above proof (recall the conditionning) refrains us

from using a localization procedure with stopping times. This explains
{3 . 11 . a) and (3 . 11 . b). Lemma (3.18) requires to work in a L2
framework. In order to ensure that the Girsanov densities are suffi-
ciently integrable, it is natural to ask 03B2 and B to be bounded.
Remark that in view of the definition of B, the boundedness of the

action integral r (Xs’ s) ds is not sufficient to get the boundedness

of Jo (B (Xs’ s)/a (Xs’ s) B (Xs’ s)) ds. This is the main reason for (3.11. c).
Vol. 30, n° 1-1994.
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Step 2. - We keep (3 .11. a), but replace (3.11. c) by

Accordingly Q’ = Q" and Q’ and Q’ are equivalent (see the discussion
above). Define the sequence ~is of previsible processes as ~is = ~is 
Then

and obviously [is converges to Bs, P almost surely.
Let Qk be the (PB vo, P)-FM. Q~ is a Probability measure thanks to

(3 . 21 . ii ) and to Novikov criterion.
Moreover H (QB P) _ C [see proposition (2.1)].
We shall prove that a subsequence of Qk.X-1t converges to 
Indeed thanks to (3 . 21 ) one can apply the bounded convergence theo-

rem to get

It follows that in L2 (P), so that we can find

a subsequence of Z~j = 20142014 ) that converges P almost surely to

Zt = 2014- ). But thanks to (3.21. ii)B 
" - ~ ...

Thus for all (f~d), the sequence f (Xr) Zt is bounded in all the Lp (P)
and is thus uniformly integrable. It follows that for the above subsequence

One can prove that in fact, H (Q, Qk) goes to 0. Hence this sequence
converges to Q for the variation distance on M 1 (SZ). This provides a more
direct proof of (3 . 24). But the idea of the above proof will be used in the
sequel. Notice that in this case, we know that Zt is a density of Probability.
Since Z~ converges P a. s. to Zt, the convergence of Qk to Q is a conse-
quence of Scheffe’s theorem [Bi]. But the above argument is still true

without assuming that Z (or Zk) is a density of Probability, and will be
used in this situation in the next sections.
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To Qk (resp. Q) corresponds Qk (resp. Q) builded as before. By step 1

we know that Qk and Qk have same marginals is bounded). But it is
much more difficult to prove the convergence of to 

Indeed

and we do not have any uniform bound for

The key idea of the proof will be to use the Trick (2. 6). Indeed the energy
condition (2 . 6 . i ) is satisfied. So, in order to prove that Q is a Probability
measure with marginals vt, it suffices to prove the domination relation

(3 . 26) for all nonnegative f E ~b (l~d), EQ f (Xt) EQ (f (Xt)], where
S ~ is defined in (3 . 5 . ii ).

This will be proved by showing that for a subsequence Qk

[Of course it is a subsequence of the subsequence for which (3 . 24) holds].
It is easy to guess that the inequality (3.27) will be obtained thanks to
Fatou’s lemma, if we prove the almost sure convergence of some densities.
Hence, first notice that Q ~ Qk  Qk, the density processes being given by:

We shall prove that a subsequence of At converges Q almost surely to Gt

[ see ( 3 . 6 )], since here dQ = G~. Just as before it is enough to prove
dQ , r
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Recall the Kalman-Bucy formula

noticing that (As) -1 1 admits Qk moments of any order. For simplicity we
write

For a better understanding of the computations, the reader can keep in
mind that any quantity a whose vocation is to tend to 1 (for instance ns),
will be written as 1 + (a- 1).
With the help of the inequality and of the

conditional Jensen inequality, it holds:

Thus

Using (3 . 21. ii), we see that the above quantity is less than

Likewise (3 . 22) the first term in (3.31) goes to 0. Since ( 1- As) is a Q-
martingale, one can use Doob’s inequality to obtain

It is easy to see that (a subsequence of) (1- AT) goes Q almost surely to
0 and is uniformly bounded (in k) in all the LP(Q) for 

[cf. (3.23)]. Thus the second term of (3. 31) also goes to 0.
We come now to the third and last term. Since sup As is also uniformly

s

bounded in all the LP (Q), it suffices to control EQ [(sup ( 1- n~))4] and to
s
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apply Cauchy-Schwarz inequality. Once again we use the conditional
Jensen inequality, Cauchy Schwarz and Doob inequalities to get:

Since (a subsequence of) (AT)- ~ goes Q almost surely to 1 and since all
quantities appearing in the previous bound are uniformly bounded (in k)
in all the LP (Q), we deduce that the last term of (3 . 31 ) tends to 0.
We have thus proved that a subsequence of A~ converges Q almost

surely to Gt. Now (3 . 27) is a consequence of Fatou’s lemma. D

Short comments. - The computations of step 2 are merely tedious but
unfortunately we cannot avoid this technical step. Indeed (3.20) is the
natural hypothesis in view of a localization procedure and as we already
said, it is unsufficient for the first step techniques to be available.

