
Some epidemic systems are long range interacting particle systems 

CHRISTIAN LEONARD 

1. INTRODUCTION 

We present some recent results about dynamical interacting particle systems in the 
setting of epidemiology. The individuals are particles whose states (of health) depend 
on their relative positions. These individuals interact since they fall ill more often when 
their neighbours are infectious. We begin with a description of the interaction between 
two individuals at the microscopic level. Then we study the behaviour of the whole 
system at the macroscopic level, when the number of individuals tends to infinity. 

Let ur(w) be the random state of the individual i in the system of N individuals: 
{j; 1 $ j $; N}. For instance ur may specify its position in a geographical space, its 
state of health and its deterministic type. Let us denote X the fiber, that is the set of 
the possible values of each U f ( w). We suppose that all individuals of the same type are 
similar, therefore the configuration (Ur(w); 1 $; i $ N) E XN is completely described 
by the empirical probability measure 

1 N 
N L Ouf (w) E II( X) 

i=l 

Here Ox is the Dirac measure at point x. In all what follows, if M is a topological space 
equipped with its Borel 0'-algebra, II( M) stands for the set of all probability measures 
on M and it is,endowed with its natural topology q(II(M), Cb(M)). 

When studying the behaviour of the system as N tends to infinity, it is worth repre­
senting it in terms of its empirical measure. Indeed, it allows us to imbed the sequence 
of sets (X N, N ~ 1) in the unique set II(X) . Therefore, II(X) is the natural set of all 
configurations. One could consider 

X = {position at time t} x {state of health} x {type} c 1R k 

and study the evolution of the measure-valued stochastic process 

N 1" k (w,t) ==? N LJoUf(w,t) E 11(1R) 
i=l 

Instead of this, we shall look at the random empirical measure 

N 

w ==? ~ L Ouf(w,-) E II((1Rk)[o,T]) 
i=l 

Hence, the fiber X is the set (1Rk)[o,T] of all the paths from (O,T] into 1Rk. Other 
measure-valued stochastic processes have already been used to modelize spatial branch­
ing processes arising in biology. One should have a look to the survey paper, written 
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by D.A. Dawson (1984), on this subject. The first result we shall present, is a law of 
large numbers. Under some regularity assumptions, it states the existence of a unique 
probability measure fl on X= (IRk)[o,T] of all the paths from (O,T] into IRk such that: 

(1.1) 
N 

almost surely in w , lim N1 ~ 8uN(w ·) = fl 
N-+oo L.....t • ' 

i=l 

in II(X) 

Then, we shall give an estimate for the probability of the large deviations from this 
almost sure event. This result is of the type: 

(1.2) 
N 

lim N1 logP(w; Nl ~ 8uN(w ·) E A)=- inf{I(v); v E A} N-oo ~ • ' 
i=l 

for "regular enough" subsets A of II(X) . 
The function I(·) on II(X) takes its values in lR+ U { +oo} and is such that I( v) = 0 

if and only if v = fl (which is given by (1.1)). It is called the rate function for the large 
deviations, since the probability of the event { w; j, 2::;:,1 8uf' (·,w) E A} is approximately 
exp(- N inf {I( v ); v E A}) when N is large. If A is such that inf {I( v ); v E A} is positive, 
this event becomes rarer and rarer as N increases. Notice that in this case, fl does not 
belong to A and the event "contradicts" the law of large numbers (1.1). At section 5, 
we shall explain why solving a variational problem involving the rate function I(·) can 
provide an answer to a question such as: 

"What is the most probable path leading to a given final state from a given initial 
state?" . 

2. THE EPIDEMIC SYSTEM 

Let us describe our model at the microscopic level. Let N individuals: 1 ::; i ::; N, 
each of type a or b (let us say that a=male and b=female). All these individuals move 
randomly in IR2 and are likely to be struck down by a contagious disease. The individual 
i at time t (0 :S t :S T) , is described by: 

{ 
s{'l E {a,b} 

yf (w, t) E IR2 

e{'l(w,t) E {S,I,D} 

: its deterministic and constant type 

: its random position 

: its random state of health. 