Step 3. - We shall now remove (3 .11. a) and (3 . 20). Let 03B2~L2Q and
put

Denote by Qn the (~is, vo, P)-FM which is a Probability measure on Q,
with density Zn. B" is defined by

where the conditional expectation is taken in the sense of (3.2). Notice
that s) is 03BDn  ds almost surely equal to 0 where vn
denotes the flow of the marginals of Q". So we can choose Bn such that
B" is identically equal to 0 on { I x &#x3E; n ~ .
(3. 35) Let Qn denote the (Bn, vo, P)-FM and

(3 . 36) LEMMA. - Qn and Qn have same marginals.
Proof. - We introduce a test function cpk E Co ((l~d) such that cpk (x) = x

if and cpk (x) = 0 if Denote by Pk the P law of 
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Ito’s formula shows that Pk is a (not necessarily extremal) solution to the
martingale problem ( 1. 6 . ii ) with bounded coefficients ak and bk.
Next define as the (~3~, vo, Zi k denoting the corresponding

density. For k &#x3E; n, one can remove the k in and coincides with

Qn because Pk coincides with P Furthermore for k &#x3E;__ n
it holds

Indeed P coincides with Pk on f7 En and 
so that 

and

thanks to the strong Markov property of P and Pk.
We can apply the bounded convergence theorem in (3 . 37) and get

In the same way, one can define which coincides with Qn 
for k &#x3E; m, thanks to our choice of Bn. We know that and Qn, k have
same marginals, according to step 2. Now

By taking the limit in k, we first obtain that

Together with (3 . 38) this yields

for any nonnegative f and any m.
But 8n, m goes P a. s. to

when m goes to infinity, and we can thus apply the trick (2.6) to obtain
that Qn and Qn have same marginals. D

Now let us take the limit in n.
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The norm of is bounded by H (Q, P) in L~* (P) and
Hence converges to when n goes to

infinity.
Once again it is much more difficult to study the behaviour of Q".

Introduce

Let m be a fixed integer, Sm is defined by (3 . 5 . ii). Since Bk --+ B, P a.s.
on the set {  + oo ~, one has

thanks to the bounded convergence theorem. Notice that

We then deduce that (a subsequence of) vo, P) converges P
almost surely to vo, P). Furthermore vo, P) is a

bounded sequence of L2 (P), thanks to (3.41). For the above subsequence
and any bounded f, we get

We shall now compare the right hand side with EQn.
Since Qk and Qn are equivalent, we denote by the density of Q"

with respect to Qk. For any measurable bounded F defined on Q, it holds

We shall now calculate an upper bound for the last term. According to
[Fo 1] p. 133,

Assume for the moment that the following lemma holds.

Since Qn and Qn have same marginals, and Qn converges to Q, it holds

Now apply (3 . 42), letting k go to infinity, in order to get

This proves first that T = S~  ~ - Q a.s. (makef=l and m -~ oo), next
that Q and Q have same marginals for T [. One can thus use the
trick (2. 6) to prove that ç = ~ - Q a.s.
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To finish the proof of (3.1), it remains to prove Lemma (3.45). As the
patient reader will see, the proof is desperately technical.

Proof of (3 . 45) . - By Proposition 2. 1

2 H (Qn, Qk)

since Q" and Qn have same marginals. But

so that by the monotone convergence theorem and (3. 2)

Finally, define (usual conditional expecta-
tion), by choosing a version which is always less than 1. Then hn Bn E L~
[defined in (2 . 5)]. Indeed if we define 8k = 1) Bn ~k, one has
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so that

by the monotone convergence theorem. Now

The last equality is obtained by noticing that

The introduction of Bk is necessary for the sequel because we do not know
if We now evaluate the last two terms in (3 . 53).
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thanks to (3 . 52) and Cauchy Schwarz. Similarly

which goes to 0 when n goes to infinity since E~ = T - Q a. s.
It remains to evaluate the first term. Define

where y (n, k) goes to 0 when n goes to infinity, uniformly in k [same
proof as (3 . 55)]. The inequality follows from 0 1.

We have thus obtained
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What about EQn s) ds ? Well replacing hn by

( 1- hn) in the above computations, one get

Putting (3 . 58), (3 . 57), (3 . 51 ) and (3 . 49) together, we finally obtain

(3.59) lim sup 2 H (Qn, Qk)  2 (2 H (Q, P)) 1 ~2 ( ~ B - Bk D

Remarks. - If we assume that a and b are bounded, Lemma (3 . 36) is
unnecessary. Another proof of (3.1) will be given in Section 5, by using
some results on Markov semi groups. Though the last step of the above
proof is unreadable, we think that at least the first two steps have some
interest from the stochastic calculus point of view.
The next Theorem, which relies Markov Probability measures with

Markovian drifts, is very intuitive but requires a proof.

(3 . 60) THEOREM. - Let Q~M1 (Q) be a Markov Probbility measure with
H (Q, P)  + oo, and v. the flow of its marginals. Then the drift (3S of Q
can be written (3S = B (XS, s), where B belongs to L~ .
Proof - Since H (Q, P) is finite, 03B2~L2Q. Define B as in (3 . 2). Let

f~C~0(Rd x [0, T]), and denote by C / the bounded P martingale

By Ito’s formula,Ci - f s)/a s) ds is a local Q-martingale
0

with localizing sequence sn n Tn, where Ox denotes the gradient operator
relative to the spatial coordinates. Hence, for all h E X [o, T]), and
t &#x3E; u,
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But V x f is bounded, with compact support. An application of Cauchy-
Schwarz inequality yields:

The right hand term belongs to L2 (Q) ( ~ L 1 (Q)) because of the finite
entropy assumption. Since all the other terms of (3 . 61 ) are bounded, one
can use Lebesgue bounded convergence theorem. In the limit we get:

Now applying (3 . 2) with s) _ ~x . f’ (x, s) h (x, u) t~ (s) we get:

But since Q is Markov, (3. 63) means that

is a Q-martingale. Just as in part a) of the proof of Theorem 13.55 in
[Jac], this shows that the process

is a local Q-martingale. Now Theorem 12 . 48 of [Jac] applies, which proves
(3.60). D

Remark. - Theorem 12 . 48 in [Jac] also shows that for each BEL,
there exists at most one Q in with drift B.
Theorems (3 . 1 ) and (3. 60) are interseting for two reasons. First the

study of the non vacuity of reduces to the construction of diffusions
with a Markovian drift. Second, the minimization problem also reduces
to the case of Markov diffusions in Ay H. We shall study both problems
in the next two sections.