Here S stands for "susceptible", I for "infectious" and D for "dead". The possible 
transitions for the state of health are : S <== I -+ D . A susceptible individual may 
fall ill after getting in contact with infectious ones of the alternate type (heterosexual 
transmission of a s.t.d. ). An infectious individual can recover or die after random waiting 
times. Once it is dead, it stops moving and cannot infect anyone anylonger. We shall 
only consider Markov dynamics, so that the random waiting times have exponential 
distributions and the individuals move accordingly to a Markov process 
(Y;N)l~i~N : n X (0, T] ==} (IR2)N . With the notations of the previous section, we 
take 

X= D ([O,T],IR2 x {S,I,D}) x {a,b} 
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where D([O, T], R 2 x {S, I, D}) is the space of the right continuous paths from [0, T] to 
R 2 x {S, I, D} which admit left limit everywhere. 

Each individual moves independently from the others according to a jump Markov 
process in R 2 with generator 

g(·) ===> [ {g(-+x)-g(x)}.Cy(·,dx) 
JR! 

Here .C y is a Levy kernel, that is: 
foreveryy E R 2 ,.Cy(y,·)isanonnegativemeasureonthesetofjumpsR! = R 2 \{0}. 

If for every y E R! , .C y(y, ·) is a bounded measure, then one can interpret this generator 
as follows. Conditionally on Yt = z E R 2 , the probability of a jump during the time 
interval]t, t + dt] is (JR2 .Cy(z, dx))dt + o( dt) and conditionally on the occurence of 

this jump, the law of this jump is the probability measure ,Cy(z,·)/ fn2 .Cy(z,dx) on 

R!. • 
On the other hand, knowing the configuration of the whole system at time t : 

(yf(t), ef (t))l=:;jlN , the state of health of the individual i will perform a jump during 
the time interval]t, t + dt] 

{ 
from the state e;(t) =I to the stateD with probability: 

from the state e;(t) =I to the stateS with probability: 

from the state e;(t) = S to the state I with probability: 

Cs1 (yf (t), sf,~ t O(yf(t),ef(t),sf)) dt + o(dt) 
)=1 

Cwdt + o(dt) 
C1sdt + o(dt) and 

The instantaneous rate of transition Cs1(i) from S to I of the individual i depends 
on its type sf and its position y{" ( t) but also on the configuration of the whole system 

by means of its empirical measure -/:r E11Y=l 8(y!"(t),e!"(t),s!") which belongs to 
J J J 

II(lR? X {S,I,D} x {a,b}). We shall choose for Csi(i) an increasing function of the 
ratio of infectious individuals in the disk of centre y{" ( t) and radius R whose types are 
different from i's one. 
Denoting Ut = j;, E1~1 t5(y!"(t),e!"(t),s!") and J(y) the indicator function of the set 

J J J 

{Jiyll :$ R}, we take: 
(2.1) 

Csi(Yf (t), a, ut) 

=ca (L2 J(y-y{"(t))ut(dy,I,b)) I(~+ fuv J(y-y{"(t))ut(dy,{I,S},b)) 

Csi(Yf (t), b, ut) 

= Cb (L
2 

J(y -yf(t))ut(dy,I,a)) I (e+ L.
2 

J(y -yf(t))ut(dy,{I,S},a)) 

with ca,cb;::: 0 and e > 0 (to prevent dividing by zero). 
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Finally, the model is described by the sequence ( s[Y; 1 $ i $ N) in {a, b} and the 
Markov process {(Y;N, Ef"); 1 $ i $ N} : S1 x (0, T] ===* (1R? x { S, I, D} )N whose 
generator applied to the real function (Yll e1; ... ; YN, eN) ___... f(yi, e1; ... ; YN, eN) gives: 

N 

L [ {!(. · ·; Yi-I, e;-1; Yi + x, e;; Yi+I, e;+l; ... )- f( ... ; y;, e;; ... )}1Ie;¥D.Cy(y;; dx) i=I JJR~ 

Here ( e; --.. e) is the jump from e; to e and the nonnegative measure .C E(Y, e, s, u; ·) on 
the set of jumps {S, I, D}--+ {S, I, D} is defined for any y E IR?, e E {S,I, D}, s E {a, b} 
and any probability measure u on JR? X {S,I,D} x {a,b} by: 

{ 
.CE(y,D,s,u;·) = 

.CE(y,I,s,u; ·) = 

.CE(y,S,s,u;·) = 

0 

Cis6(I ..... s)(-) + Cw6(I ..... v)(-) 
Csi(Y, s, u)6(s-I)(·) 

3. A GENERAL LONG RANGE INTERACTING PARTICLE SYSTEM 
The above epidemic system is a particular case of a long range interacting (or mean 

field) particle system, which we describe below. Let us give ourself a triangular array 
{(sfVh<i<Ni N 2::: 1} of a subsetS of JRk and let us suppose that there exists mE II(S) 
such that 

(3.1) 
1 N 

lim N '""08 !' = m(ds) in II(S) N-+oo L...., • 
i=l 

Let us consider the Markov process (Xfh<i<N with values in zN 'where z is a subset 
of JRd and whose generator applied to a fu~~tion f on zN gives: 

N 

(3.2) L j {!( ... 'Zj-}, Zj +A, Zi+l' ... ) 
i=l (Z-Z)\{0} 

Here, {..C(z,s,u)(·);z E Z,s E S,u E II(Z x S)} is a Levy kernel on the set of jumps 
(Z- Z) \ {0}. 

The epidemic system fits this model with 

(3.3) S ={a, b},Z = 1R2 x {S,I,D},z = (y, e) and 
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The Levy kernel.C(z;,sf, ~ 2:;:1 o(z;,sj")) drives the evolution of the particle i. As it 

depends on the whole system (zj, sf)1 ~jS,N, there is an interaction. Since this depen­

dence occurs only via the empirical measure ~ Ef=,1 o(z; ,sf)), the interaction is said to 

be a long range (or a mean field) one. 
We want the limit result as N tends to infinity for the empirical measure 

1 N 
N Lb<xf,sf") E ll(D([O,T],Z) X S) 

•=1 

The space D = D([O, T], Z) is endowed with its usual Skorokhod topology (see P. 
Billingsley (1968)). Let us assume the following hypotheses. 
Hypotheses (H) 
H 1 There is a bounded nonnegative measure A on (Z- Z) \ {0} such that 
a) for all z E Z,s E Sand u E ll(Z X S), .C(z,s,u)(·) is absolutely continuous with 
respect to A(·). 
b) there is a unique Markov process with generator 

g(-)-+ h-z {g(· + ~)- g(·)}A(db.) 

H 2 There is a version of ~~ such that 

a) (z, s, u, ~)-+ dC(~;· u) (b.) is bounded and continuous on 

Z x S X II(Z X S) X ((Z- Z) \ {0}) 

b) { d.C~~-, ·)(b.);~ E (Z- Z) \ {0}} is an equi-uniformly continuous family of func­

tions on Z x S x II( Z x S) . 

4. A LAW OF LARGE NUMBERS FOR THE GENERAL LONG RANGE 

INTERACTING PARTICLE SYSTEM 

A. The law of large numbers. In this section we give a result looking like (1.1), for 
the system which is described by (3.1) and (3.2). We shall add to the hypotheses (H), 
the following assumption on the initial condition : 
( 4.1) 

form-almost every sinS, there exists fL~ in II(Z),such that almost surely in w: 

N 

lim N1 "'o(X!'l(w t=O) sN)(dz, ds) = p,g(dz)m(ds) in II(Z X S) 
N-+ex> L.J ' , ' • 

i=l 

Notice that misgiven by (3.1) and one can interpret p,g as a conditional version of the 
probability measure p,0 (dz,ds) = p,g(dz)m(ds) on Z x S, knowing s. 
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In what follows, viewing a probability measure von D x S as the law of aD xS-valued 
random vector (X, S), 

vs stands for the marginal law of S on S 

Vt is the law of (Xt, S) on Z X S, (0::; t ::; T) 

v: denotes a regular version of the conditional law on Z of Xt 

knowing that S = s, (0 ::; t ::; T, s E S) 

v 8 denotes a regular version of the conditional law on D of (X, S), 

knowing that S = s, ( s E S). 