4. ADMISSIBLE FLOWS AND ASSOCIATED DIFFUSIONS

In this section we give some sufficient conditions for to be non

empty. Connection with Nelson’s diffusions (or Carlen’s conservative diffu-
sions [Ca], [Zhe], [MZ1], {Mi] ... ) will be briefly discussed. A systematic
study of in the spirit of stochastic mechanics is done in [CP]. Recall
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that A’ is (formally) defined as

(4 . 2) DEFINITION. - We say that f E ~b ((~d X R) belongs to the extended
domain De of A’, if there exists g ~ B (Rd X R) with

and

is for all (x, u) a local Px, u-martingale. we put A’ f = g.
Of course if fE De, C{ is a P’ local martingale.
Notice that Definition (4.2) is not exactly the one in [DM4, p. 244],

but an extension of it (see the "commentaire 21 ", p. 244 in [DM4]). Also
notice that A’ f is defined up to a set of potential zero.

If f~De, Ci is a local martingale, additive functional, and Px, u is, for
all (x, u), an extremal solution to the martingale problem ( 1. 6). It follows
that one can find a function denoted by V f, with 
such that

Of course De, and for a smooth f, V f = V x f, where Ox is the

usual gradient operator in the space direction. Here again V f is defined
up to a set of potential zero.

(4 . 4) DEFINITION. - Let ~o~ T~ be a flow of Probability measures on
(l~d. We call f a v-good function if fEDe and if there exist choices of O f
and A’ f such that

The set of v-good functions is denoted by De, ~.
Any smooth function with compact support is a v-good funtion.
If v, is .admissible, (i ~ and (ii ) hold for any choices of V f and A’ f.

(4 . 5) We fix once for all a given flow v., such that H (vo, + oo .

The next proposition gives a necessary condition for v. to be admissible.

(4 . 6) PROPOSITION. - Assume that is non void. Let Q be any Markov
Probability measure in [such a Q exists thanks to Theorem {3 .1)~,
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and B be its associated drift. Then for any fe 

is a L2 Q-martingale.

(4 . 7) COROLLARY. - If is non void, there exists B E ~ X R, (~d)
such that

(4.8) Notation. - Let A be a set of Borel functions such that
If the relation (4 . 7 ii) holds for any fEA, we say that v.

satisfies the (B, A)-weak forward equation. 
°

Proof. - To prove (4.6) it suffices to mimic the proof of (3.60).
Indeed let En be a localizing sequence of stopping times for the local

P-martingale Ct . Then (3 . 61 ) remains true with Tn A En’ B and V f
instead of T" A s", P and V x f Since f is a v-good function, V fe L203BD and

I A’ f(x, +00, so that one can again apply the bounded

convergence theorem to get (3 . 63), which proves that C / is a Q-martingale.
The rest of (4. 6) and (4. 7) is then immediate. D

The converse statement of (4. 7) would be the following:

(4 . 9) Statement. - Let f~d), A be a set of Borel functions
such that A ~ De, ~. Assume that

(i ) H (vo, ~,o)  + oo;
(ii ) 
(iii) v satisfies the (B, A)-weak forward equation.
Then the (B, vo, P)-FM [see ( 1’ .13)] belongs to A,,, H.
This statement is an extension of Nelson’s problem solved by Carlen [Ca]

in the special case where A t 10 (with additional assumptions such as
the backward energy condition for instance). Various other references are
relevant. Among them let us mention Meyer and Zheng [MZ1] where the
problem is solved for a general symmetric Markov process, Zheng [Zhe]
for a probabilistic approach of Carlen’s case and Mikami [Mi] for an
improvement of Carlen’s method.
The results we shall derive are more general (for ordinary diffusions)

since we are dealing with a general second order generator and we do not
impose backward conditions. Moreover, as in [Zhe], we build a solution
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which is absolutely continuous with respect to the initial P, in the spirit
of the Girsanov transform theory (recall the definition of the Follmer
measure). This answers to a question formulated by Nelson [Ne]. Actually
our method consists essentially in piecing together small parts of Zheng’s
and Mikami’s papers, with a bit of original touch. We also want to say
that Mikami’s proof could be extended to our general setting (with some
slight restrictions), but would not provide all the consequences one can
deduce from ours. For a complete discussion and bibliography on the
subject see [CP].
Although we did not succeed in proving (4.9) in full generality, the

method provides various results in different contexts. Hence, before stating
a first result we shall give the spirit of the proof. We use the word "good"
when a technical difficulty appears.

(4 . 9 bis) Outline of the ‘ proof" of (4 . 9). - First, we follow [Mi].
Let Bk be a sequence of bounded Borel functions with compact support

such that Bk converges to B in L203BD. We define Qx, " as the (Bk, Sx (x) bu, Px, u)-
FM. Thanks to the compactness of the support of Bk, u) is a family
of Markov Probability laws on Q, such that Px, u.

Let Qk = Q~o.
To any fE 8lb ( ~d) we associateh (x, s) = defined for s E [0, t]
If Bk and f are "good", we expect that

(4 .10 . i ) fk E A,
(4 .10 . ii ) is a bounded sequence of L~ ,
(4 .10 . iii ) A’ h + fk) = 0 on f~d x [o, t] .
Applying the (B, A)-weak forward equation (4 . 9 . iii ), (4 . 10 . i ) and

(4 . 10 . iii) we thus get

But _ f ’k (x, t ) _. f ’(x) and . f ’k (x, 0) d03BD0 = EQk therefore

which yields for a nonnegative "good" f, considering (4. 10 . ii)
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If we could prove that Qk converges weakly to Q, the proof would be
finished. Zheng [Zhe] proves in his case that Qk is tight, using the tightness
criterion of [MZ2]. Here we cannot use directly this criterion, but we shall
use the Trick (2. 6) which is inspired by Zheng’s paper, as we already said.
Assume that Bk is such that

Then we know that for all t,

(4.15) .rn goes P a. s. to Tn (at least for a subsequence, see § 3).
Here of course Z: is the P (super)martingale associated to Bk.
Now we may apply Fatou’s lemma to get

By the monotone convergence theorem we obtain for all nonnegative
"good" f

If the set of "good" functions is large enough, (4.17) extends to any
nonnegative measurable f, and we may apply (2. 6). D
The point now is to overcome the technical difficulties in order to make

rigorous the above sketch of proof. The first result we give, uses regularity
results for stochastic flows.

(4 . 18) THEOREM. - Assume that a = a. a*, and that a and bare 1, °‘,
i. e. are twice continuously differentiable in x, once in t, bounded with
bounded derivatives, and that furthermore the derivatives satisfy a global
Holder condition of order a for some positive a.

Let v. be a flow of Probability measures such that H (vo,  + oo, and
B be of finite v-energy. If v satisfies the (B, forward equation,
then the (B, vo, P)-Föllmer Measure [see (1 . 13)] belongs to A03BD, H.

Proof. - Since all coefficients of A’ are bounded, Cb ° 1 ~ De, y. An easy
density argument shows that v satisfies the (B, 1 )-weak forward equa-
tion.

Let B* E X R) with compact support, and denote by ~,t the flow
One can choose a sequence Bk of ((~d x R) such that Bk
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converges to B* in the space L2 ((dv + dp) Q dt), i. e.

In particular, since a is bounded, Bk goes to B* both in L~ and L~. Define
Qx, u (resp. Qx, u) as the Markov family of Probability laws on Qt associ-
ated to Bk (resp. B*) as in (4.9 bis), denoting by Zk (resp. Z*) the associ-
ated exponential martingale, and finally define Qk (resp. Q*) as the projec-
tion of Q~~ © s~ (resp. Q ~ © s~) on Q.

one can find, for each fixed t, a subsequence of Zr which goes P a.s.
to Z*.
For f E (I~d), we define

With our assumptions on a and b, we know, by means of Theorem 3.4
in [Ku] and the method in [IW, p. 255-259] that fk E 1 (~d X [0, t]). The
boundedness of the derivatives of fk follows from the support property

Indeed, the expectation of the squared norm of the derivatives of the
associated stochastic flow are of polynomial growth while 
behaves like exp ( - x2/c T) (uniformly in u) if T is the first hitting time of
the support off

Furthermore (see [IW, p. 255-259])

In view of (4.10) the main thing we have to prove now, is that the

sequence is bounded in L~, restricting the time interval to [0, t].
Following Mikami’s idea, this can be done by applying the

(B, 1)-weak forward equation to ( fk)2 which again belongs to Cb ° 1. If
we do that, we get

thanks to (4. 19). Therefore
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which yields (by using x2 _ c~ + 2 cdx ~ 2 c (1 + d 2) 1 /2~

for k large enough. We then deduce as in (4 .11 )-(4 .13) that for any
nonnegative smooth f with compact support, and k large enough

Since Zt goes P a.s. to Z*, Fatou’s lemma yields

Let Q be the (B, vo, P)-FM. We choose a sequence 03B8n of (Rd) such
that I 8n (x) ~ _ 1 for all x, 8n (x) =1 if 0 if ( x ( &#x3E; n + 1. Applying
(4 . 25) to which is bounded with compact support, we
obtain

But ]] B - Bn goes to 0, as n tends to infinity, and for each fixed m

goes to 0, as n tends to infinity.
Thus we can follow (4.14)-(4.17) and obtain

and nonnegative.

Let f be a bounded nonnegative Borel function. One can approximate f
both in L 1 (vt) and in L by nonnegative step functions. Thus it
suffices to prove that (4. 28) extends to f = 1 A for Borel subsets A. Since
vt + Q is regular, one can restrict our attention to closed A, then to
continuous nonnegative f (see [Bi]). A truncation argument shows that we
may consider only functions f with compact support, which can be
uniformly approximated by nonnegative smooth functions. Hence (4.28)
extends to any nonnegative Borel function and we may apply the
Trick (2. 6) to conclude. D

Remark. - The key points in the above derivation are first that fk is
smooth enough, second that E L~ (which is immediate in the above
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proof because a is bounded). Indeed as soon as E L~ the derivation
(4 . 21 )-(4 . 23) is available, and so the sequence ~xfk is bounded in L203BD.

If a and b are not anymore bounded or if fk does not have bounded
derivatives, we have to localize in the above proof.