PROPOSITION 4.1. Let us assume (H) and ( 4.1). Then, almost surely in w, the sequence 

(k l.:~t 6(Xf"(w,·),sf)) N>t is relatively compact in IT(D X S). 

Let f.L E II( D x S) be any limit point of this sequence, then its marginal on S is 
J.Ls(ds) = m(ds) and form-almost every sinS, its conditional version on D knowing s 
is the law of a nonhomogeneous Markov process on Z, with the initial condition fLo and 
the family of generators ( G~,; 0 ::; t ::; T), defined by 

( G~, (g)) (z) = 1 {g(z + ~)- g(z)} C(z, s, f.Lt)( d~) 
(Z-Z)\{0} 

for any continuous function g with compact support in Z and any 0::; t::; T. 
In the above formula, J.Lt is the marginal at timet, on Z X S, of the limit point fL· 

If S has a unique element (then it is no need to consider this set) and if (Xt)o<t<T 
stands for the Markov process on Z whose law is J.L, the transition kernel - -
P(Xt+dt E dy I Xt = x) depends on t through the law f.Lt of Xt. The flow 
(t-+ Law(Xt); 0 ::; t ::; T) is a solution of the nonlinear Kolmogorov equation 

! l g(z)Law(Xt)(dz) 

(4.2) 

= [ (1 {g(z+~)-g(z)}C(z,Law(Xt))(d~))Law(Xt)(dz) 1 Z (Z-Z)\ {0} 

for any continuous function g with compact support in Z. 
To be more precise, the law f.L of X is such that, 

(4.3) g(Xt)-g(Xo)- f'duj {g(X,.+.6.)-g(X,.)}C(X,.,J.Lu)(d.6.) 
lo (Z-Z)\{0} 

is a wmartingale for any continuous function g with compact support in Z. 
Now, if S has several elements, denoting (Xt)o<t<T the Markov process on Z whose 

law is f.L 8 , form-almost every sinS, P(Xt+dt E dy-1 Xt = s) depends on t via the set 

of laws f.L:' = Caw( X{) as s' describes S. As in ( 4.3), the law fL of X is such that 
(4.4) 

g(Xt)- g(X~)- [' dt 1 {g(X! + .6.)- g(X!)}C (X!, s, J.L!' (dz')m(ds')) (d~) lo (Z-Z)\{0} 
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is a J.t 8 -martingale, for any function g with a compact support in Z. 
In H.P.Mc Kean (1967) introduced a class of Markov processes whose evolution 

equations are similar to (4.3). He called them nonlinear Markov processes. Later, 
A.S.Sznitman studied in [Szn] the corresponding nonlinear martingale problem, which 
is (4.3) for our model. Clearly, if the nonlinear martingale problem (4.4) admits a 

unique solution in II(D X S), then the sequence (ir- 2::~ 1 O(xf,af>) N>1 converges to 

this solution in II(D X S). We shall need additional regularity assumptions to get this 
uniqueness result. In order to obtain it, let us assume that: 
(4.5) 
for any s E S, u E II(ZxS) and for any continuous bounded function f on (Z-Z)\{0}, 

the function: z ~ j J(ti).C(z,s,u)(dil) is Lipschitz on Z 
(Z-Z)\{0} 

(4.6) 
for any z E Z, s E S and for any continuous bounded function f on ( Z - Z) \ { 0}, 

the function: u ~ { f(ti)C(z,s,u)(dil) is Lipschitz on II(Z X S). 
j(Z-Z)\{0} 

In ( 4.6), IT( Z X S) is endowed with the Wasserstein metric. For the definition of this 
metric, see A.S. Szitman (1984) for instance. Let us just recall that this metric yields 
the usual a(TI, Cb)-topology. 