(4. 29) THEOREM. - Assume that a = a. a*, a and bare C2~ 1 ~ «, with a
local Holder condition. Let v be a flow of Probability measures such that
H (v 0’ + oo, and B be of finite v-energy. If v satisfies the

(B, forward equation, then the (B, vo, P)-Föllmer Measure [see
( 1.13)] belongs to A~, H.
Proof - We adapt the proof of (4.18).
For ~, &#x3E; 0 we define

Let x be a Cy function such that X(x)=1 if and

x (x) = 0 if 1. C stands for an upper bound for the first and the
second derivatives of x. For ~, &#x3E; o, let us define

Then WÀ is a family of smooth functions with pointwise limit 1 when X

goes to 0. Furthermore

if 1/203BB~|x| or |x|~1/03BB and ~(03BBx)=0 if 
In the same way we get

Since h (A) goes to infinity when A goes to 0, it follows that one can find
a constant K such that

(4 . 32 . i) 
(4 . 32 . ii) I A’ ~~ (x) ~ _ K À for all (x, t),
(4.32.iii) 

Since we assumed that for all (x, u) no explosion occurs up to and
including time T, for the initial martingale problem ( 1. 6), the (time-space)
diffusion process is strictly conservative [Ku]. If Bk is smooth with compact
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support, u) remains strictly conservative. Thus, u) is the image
law of a C2, 1, 03B2 stochastic flow for 03B2  03B1 ([Ku], Thm. 5 . 4). But we do not
know if fk defined by (4.19) is a C2, 1 function, because we do not know
if we can differentiate under the expectation sign. Hence we must slightly
modify fk. Let a’ and b’~ be ct, 1 functions which coincide with a and b
on { I x I _ Define as the law of the (time-space) diffusion with
diffusion matrix a’~ = a’ (~’~)* and drift b’ + a’ Bk starting from (x, u). For
a compactly supported smooth f we define

s) is a Cb ° 1 function and satisfies

since A’’~ and a’ coincide with A’ and a on { 1/~, ~ x [0, T].

(4 . 3 5) For ~, =1 /k we define 
An easy density argument shows that v satisfies the (B, C~’ 1)-weak

forward equation, so that we may apply the weak forward equation to
~~ , fk. In virtue of (4 . 34 . i ) this yields

since the support of B)/~ is included in { 1 /~, ~ .
Applying the weak forward equation to (resp. we get as in

(4 . 22) and (4 . 23), considering (4 . 34 . i ), and restricting the time interval
to ~~, t]

For k large enough, ~ B * - Bk _ 1 and ~ Bk _ 1 + I I B* Recall
that later on, B* will be 8n (x), so that we may assume that
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Finally, using (4 . 32), we obtain the existence of a con-
stant K’ such that for k large enough and ~, __ 1,

(4.38) 

The same upper bound is valid for Hence fk) [resp.
V~ fk)] is bounded in L~ independently of k and À. Applying all the
above estimates in (4. 36) we get for any nonnegative f

where C1, C2, C3 only depend on and 

Letting À tend to 0 (hence k tends to 00 ), by Lebesgue’s bounded
convergence theorem and Fatou’s lemma, we obtain

where C only depends on I . f ’ ~ I ~ and 
Indeed, let sk be the first exit time of the ball of radius k. and

Qk are the same in restriction to Hence for k &#x3E; n,

(4.40) follows since Zi goes P a.s. to Z* and since s" goes Q* a.s. to T.
The rest of the proof is identical to the proof of (4. 18). D

The next result lies on p.d.e. result as in [DaG].

(4.42) THEOREM. - Assume that a and b are locally Hölder continuous,
and that a is uniformly elliptic. Let (v, B) be as in (4 . 29); then the (B, vo, P)-
Föllmer Measure [see ( 1.13)] belongs to A03BD, H.
Proof - Here again the difficulty is that we do not know if fk in the

proof of (4.18) satisfies (4. 20). Actually we do not know if there exists a
solution on the whole unbounded space [Rd x [0, t].

Furthermore, although we think that the modified fk in the proof of
(4. 29) again satisfies (4. 32), we did not find in the litterature any argument
to prove it. Notice that here we do not have anymore the stochastic flow

argument. Consequently, once again we have to modify h.
Let f be a nonnegative smooth function with compact support. For k

such that let sk be the first exit time of the ball of
radius k. Define
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By means of a standard p.d.e. result, it is proved in [DaG] that he belongs
to C2~ 1(~ ( x I  k ~ x [0, t]) and satisfies

We can now follow the proof of (4.29) with this new fk but without
modifying Qk (i. e. we do not need Q~ ~). D

Remark. - 1) We cannot use the fk of the above proof in the proof
of (4.29). Indeed without ellipticity (or more generally hypoellipticity)
assumption, the uniqueness of the classical solution of the underlying
Cauchy-Dirichlet problem fails and the argument of [DaG] does not hold
anymore. Of course one can use Stroock-Varadhan’s result [SV] to prove
that fk is a weak solution in the degenerate case, but in that case it is not
known wether fk is regular enough (i. e. C2 ~ 1 ) or not, except in the
hypoelliptic case [Cx].

2) One can remove in (4.42) the local Holder continuity of b, assuming
only that b is continuous. This can be done by approximating b and by
using the Girsanov formula. We refer to [DaG] for the details.

In all previous theorems we used the usual differential calculus, and so
we were obliged to make some regularity assumptions on the coefficients.
In return, the only assumption on v is the finite entropy condition at
time 0. As a consequence, we obtain that if the conditions of Theo-
rems (4. 29) or (4.42) are fulfilled, any solution v of the B-weak forward
equation with B of finite v-energy, satisfies H (vt,  + oo for almost
all t.

The last theorem of this section deals with the other point of view,
assuming some conditions on v but no more restrictions on a and b (except
those ones required from the beginning). First we have to introduce some
definitons.

(4.45) DEFINITION. - Let v. be a flow of Probability measures and
We say that v satisfies the extended (B, A)-weak forward equation,

for A  D if for any and any F ~ C1 1 ([s, t], A)

In other words the flow vt Qx ~i satisfies the weak forward equation.
Notice that if A = Co° 1, f(x, t) = F (t, x, t) belongs to C~’ ~ and the above

definition is nothing else than the (non extended) weak forward equation.
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In fact the problem is that we do not know, in general, if for

F E C 1 ([0, T], De, ~) the function f(x, t) = F (t, x, t) belongs to De, ~.
Of course if v satisfies the extended weak forward equation, it also

satisfies the non extended one. Furthermore, if Av, H is non empty, v
satisfies the extended (B, De, v)-weak forward equation for some B of finite
v-energy, as it can be seen by applying Ito’s formula.
The next space will provide a good core.

(4.46) Notation. - We denote by Ao the following space

Ao s.t. f has compact support, @ dt)
and Ct [see (4 . 2)] is a L2 Px, u-martingale for all (x, u) } .

(4.47) LEMMA. - Let V be a flow of Probability measures such that

all t E [o, T]. Denote by p (x, t) the density . Assume that

P E Bb, loc (lRd X Then A0  De,
Proof. - It is easy to see that for f in Ao, one can find versions of A’ f

and of V f which are compactly supported. The proof is now obvious

since ~f~L2 , A’ f~L1(  ~ dt) and have compact supports and

p E ~b, loc X D

This leads us to the last result of the section.

(4.48) THEOREM. - Let v. be a flow of Probability measures such that

all t~[0, T]. Denote by p (x, t) the density Let B be of finite

v-energy.
Assume that p E ~b, lo~ X that H (vo, po)  + oo and that v satisfies

the extended (B, Ao)-weak forward equation.
Then the (B, vo, P)-Föllmer Measure [see ( 1 . 13)] belongs to A03BD, H.
Proof. - Let B* be a bounded Borel function with compact support.

The associated Qx, u is then a family of Probability measures. Let

Q* = Q o (8) so. The associated semigroup Qi f(x, u) = u [f(Xt, 
defined on rø p (lRd x R) is then strongly continuous on the closed subspace

with generator A (B*) and domain D (B*). Co X is included in

~ (B*), and A (B*) coincides with A’ + (B*/a VJ on C~ (lRd x R) n D (B*).
LetfE D (B*). Then the function F

belongs to C~ ([0, t], D (B*)) and satisfies

Vol. 30, n° 1-1994.



122 P. CATTIAUX AND C. LEONARD

All these facts are well known in semigroup theory (see [Ta]). We want
to apply the extended weak forward equation. To this end, we need the
following lemma.

The proof of the lemma is postponed to the end of the proof theorem
(4 . 43). Let G E C1 ([o, t], Ao). Then G2 E C1 ([o, t], Ao). Indeed using the
change of variables formula (Ito’s formula), G2 (s) belongs to De and
~ (G2) (s) = 2 G . ~ G (s). Hence we can apply the extended (B, Ao)-weak
forward equation to F)2 (where is as in the proof of (4 . 29)) and
get as in (4 . 37), that for any nonnegative f

for some constant K’. This yields as in (4 . 40) (~, --~ 0)

for any nonnegative f in D (B*).

Recall that if f~G (B*), f£ = ~-1 Q*s f ds belongs to D (B*) and conver-

ges to f in the uniform topology. In particular, if f is nonnegative, f~ is
also nonnegative. So (4 . 52) extends to W (B*), and in particular to Co .
The rest of the proof is now similar to the proof of (4.18).

It remains to prove Lemma (4. 50).
Then

rr

is a bounded Qx, u-martingale. As in (4 . 3), one can find a Borel function
-t

~* g such that C* (g) _ (~* for all t, a,s, for all

-t

(x, u), where N* = B* us) ds. Since H u, Qx, u)  + oo (B*

is bounded with compact support), we can apply the Girsanov transform
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and Proposition (2. 7) in order to get

(4 . 53) C* (g) - g/a B*) us) ds is a L2 PX, u-martingale for all

0
(x, u), with brackets (~* g/a ~* g) us) ds.

Thus g belongs to De, O g = ~* g and A’ g = A (B*) g - (B*/a O g).
Furthermore, according to Remark (2 . 8 . 1 ),

So W g has compact support, is finite and A’ (w g) belongs to
L Q dt). D 

’

Remark that we only used the local boundedness of p to prove that Ao
is included in via Holder’s inequality for the pair (L1, L~) in (4 . 47).
In the next section we shall see another existence result, assuming that
Av, H is non empty, as well as applications to the large deviation problem.

5. ENTROPY MINIMIZATION AND RELATED TOPICS

In the preceding section we gave some sufficient conditions for Av, H
not to be empty. In this one we shall first describe A~, H, then study the
minimization problem and finally apply all the results to the initial large
deviation problem (see § 0).

(5.1) DEFINITION. - Let v. be a flow of Probability measures and
define H -1 (A, v) as the L~ closure of the set

If C~0) we put H -1 (A, v) = H -1 (v) (resp. (v)).
Of course Ho 1 (v) ~ H -1 (v) ~ L~ . In general is not equal to

the whole L~. Take for instance

It is then easy to check that B (x, t) _ (x2, - xl) belongs to (Ho 1 (v))1,
where 1 denotes the orthogonal set for the L~ norm.
A particular case is the one dimensional case. Indeed we can state

(5 . 2) PROPOSITION. - For d = 1, Ho 1 (v) = L~, provided that a is bounded.