PROPOSITION 4.2 (STRONG LAW OF LARGE NUMBERS). Let us assume the hypotheses 
(H), (4.1), (4.5) and (4.6). If J.to satisfies fzxs izl 2p.~(dz)m(ds) < +oo, then there exists 
a unique probability measure J.t on D X S satisfying the properties of proposition 4.1. 
More, 

N 

(4.7) almost surely in w, lim ""'O(X!'I(w ·) s!'l) = J.t N~oo~ ' ' ' • 
i=1 

in IT(D X S) 

The limit of proposition 4.2 is often called Me Kean - Vlasov limit. Several authors 
have already studied it in different contexts. Some of them are: H.P. Me Kean (1967), 
D.A. Dawson (1984), A.S. Sznitman (1984), K. Oelschliiger (1984) or C. Leonard (1986). 
In all these papers, the law of large numbers is stated in terms of convergence in law 
(weak law of large numbers). It is well-known that the almost sure convergence result 
(strong law of large numbers) is a natural consequence of the large deviations (theorem 
5.1 below) and of Borel-Cantelli lemma. For a proof of this improvement, see for instance 
C. Leonard (1987). 

B. The propagation of chaos. In a different context, M. Kac (1967) introduced the 
propagation of chaos. Let us illustrate this notion. Suppose that the initial condition 
is an independtly distributed sequence, whose law is 

(4.8) Law ((Xf(t = O)h:Si:SN) = 0;:,1 J.t 8 f E TI(ZN). 

Because of the interaction, for any t > 0, (Xf(t))1<i<N becomes correlated. Nev­
ertheless, in the limit N ~ oo, the independence propagates at any positive times. 
This property, whose rigorous statement is given in the next proposition, is called the 
propagation of chaos. 
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PROPOSITION 4.3 (PROPAGATION OF CHAOS). Let us assume ( 4.8) and the hypotheses 
of proposition 4.2. For any k ;::: 1, let us choose (s1 , .•. , sk) in Sk and let us assume 
that 

(4.9) sj" = Sj, for any 1 5: j 5: k and any N ;::: k. 

Then, 

Notice that (4.9) does not contradict (3.1). Proposition 4.3 means that if k tagged 
particles are independently distributed at the initial time, then they will move "almost" 
independently from each others provided that they live in a "large enough" system. It 
implies, in particular, that 

for any t > 0 and any ft, ... , f k continuous bounded functions on Z, then 

where the law of Xj(t) is fi;;. 

C. Back to the epidemic system. Let us consider again the epidemic system which 
was described in section 2. It fits the general interacting system of section 3 with S, Z 
and£ given by (3.3). In order that the assumptions of our previous results are satisfied, 
one should assume that: 

1 N 
lim N ""'li8 N =a = ma 

N-+oo ~ ' 
i=l 

1 N 
lim N ""' lisi:' =b = mb 

N-+oo L......t • 
i=l 

(hence m = ma8a + mb8b E IT(S) with ma + mb = 1) and that the function J(y) 
appearing in (2.1) is a continuous bounded function on lR?; for instance, a smooth 

approximation of li{IIYII<R}· 
If all the individuals are independently distributed at time t = 0 with the common 

law fig ( resp. fi&) on lR? X { S, I, D} for the individuals of type a ( resp. type b), then by 
proposition 4.2 : 

almost surely in w, 
N 

lim ~ ""'8cxN(w ·) si:') = fi in IT (D([O,T],lR? x {S,I,D}) x {a,b}) 
N-+oo N L..J • ' ' • 

i=l 

Here, fi( dx, ds) = mafia( dx )8a( ds) + mb I}( dx )8b( ds ), fia and /1b being the unique 
Markov laws on D([O, T], lR? x {S,I, D}) such that t -+ (fi~, fin is a solution of the 
nonlinear differential equations 
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~ L l., g(y,e)p.~(dy x {e}) = 
eE{S,I,D} 

and 

{ {g(y, I)- g(y, S)} Csi(Y, a, map.~® ba + mbp.~ ® bb)ma p.~(dy X {S}) 
JJR2 

+ { {g(y, S)- g(y, I)} Cis rna p.~(dy x {I}) 
JJR2 

+ f {g(y,D)-g(y,I)}Cwmap.~(dyx{I}) 
JJR2 

+ L In 
2 
(In 

2 
{g(y + Ay,e)- g(y,e)}.Cy(y,d-6.11 )) map.~(dy x {e}) 

eE{S,I} JR JR. 

dd L f h(y,e)p.~(dy x {e}) = 
t JJR2 

eE{S,I,D} 

{ {h(y, I)- h(y, S)} Csi(y,a, map.~® Ca + mbp.~ ® 6b)mb p.~(dy X {S}) 
JJR2 

+ { {h(y, S)- h(y, I)} Cis mb p.~(dy x {I}) 
JJR2 

+ f {h(y,D)- h(y,I)} Cwm6 p.~(dy x {I}) 
JJR2 

+ L In 
2 
(In 

2 
{h(y + A 11 ,e)- h(y,e)}.Cy(y,d-6.11 )) mbp.~(dy x {e}) 

eE{S,/} JR JR. 

for any continuous bounded functions g and h on 1R2 x {S, I, D}. 

5. LARGE DEVIATIONS FOR THE GENERAL LONG RANGE 

INTERACTING PARTICLE SYSTEM 

All the results of this section have been proved in C. Leonard (1989) Analogous results 
have been obtained by F. Comets (1987) for the long range Ising model, and by D.A. 
Dawson and J. Gii.rtner (1987) for weakly interacting diffusion systems. The proofs of 
F. Comets (1987), D.A. Dawson and J. Giirtner (1987) and C. Leonard (1989) are quite 
different from each others. One should have a look at the paper written by D.A. Dawson 
and J. Gii.rtner (1989), on this subject. 

For general features about large deviations, one should look at the courses of R. 
Azencott (1980) and S.R.S. Varadhan (1989). 

In theorem 5.1, one gives a rigorous statement of (1.2) , then one expresses the 
function I(·) at theorems 5.2 and 5.3. 

A. Natural questions involving large deviations. It has been seen in the previous 
section that, whenever N is large and the initial distribution satisfies ( 4.1 ), the empirical 
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measure Jv '2::~1 licx[" (w,-),s[') tends, almost surely in w, to the probability measure 11 
on D x S which is given by propositions 4.1 and 4.2. The speed of convergence is made 
precise by a result of type (1.2). 

Let us suppose that the limiting measure 11 on D x S is such that its family of 
marginals Jlt E II( Z X S) for all times t, tends to Jloo in II( Z X S), as t tends to infinity. 
One would like to get an estimate,for large N and large T, for the probability of the 
event 

" 
N 

~ L li(X["(T),s[') belongs to the neighbourhood N(v) of a probability measure v 
i=1 

on Z x S " ( v may differ from the asymptotic state /-Leo). A rough answer to this 
question is given by (1.2), which can be written as follows: 

P ( ~ t, licx[" ,sf) E A) ::::: exp ( -N inf{I(v);v E A}) , as N tends to infinity 

with 

(5.1) A= {v E II(D x S) such that v0 E N(f.lo) and vr E N(v)}. 