Proof. - If B E (Ho 1 (v))1, then for Lebesgue almost all t in [0, T] the
derivative (in the sense of Schwartz distributions) of a (x) B (x, t) vt is equal
to 0. Thus this distribution is actually a constant function Àt. But a being
bounded, for all which implies that for
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Lebesgue almost all t, i. e. IT Lf(X, t) a (x) B (x, t) d03BDr dt = 0 for any test

function f. By approximation this extends first to any bounded

continuous f with compact support, and then to any bounded continuous f
by Lebesgue’s theorem. This proves that the bounded signed measure
a (x) B (x, t) dvt is equal to 0 and finally that B = 0 in 0

The next result gives a precise description of the set of Markov Probabil-
ity measures in A~, H.

(5 . 3) THEOREM. - Assume that is non void. Then, there exists

B*EH-1(v) such that
(i) for any Markov Probability measure Q in A~, H, the associated drift

B verifies (B - B*) E (H -1 (v))1,
(ii) conversely for any B = B* + B1 with B1 E (H-1 (v))1, the (B, vo, P)-

FM Q belongs to A03BD, H.
So there is a biunivoque correspondence between the set of Markov

elements of (H -1 (v))1.
We denote by Q* the (B*, vo, P)-FM, which belongs to thanks

to (ii ) .

Proof. - (i) Consider two Markovian Probabilities Ql and Q2 of A~, H,
with their drifts Bi 1 and B2 (3 . 34). v satisfies the (Bi, De, ~)-weak forward
equation [see (4 . 6) and (4. 7)], so that for all f in 

Thus B 1- B2 belongs to (H -1 (v))1, in other words B~ 1 and B2 have the
same projection on H-1 (v). We denote this projection by B*.

(ii) Let Q be a Markov element of [see (3 .1)], B its associated
drift, B| any element in (H -1 (v))1. Then v satisfies the (B + De, 03BD)-
extended weak forward equation.

In particular if the hypotheses of one of the Theorems (4.18), (4.29)
or (4 . 48) are satisfied, the proof of (ii ) is finished.
We shall see that (ii) is true in full generality.
Indeed consider

where 0~ is as in the proof of (4 .18), and define as the Markov

family of Probability laws associated with Bk. Qk starts again from vo (x) 80.
We adopt the notation of the proof of (4.48), in particular, to any

fE D (Bk) one associates F (s, x, u). We should follow the proof of (4 . 48)
replacing Ao by De, ~, provided F E C1 ([0, T], De, J. But, we cannot prove
the last assertion. Indeed, FE C1 ([0, T], De) but we do not know wether,
for each fixed s, V F (s, . , . ) belongs to L~ or not. Fortunately, as we shall
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see later, V F (s, x, Looking at the weak forward equation, it is

easily seen that the latest weaker property is exactly what is needed for
the proof.

Let Z be the density process of Q with respect to P. Define

and

Then Qk  Qn and

Hence

thanks to (2. 8). But

Hence V F (s, x, It remains to follow the proof of (4 . 48) to con-
clude. Since B - B*E(H-1 (v))1, the proof of (ii) is complete. 0

(5 . 4) COROLLARY. - Let non void.

(i) Assume that either a = a . a* with a and b in C2~ 1~ °‘ for some a &#x3E; 0 or
a and b are locally Holder continuous and a is uniformly elliptic.

(ii ) Assume that ayt = p (t, . ) and that p .. 

Then H-1 (Ao, v)=H-1 (v).
Proof - Define B’* the projection of B* onto [resp.

H -1 (Ao, v)]. Since v, satisfies the (extended ) (B’*, [resp. (B’*, Ao)]-
weak forward equation, we may apply Theorem (4. 29) [resp. (4.48)]
and get that Q’* the (B’*, Yo, P)-FM belongs to Thus B*=B’*.
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Furthermore if 1 (v))1 [resp. (H -1 (Ao, v))~] the same argument
shows that B* + B~ is an admissible drift, which proves in virtue of (5 . 3),
that B 1 E (H -1 (v)) 1. D

(5 . 5) Remark. - is not empty, d= 1 and a is bounded, there exists
a unique Markovian Probability measure in A,,, H. [Recall (5 . 2)].
Remark. - The proof of Theorem 5. 3 can be adapted in order to give

another proof of Theorem 3 .1. Indeed let Q E Av, H with drift P and
Markovian version B. Then v satisfies the (B, De, y)-weak forward equa-
tion, and B is of finite v-energy. Take Qk as in (5 . 3)
and Qn the stopped Q at time Tn with Tn as in (3 . 5 . i). Then

H (Qn, Qk) _ 2 H (Q, P). The rest of the proof of (5 . 3) is unchanged and
the (B, vo, P)-FM belongs to A~, H. With the material of Section 4, this

proof is of course much more simple that the one given at Section 3, but
it requires some analytical tools.

(5 . 6) PROPOSITION. - All the Markovian elements in are equivalent.
All the elements in are absolutely continuous with respect to Q*.

Proof. - To any Q in we may associate a Markov version Q
builded in (3 .1 ), and we know that Q  Q (see § 3). So it is enough to
prove that all the Markov elements of are equivalent. Let Q be such
an element associated to B. Define Q’ as the (B* - B, vo, Q)-FM. We
claim that Q’ = Q * .