Among all the paths leading from N(J-Lo) to N(v) during the time interval [O,T], the 
most probable ones, as N tends to infinity, are those v in II(D x S) such that: 

(5.2) I(v)=inf{I(v);vEA} and vEA 

where A is given by (5.1). Indeed, if v E A and I(v) = I(v) + c (c > 0), then: 

p (tv ~N_ licxN sN) EN( v)) 
•-1 ' '' :::=:::exp(-N(I(v)-I(v))), asNtendstoinfinity 

P (Jv ~~1 licx[",s[') E N(v)) 
= exp(Nc), which tends to infinity with N. 

This leads us to the optimization problem (5.1) & (5.2) . 

B. The large deviation principle. In this subsection, we give a rigorous statement 
of (1.2) in the following theorem. 

THEOREM 5.1. Let us assume hypotheses (H) and (4.1). The sequence of random 
variables 

( -N1 I:N_ 1 li(x!'l s!'l)) obeys a large deviation principle in the space II(D xS) endowed 
,_ ' ' ' N>1 

with its natural topology. 
This means that one can find a function I(·) on IT(D x S) with values in JR+ U {+oo}, 
such that: 
for any closed subset C ofiT(D X S), 

1 ( 1 N ) lim sup N logP w; N 'l:licx["(w,-),sf') E C :5 -inf{I(v);v E C} 
N-+oo i=1 
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and for any open subset G ofii(D x S), 

If the subset A of II(D x S) is "regular for I(·)" , in the sense that: 

inf{I( v ); v in the interior of A} = inf{I( v ); v in the closure of A} 

then: J~oo ~ logP (w; ~ t,8(X["(w,-),sf) E A) = -inf{I(v);v E A}, 

which is (1.2) . 

C. The rate function I(·). The following result states that if I(v) is finite, then 

t---+ Vt is an "absolutely continuous" path in the sense of (5.4) below. 

THEOREM 5.2. Let us assume the hypotheses (H) and (4.1). Let v be a probability 
measure on D X S such that 

I(v) < +oo 

then, it satisfies the following properties. 
• (5.3) The marginal law vs on Sis vs = m (see (4.1)). 
• (5.4) One can find a Levy kernel {.Cv(z,s,t)(·);z E Z,s E S,O ~ t ~ T} such 
that form-almost every sinS and for any continuous function g with compact support 
in Z, the function t ---+ J z g( z) vl ( dz) is absolutely continuous and 

dd [ g(z)vl(dz) = [ (1 {g(z +~)- g(z)}.Cv(z,s,t)(d~)) vl(dz) 
t lz lz (Z-Z)\{o} 

The evolution equation (5.4) is a Kolmogorov equation, but this does not imply that v8 

is a Markov Jaw. Nevertheless, 
• form-almost every s in S, one can find a unique probability measure v* 8 on D which 
is a Markov law that satisfies (5.4) and which is absolutely continuous with respect to 
the law of the Markov process with generator : g(·) ---+ J(z-Z)\{O} {g( ·+~)-g( ·)}A( d~). 

(A is defined in hypothesis HI). 

The markovian projection. It is natural to define the "markovian projection" v* of v, 

for any v E II(D x S) such that I(v) < +oo, by: 

v*(dx,ds) = v*8 (dx)m(ds) ; v* E II( D x S) 

where vu is given by theorem 5.2 . 
In order to express I( v) in theorem 5.3 below, we need a generalization of the definition 

of Kullback information. 



181 

Kullback information between two nonnegative measures. Let a and {3 be two non­
negative measures on a measurable spaceY. The Kullback information K({3,a) of the 
measure {3 with respect to the measure a is defined by: 

K({3, a)= { jy{*(y)log *(y)- *(y) + 1} a(dy) 
+co 

if {3 4:. a 

otherwise 

It is easy to chek that: 

K(/3, a) ?:. 0 

K({3,a) = 0 <===? {3 =a 

{3--. K(/3, a) is a convex function. 

Notice that if both a and {3 are probability measures, the above definition of K({3,a) 
matches with the classical one: 

K({3,a) = { jylog*(y)f3(dy) 
+co 

if {3 4:. a 

otherwise 

We are now ready to give an expression for I( v ). 