Indeed, as in the discussion preceding the proof of (3.1) {precisely the
discussion below (3 . 9) ~ we know that for all nonnegative bounded f

so that

noticing that T = T 00 Q’ a.s. This implies that Q’ is a Probability measure
on Q and so is equal to Q*. Furthermore Q’ (hence Q*) and Q are
equivalent. 0

Remark (due to the referee). - In general all the measures of 
not equivalent. Here is a nice counterexample due to the referee.

Let P be the Wiener measure, a &#x3E; 0 and The measure

Q = P [ . /A] satisfies H (Q, P) _ - log P (A)  + oo . Furthermore Q mini-
mizes H (., P) among all Probability measures R with R (A) =1, and the
minimizing measure is unique. It can be shown that Q is not Markov
(Exercise). According to 3.1, there exists a Markov measure Q with the
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same marginals as Q and H (Q, P)~H(Q, P). Q (A) cannot be equal to 1,
otherwise H (Q, P) &#x3E; H (Q, P). So Q and Q are not equivalent. We know
that Q « Q. This also provides us with an example where Q" defined in
Section 3 is not a Probability measure on Q.
We conclude this section by solving the minimization problem. Define

and for A ~ De, v’

(5 . 9) THEOREM. - Let to~ T~ be a flow of Probability measures on
such that t -~ vt is continuous from [0, T] into Then

1 ) De, v).
2) If I (v)  + oo then I (v) = H (vo, po) + J (v, De, ~). Furthermore the infi-

mum in (5. 7) is attained at the only point Q*, and for all Q in it

holds

3) Conversely if one of the following assumptions is fulfilled
(i ) a = cr . a * with 6 and b in C 2 ~ 1 ~ « for some a &#x3E; 0,
(ii) a and b are locally Holder continuous and a is uniformly elliptic,

then H + J (v~ Co ) = I (v) = H + J (v~ De, ~) ~

Proof - 1 ) and 2). If I (v) = + oo there is nothing to prove, thus assume
that I (v) is finite or equivalently that is non void. To any Q in 
we associate the Markov version B of its drift, and the associated
Markov Q. Then for any 

so that

But since v satisfies the (B, De, J-weak forward equation, it holds
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It follows

so that taking the infimum in Q on the left hand side and the supremum in
f on the right hand side, we have proved that I (v) &#x3E;_ H (vo, po) + J (v, De, ~).
Furthermore, since B* E H -1 (v), (5 . 10) leads 

and finally

According to (5. 6) Q « Q* so that

L.- , / J

If at least one term in the right hand side makes sense. Actually both
terms are well defined since B * E L~ . It is easy to see that

since B - B* and B* are orthogonal in L~ .
Conversely, assume that J (v, is finite. Then there exists a constant

C such that for any f~C~0,

Since 2 is linear, (5.14) implies that J~ is a continuous linear form on
Co equipped with the seminorm The completion of
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(0)) is isomorphic to (v), so that the quotient map of ~f
[which exists since J~ ( f ) is equal to 0 if N (, f’) = 0] can be extended as a
continuous linear form on the Hilbert space (v). Hence, by Riesz
representation theorem, there exists a B in (v) such that for all

f~C~0

We shall prove that (5.15) implies that v satisfies the (B, for-
ward equation. Indeed, for a fixed f E C~ consider the function

From the continuity hypothesis on the flow v, y (., f ) is continuous.
Now choose a sequence ~rn of C °° ([o, T]) such that is

pointwise convergent with limit 1 ~o, t] and ( - ~n), considered as a measure,
is weakly convergent to bt, the Dirac measure at point t. Such a sequence
exists. We may apply (5.15) to Wnfwhich yields

We can pass to the limit in n, thanks to Lebesgue theorem in the right
hand side and to the continuity property of y in the left hand side. This
proves that v satisfies the weak forward equation.

Because of our hypotheses, we know that the (B, vo, P)-FM Q belongs
to A~, H. But

since B E 1 (v), and

We also may state a slightly different but similar result
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(5.18) THEOREM. - Define J’ (v, A) as

Assume that 
av 

= p (t, . ) and that p ( . , . ) e Bb, loc.Assume that = p (t, . ) and that p ( . , . ) E loco

Then I (v) = H (vo, po) + J’ (v, Ao).
The proof of (5.18) is the same as the previous one except for some

changes in the notations. It is left to the reader.
Comments. - The first half of the proof of (5 . 9) [proofs of 1) and 2)]

is similar to the exposition of [Fol] in the case of Brownian motion. The
Pythagoras equality is already known in great generality [Cs].
The ideas of the second half of the proof are partly contained in [DaG],

and essentially contained in the Appendix of [DS1]. But, at our level of
understanding, the derivation of the result in [DS 1] is not completely
rigorous. We shall discuss briefly some points and to this end we use the
notation of the Appendix of [DS1].
The first point is the following. In order to build the diffusion with

additional drift yk (which satisfies the good required condition we stated
before), the authors call upon Carlen’s theorem. As we already said, this
result is proved only for the Brownian motion in [Ca]. Also notice that
we cannot use Carlen’s result to build a Brownian motion with drift and
then take its image by the flow of the diffusion, because the energy
condition and the weak forward equation are satisfied for the flow of
marginals of the perturbed diffusion and not of the perturbed Brownian
motion. Thus, it seems that the results of Section 4 in the present paper
are necessary to get [DS1]’s result. Furthermore uniqueness of the solution
of the weak forward equation (with the given does not hold in general.
This argument is thus unsufficient to prove that has the good margi-
nals.
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