THEOREM 5.3. Let us assume the hypotheses (H), (4.1) and that the initial condition 

{ (Xf (t = 0), s[') 1 ~i~N; N ?:. 1} obeys a large deviation principle in the topological 

space II(Z X S) with a rate function Io: II(Z X S) --t li4 U { +oo }. Then, for any 
probability measure v on D x S, 

(5.5) 

with 

I(v) = { K(v,v*) + I(v*) 
+oo 

if v satisfies ( 5.3) & ( 5.4) 

otherwise, 

(5.6) I(v*) = Io(vo) + 1T (Lxs K(.Cv(z,s,t),C(z,s,vt)) v:(dz)m(ds)) dt 

Let us recall that v* is the markovian projection of v, K(·, ·)is the Kullback informa­
tion, Cv comes from (5.4), C from (3.2), m from (3.1) & (4.1) and 10 from the above 
assumption on the initial condition. 

D. The variational principle (5.1) & (5.2). It can be proved that, whenever 
I(v) < +oo, 

(5.7) Vt = v:, for any 0 ~ t ~ T. 

As an indication, t --t Vt and t --t v; both satisfy the same evolution equation (5.4). 
But (5.4) does not necessarly admit a unique solution and (5.7) is far from being easy 
to prove. H. Follmer (1989) proved such a result for interacting diffusions. A different 
proof of (5.7) is given in C. Leonard (1989). 

A straightforward consequence of (5.5) and (5.7) is the following corollary. 
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CoROLLARY 5.4. Under the assumptions of theorem 5.3, for any probability measures 
v and .X on Z x S: 

inf {I(v);v such that v0 = v and VT =.X} 

=inf {I(v*); v such that v0 = v and VT =.X} 
= inf {I( v ); v such that v0 = v, VT = .X and v is a Markov law. } . 

Such a result is worth when solving the variational problem (5.1) & (5.2). Indeed, 
the minimizing solutions are necessarly Markov laws and 

I(v) = I(v*) for any Markov law v 

whose explicit form is given by (5.6). 
Let us denote a E II( D), the law of the Markov process with generator: 

g(·)-+ ~Z-Z)\{O} {g(· + ~)- g(·)} A( db.). By theorem 5.2 and Girsanov's formula, one 
can find a nonnegative measurable function l( ·) on Z x S x [0, T] x ( ( Z- Z) \ { 0} ), such 
that v* = '1/J( l), where 

(6.1) v*(dx,ds) = vu(dx)m(ds) = '1/J(Wm(ds) = '1/J(l)(dx,ds) 

with 

d?/J(l)s(x)= 
da 

exp [ L logl(xt-,s,C,xt-Xt-)- fT( f logl(xt,s,t,~)A(db.))dtl 
O~t~Tx1 ;a!x,- lo J Z-Z 

x ~~~ (x 0 ) exp [ -1T (l_z {l(xt, s, t, ~)-log l(xt, s, t, b.)- 1}A(db.)) dt] 

This means that v* is the Markov law with Levy kernel Cv(z, s, t)( d~) = l(z, s, t, b.) A( d~). 
Denoting 

()( ) dCv(z,s,t) () 
</> l z,s,t,~ = dC(z,s,?/J(l)t) ~ 

= l(z,s,t,~) ( dC(z,sditjJ(l)t)(d~)) -1 

one can write I(v*) = I(?/J(l)) with 

(6.3) 

I( 7/J(l)) = {T dt f (1 { </>( l) log(</>( l)) - </>( l) + 1 }( z, s, t, b.) C( z, s, '1/J( 1)t)( d~)) lo lzxs (Z-Z)\{O} 

tf;( l); ( dz) m( ds )dt 

Hence, to solve (5.1) & (5.2), one should consider the above function 1 
on Z X S X [0, T] X ((Z- Z) \ {0}) as a new parameter instead of v*, with the trans­
formation (6.1) & (6.2). The problem is now to minimize 1(·)- I(t/;(1(-))) given by 
(6.3). Bon courage. 
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